The invention is based on an electric power tool as generically defined by the preamble to claim 1.
In right-angle grinders, the cooling air required for cooling the electric motor is as a rule aspirated through lateral air inlet openings, which are located in the rear portion of the housing. It is also known to provide air inlet openings on a rear end face of the housing as well. In typical air courses, the cooling air is aspirated into the interior of a housing through a fan located on the armature shaft. Along the way from the air inlet to the air outlet, the cooling air strikes various components in the interior of the housing that deflect the cooling air, making it turbulent and slowing it down.
In various electric power tools, the housing can be used as a handle, but then there is the risk that the lateral air inlet openings will be covered by the user's hand, and then air is aspirated only through the face-end air inlet openings. However, those openings are relatively small in proportion to the lateral openings, and so only little air can reach the housing. The lateral air inlet openings cannot be made arbitrarily longer or larger, though, because then the spacings from current-carrying parts in the interior of the housing that might otherwise be needed cannot be adhered to.
The invention is based on an electric power tool, having an electric motor located in a housing and having a cooling device.
It is proposed that the cooling device, at least in some regions, has a cooling conduit that is closed off from an interior of the housing. The cooling medium, preferably cooling air, can be purposefully made to bypass interfering components. A high flow speed and a high volumetric throughput can be achieved. Any dirt aspirated with the cooling air can be made to flow past vulnerable parts such as brushes or switches, and dirt can be prevented from becoming deposited on them. Because of the purposeful course of the cooling medium, the temperature at the electric motor drops, which increases its efficiency and lengthens its life. Precisely in heavy-duty right-angle grinders, this arrangement offers major advantages. A substantially closed cooling conduit should be understood in particular to mean cooling conduits that have recesses such as slits, small holes and the like that are at least largely negligible in fluidic terms.
If the cooling conduit is let into a support plate of a motor housing, then it can favorably be already provided upon manufacture of the support plate and incorporated into the support plate in a space-saving, optimized way.
If the cooling conduit is covered with a cover plate, a closed cooling conduit can be furnished, in which the cooling medium can flow unimpeded by components in the interior of the housing. Removing the cover plate makes it possible to clean the cooling conduit easily as needed.
If the cover plate is embodied integrally with a motor housing, then a separate cover plate can be dispensed with. Manufacture is especially simple, and if the motor housing is made by injection molding, the cover plate is simple to mold jointly with it.
If the cooling conduit discharges into an intake nozzle that protrudes from the housing, then it is practically precluded that the intake nozzle will be covered by mistake when the user is working with the electric power tool. Moreover, cooling air reaches the cooling conduit directly and unhindered and can be carried directly wherever it is needed. The cross section of the cooling conduit is variable and will be provided by one skilled in the art to suit the requirements of the particular electric power tool. Fundamentally, however, it is also conceivable for the cooling conduit or an intake nozzle to be flush with the housing, particularly in the region outside a grip region, so that places where dirt could become deposited are advantageously avoided.
If the intake nozzle is located in a face end of the housing, the cooling conduit can be supplied with cooling air without hindrance, even if the housing serves as a handle.
If the cooling conduit has an essentially rectilinear course, then the cooling air reaches the electric motor unhindered, without hindrance from components that stand in the way of the flow. Less turbulence is created in the flow path, so that any dirt entrained is less able to become deposited, and a high speed of the cooling medium can be maintained. Smaller inlet openings can be provided for furnishing a required quantity of cooling medium.
If at least two cooling conduits are provided, then better distribution of the coolant supply can be made. The number of cooling conduits is variable and will be selected by one skilled in the art to suit the requirements of the particular electric power tool. In principle, however, it is also conceivable for only one cooling conduit to be provided.
If lateral and/or face-end air inlet conduits are provided, then cooling of components in the interior of the housing can also be done, without impairing the cooling of the electric motor.
The electric power tool is especially advantageously embodied as a right-angle grinder, in which an overload on the drive can in principle easily occur, which necessitates especially reliable cooling.
Further advantages will become apparent from the ensuing description of the drawings. In the drawings, one exemplary embodiment of the invention is shown. The drawings, description and claims include numerous characteristics in combination. One skilled in the art will expediently consider these characteristics individually as well and put them together to make useful further combinations.
Shown are:
The arrangement according to the invention is shown in the following
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/DE04/02129 | 9/24/2004 | WO | 9/21/2005 |