The subject disclosure relates to a power tool with a cutting depth adjustment mechanism and, more particularly, relates to an improved structure of the cutting depth adjustment mechanism.
Generally, a power tool, such as an electric router, includes a hollow support base and a body on which a bit assembly is disposed. The body is vertically, movably mounted in the base. To adjust the height of the bit assembly relative to a workpiece, a cutting depth adjustment mechanism is disposed between the base and the body.
By way of example, U.S. Pat. No. 5,853,274 discloses an electrical router which comprises: (A) a base assembly which includes an annular base member and a cylindrical base member supported on the annular base member; (B) a cylindrical housing received within the cylindrical base member, wherein the cylindrical housing includes a plurality of vertically aligned first components; and (C) an adjustment mechanism supported on the base assembly, wherein the adjustment mechanism includes a lever and an adjustment device for moving the lever vertically with respect to the base assembly, and the lever has a second component which is movable between a first position and a second position. When at the first position, the second component is selectively engaged with one of the first components to prevent vertical sliding of the housing relative to the lever. When at the second position, the second component is disengaged with the first component so as to permit vertical sliding of the housing relative to the lever. Such an adjustment mechanism as disclosed is complicated in structure and inconvenient for operating.
The following describes an electric power tool offering a way of fast and precise adjustment of the height of the bit assembly. More particularly, the following describes a power tool having a base assembly and a motor housing that is slidably mounted on the base assembly. A motor and a transmission mechanism is contained in the motor housing and the transmission mechanism connects to an output shaft on which a bit is fixed. A vertical, toothed bar is mounted on one of the base assembly and the motor housing and a gear shaft is horizontally mounted on the other of the base assembly and the motor housing. A first gear is rotatably mounted on the gear shaft is engaged with the toothed bar, a second gear is mounted on the other of the base assembly and the motor housing, and a knob mounted on the other of the base assembly and the motor housing for operably rotating the second gear. The second gear is slidably movable between a first position and a second position wherein, at the first position, the second gear engages the first gear and, at the second position, the second gear disengages the first gear.
Therefore, a fast and precise adjustment is achieved by changing axial position of the second gear. When the second gear is on the second position, it disengages the first gear and the motor housing is thus available to be moved quickly relative to the base assembly. When the second gear is on the first position, it engages the first gear, and rotation of the knob will drive the second gear to rotate thereby to rotate the first gear, such that the toothed bar together with the motor housing is vertically moved, and a precise adjustment is achieved. Accordingly, a power tool is provided with a compact structure and reliable adjustment of the cutting depth.
The subject power tool with a cutting depth adjustment mechanism will become apparent from the following detailed description illustrated in the accompanying drawings, wherein:
Referring now to
Referring to
Referring to
A step 28 is formed on the central portion of the gear shaft 1. A link gear 2 and a lock gear 4 are mounted on each side of the step 28 of the gear shaft 1 respectively. The link gear 2 is available to engage the toothed bar 3. Opposing faces of the link gear 2 and the lock gear 4 have detent means respectively. As an embodiment, the detent means are a plurality of teeth 42, 44 that are engagable with each other. The engagement of the face teeth 42, 44 circumferentially fixes the link gear 2 and the lock gear 4. One side of the lock gear 4 which is adjacent to the link gear 2 is axially restrained by the step 28 of the gear shaft 1. A spring 5 is biased between the other side of the lock gear 4 that is away from the link gear 2 and sidewall of the cavity 8. A press button 22 is mounted on an outside end of the slidable gear shaft 1. A slot (not shown) is formed on the press button 22 and is guided along a guide rib 46 formed on the base member 12, such that the gear shaft 1 is slidable relative to the base member 12 but is prevented from rotating.
A knob 10 and a scale ring 24 is mounted on top end of the worm shaft 7 and a worm 6 that is available to engage the lock gear 4 and which is fixed on a middle portion of the worm shaft 7. The lock gear 4 is available to be pushed by the step 28 of the gear shaft 1 to be axially slidable between a first position and a second position. When the lock gear 4 is biased by the spring 5 to the first position, the lock gear 4 engages the worm 6, and the teeth 44 of the lock gear 4 engage the teeth 42 of the link gear 2 such that the two gears are immovable relative to each other. Meanwhile, when the knob 10 is rotated by an operator, the lock gear 4 will be driven to rotate, and subsequently the link gear 2 is driven to rotate along with the lock gear 4 so as to move the toothed bar 3 vertically. Thus, the motor housing 11 is vertically moved relative to the base member 12 and precise adjustment is achieved. When the press button 22 is pressed such that the gear shaft 1 drives the lock gear 4 to the second position, the lock gear 4 disengages the link gear 2 and the two gears are free to rotate relative to each other. Then the operator can directly move the motor housing 11 to a desired position. During the adjustment, the clamping lever 9 should be opened as shown in
The description and the illustration of the drawings above is only for an exemplary, preferred embodiment of the present invention. The protection scope of the present invention is not to be limited by this disclosure but by the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
200720034376.X | Feb 2007 | CN | national |