The present invention generally relates to power tools for removing roof shingles.
In the past, various tools have been used to remove roof shingles. One of such tools is the Rapid Roof Remover, described at www.rapidroofremover.com. This device uses pneumatic pressure to lift the shingles from the roof deck. Another tool is the Shingle Hog described at www.shinglehog.net. This device operates much like the Rapid Roof Remover except it pivots at a different point.
The Rapid Roof Remover, weighs approximately 50 lbs. The Shingle Hog is lighter, but still about 25 lbs. The weight of these tools is a significant factor affecting their use.
While these tools have enjoyed some success and have been used in the past, they are in need of some improvements.
These mechanisms are so heavy that in some situations their weight makes them difficult to maneuver and to carry onto a roof. The weight of such machines above also prevent their effective use on steep-pitched roofs. The weight of these machines above also increases the risk to the roofer of falling off the roof because the forward momentum of the heavy device can pull the roofer forward and off balance should the front teeth fail to engage with the roof.
Additionally, these use relatively little leverage in their powertrains and consequently have relatively large actuators which fill relatively slowly. The operators often have to wait for the machine to work.
In addition, the lack of an automatic trigger mechanism consistently costs time in having to push the button.
These systems are bulky in size. This factor is similar to weight but independently troublesome. Carrying such systems up a ladder to a rooftop without the help of a second person or the use of some other device(s) would often be difficult and dangerous.
These devices can be dangerous owing to stored energy being continuously supplied to the moving parts, especially in situations when debris gets caught in the mechanism. Such energy supplied to the moving parts could injure the operator when they are trying to remove the debris.
Consequently, there exists a need for improved methods and systems for removing shingles from a roof.
It is an object of one aspect of the present invention to provide a system of reducing the effort expended and time required to remove shingles from a roof.
It is a feature of one aspect of the present invention to utilize in the actuator a relatively small piston, with a quick charging time. Such an actuator, in combination with a powertrain design with mechanical advantage, can provide ample force for removing shingles.
It is an advantage of the present invention to reduce user initial start-up waiting time.
It is an additional feature of the present invention to provide a lightweight and compact device.
It is an additional advantage of this embodiment of the present invention to provide for ease of use and deployment to a roof in a safe manner.
Accordingly, the present invention is a system for removing shingles from a roof, the system comprising:
A method of removing shingles from a roof comprising the steps of:
Additionally a system for removing shingles from a roof comprising:
Now referring to the drawings wherein like numerals refer to like matter throughout and more particularly referring to
Power tool for removing shingles 100 is shown as a full assembly, where the lower unit 150 contains power generation and transmission mechanisms used to raise the leading edge of the tool, i.e. the saw tooth portion of lift plate 160. Above and to the rear of the lower unit 150 is lower handle 130, this is where the operator holds the power tool for removing shingles 100, with one hand. The lower handle 130 contains the actuation device and the enablement device (both not shown). Above and rearward of the lower handle 130 is upper handle 110.
Now referring to
One advantage of the present invention over the current state of the art is that the design of the power generation and transmission mechanism is more compact and lightweight. This makes the device 100 easier to transport to the work surface, which may be on top of a multi-story building. The low weight and compact size also makes the machine 100 more maneuverable with less energy than the current state of the art.
A second advantage of the present invention over the state of the art is the automatic actuation mechanism. This reduces the time required to operate the machine. From the perspective of the operator, there is no second step required to activate the machine. They simply move the machine into place and the dislodging action occurs without thought or need for further action.
A third advantage to this machine is the additional operator safety provided with the enablement mechanism. The present invention may require the operator to be actively grasping and controlling the machine before it will operate. This prevents accidental triggering of the automatic actuation mechanism when the operator is not presently engaging the controls.
Now referring to
Now referring to
Now referring to
Now generally referring to
The geometry of the components and their attachment points to the lower unit frame 151 combine to provide the mechanical advantage and direction change to the force applied by the actuator 158 within a compact space. A more thorough understanding of the power tool for removing shingles 100 can be aided by now referring to
Lower Handle Subassembly 130 and Upper Handle 110.
Two embodiments are described below in detail with additional embodiments expressed as part of each discussion. These embodiments all operate off of the same fundamental concept explained above where the forward motion of the operator serves to trigger the actuation event when the extraction plate engages with a fastener.
Now referring to
The Lower Handle subassembly 130 and the Upper Handle 110 provide the operator a place to grasp the device and to control machine enablement and actuation. These subassemblies are connected to the Lower Unit subassembly 150 using the Lower Handle Shaft 133. The Upper handle 110 is connected to the Lower Handle subassembly 130 using the Upper Handle Shaft 113. The Lower Handle Subassembly 130 comprises Lower Housing 1210, the Upper Housing 1212, and the Lower handle 130. The Enablement Lever 1331 is located within the Lower Handle 130. The Enablement Device 1333 is found in the Upper Housing 1212 the Power Supply Connecter 1214 can be found within the Upper Handle 110. Within the Primary Enablement, the Actuation Device 132 is housed within the Upper Housing 1212, in another embodiment (See
Tool 100 works by the operator grasping the Lower Handle and therefore pulling the distal end of the Enablement Lever 1331 upward. The proximal end of the Enablement Lever 1331 rotates around the enablement lever pivot point 1335 and pushes on the plunger 1334 to go within the Enablement Device 1333 which triggers the Enablement Device 1333 to supply energy to the Actuation Device 132. This energizes the system and it is ready for an actuation event.
Note that while the primary embodiment of this machine only optionally includes this enablement functionality, other embodiments of this need not include it. The Primary Embodiment is powered with compressed air, thus the enablement device 132 is a pneumatic valve. Other Embodiments utilize pressurized liquids, electricity, or combustion events. The Enablement Device 1331 in such cases is a hydraulic valve, electric switch, and fuel supply valve, respectively.
Actuation is accomplished using the Actuation Device 132 and the relative motion between the Lower Housing 1210 and the Upper Housing 1212 when the operator pushes against the Lower handle and/or the Upper Handle. The operator pushes the machine forward using the Lower Handle 130 and the Upper Handle 110. The machine will slide forward on the Skid Plate 166 until a fastener contacts the leading edge of the Lift Plate 160. The machine will stop moving forward, but the continued forward pressure on the Lower Handle 130 and the Upper Handle will cause the top edge of the Lower Housing 1210 and the Upper Housing 1212 to move towards each other. This motion pushes upon the enablement plunger 1334 built into the actuation device 132, causing it to activate which supplies the compressed air (or pressurized liquid or electricity or combustion gas for hydraulic, electric, or combustion embodiments, respectively) to the drivetrain within the Lower Unit 150. For machine embodiments utilizing an Actuator 158 that is powered in both directions, the Actuation device will supply power to the actuator 158 in the opposite direction to return the machine to its retracted state. This occurs when the operator stops applying forward push on the handles or when the enablement lever 1331 is released.
Now referring to
As discussed above, various different types of power sources could be utilized in the present invention depending upon the specific application (e.g. pneumatic, hydraulic, electrical, and/or mechanical). In each of these specific applications, the activation energy is only supplied to the Activation Device 132 when tool 100 has been enabled using the enablement device 1331. The source of power is provided from the Power Supply Connector to the enablement device 1333, then to the actuation device 132, and finally to the Lower Unit drivetrain using hoses or wires, which are not pictured in the diagrams for clarity.
The above-described features may be better understood by referring to
1. Other apparatuses could be made to be wider or narrower.
2. They could be made to be more powerful with a bigger piston or with larger lever arms in the drivetrain.
3. They might come up with a different angle or adjustable angle for the leading edge of the tool.
4. They might move the pivot points of the various levers.
5. They might put wheels or rollers on it.
6. They might have the lift plate brackets within a frame.
7. They could change the angle that the handle exits the lower unit.
8. The actuation mechanism could be done in a number of ways.
Now referring to
Now referring to
Now referring to
Now referring to
There is shown in
Actuation device within a manual trigger.
Alternatively, this manual trigger at 17d1 or 17d2 could be used to activate the enablement device and the actuation could occur as discussed with the primary and alternative embodiments discussed above. Shown in
Actuation Option d.
Actuation device within a manual trigger.
The enablement device is activated by this manual trigger within the upper handle.
Now referring to
The lower handle could pivot without the upper handle shaft having to rotate with it causing the upper housing to slide into the lower housing, causing the plunger on the actuation device to be pressed without the need for rotation.
Actuation Option f Lower handle moves forward without upper handle motion moving forward upon sides built into the upper housing.
It is thought that the method and apparatus of the present invention will be understood from the foregoing description and that it will be apparent that various changes may be made in the form, construct steps and arrangement of the parts and steps thereof without departing from the spirit and scope of the invention or sacrificing all of their material advantages. The form herein described is merely a preferred exemplary embodiment thereof.
This application claims the benefit of a provisional application filed on Jul. 2, 2021, and having Ser. No. 63/217,816, by the same inventor and entitled “A POWER TOOL FOR REMOVING ROOF SHINGLES” which is hereby incorporated herein in its entirety by this reference.
Number | Date | Country | |
---|---|---|---|
63217816 | Jul 2021 | US |