This application claims the benefit of Japanese Patent Application Number 2011-083936 filed on Apr. 5, 2011, the entirety of which is incorporated by reference.
The present invention relates generally to power tools, and more particularly to a power tool, such as a percussion driver drill, a power driver and the like, which comprises a clutch mechanism.
A power tool such as a percussion driver drill known in the art typically includes a planetary gear speed reduction mechanism disposed between a motor and a spindle so that a rotatory motion of an output shaft of the motor of which the rotation speed is reduced by the planetary gear speed reduction mechanism is transmitted to a spindle, and a clutch mechanism configured to interrupt transmission of torque to the spindle when a clamping torque as a reacting force applied to the spindle reaches a predetermined level. This clutch mechanism is comprised of a final-stage internal gear rotatably provided at a final stage of the planetary gear speed reduction mechanism, engageable members such as pins, balls or the like configured to be engageable with a front end face of the internal gear, and a coil spring configured to press the engageable members against the front end face of the internal gear. If the reacting force applied to the spindle exceeds the maximum torque set by the pressing force of the coil spring, the internal gear runs idle, and the transmission of torque to the spindle is interrupted.
In this clutch mechanism, if the maximum torque set by compressing the coil spring is too small, the startup torque that is the torque at startup of the motor would easily exceeds the maximum torque, and the internal gear would prematurely be caused to run idle. In order to prevent such an accidental actuation of the clutch mechanism (i.e., premature disengagement of the clutch), for example, Japanese Unexamined Patent Application Publication No. 9-309075 (JP 9-309075 A) discloses a conception proposing that between the coil spring and engageable members, an elastic member be disposed which causes the pressing force of the coil spring to act on the engageable members until the engageable members are disengaged from the front end face of the internal gear, and which becomes buckled and causes the pressing force of the coil spring to be lost once the engageable members are disengaged, so that idle running of the internal gear at startup of the motor is prevented by the elastic member.
However, the conception disclosed in JP 9-309075 A which proposes to add an elastic member disposed between the engageable members and the coil spring would make the entire length of the tool in the axial direction longer so that a compact design of the tool body would become difficult to achieve. Moreover, the proposed configuration for eliminating the pressing force of the coil spring by buckling of the elastic member involves a difficulty in proper adjustment of the timing with which the elastic member is to be buckled, which would disadvantageously lower the reliability of its function of preventing the premature disengagement of the clutch.
With this in view, there is a need to provide a power tool in which the premature disengagement of the clutch can be easily and reliably prevented without increasing the difficulty in achieving a compact body design.
The present invention has been made in an attempt to eliminate the above disadvantages, and illustrative, non-limiting embodiments of the present invention overcome the above disadvantage and other disadvantages not described above.
(1) In one aspect, a power tool proposed herein according to one or more embodiments comprises a motor, a planetary gear speed reduction mechanism, a spindle, a clutch mechanism, and an elastic member. The planetary gear speed reduction mechanism is provided in a gear case. The spindle is configured to receive a torque of the motor transmitted through the planetary gear speed reduction mechanism. The clutch mechanism includes a coil spring configured to press a final-stage internal gear from a front side. The final-stage internal gear is rotatably provided at a final stage of the planetary gear speed reduction mechanism. The clutch mechanism is configured to cause the internal gear to run idle, thereby interrupting transmission of torque, at overload beyond a pressing force of the coil spring. The elastic member is interposed between an inner peripheral surface of the gear case and an outer peripheral surface of the final-stage internal gear, to give resistance to the final-stage internal gear at idle.
(2) In the power tool configured as described in (1) above, optionally, the elastic member is shaped like a pin disposed parallel to an axis of the final-stage internal gear.
With the configurations described above, various advantageous effects may be expected as follows.
For example, according to one or more aspects of the present invention, as mentioned above particularly in (1), the elastic member is interposed between the gear case and the final-stage internal gear, and thus the total length in the axial direction of the tool is not elongated, so that a compact body can be maintained. Furthermore, even if the maximum torque is small, the premature disengagement of the clutch can be prevented easily and reliably.
According to the configuration described in (2) above, in addition to the advantage described above in relation to the configuration described in (1), the elastic member is embodied in a pin member (pin-shaped elastic member), and thus resistance to the final-stage internal gear rotating at idle can be given effectively with a minimum construction.
The above and other aspects, other advantages and further features of the present invention will become more apparent by describing in detail illustrative, non-limiting embodiments thereof with reference to the accompanying drawings.
An illustrative embodiment of the present invention will be described in detail with reference to the drawings.
Referring to
A motor bracket 8 is mounted to a front side of the motor 3, and the output shaft 4 is rotatably supported in the motor bracket 8. The gear assembly 5 includes a first gear case 9 and a second gear case 10. The first gear case 9 has a tubular shape, and is connected to the motor bracket 8. The second gear case 10 has a dual-diameter tubular shape with a large-diameter portion 11 and a small-diameter portion 12, and is mounted to a front side of the first gear case 9. Four bosses 13 are provided protrusively on an outer peripheral surface of a front end portion of the first gear case 9. The first and second gear cases 9, 10 are joined together by fastening the bosses 13 to a rear surface of the second gear case 10 by screws 14. Four bosses 15 are provided protrusively on an outer peripheral surface of a rear end portion of the large-diameter portion 11 of the second gear case 10. The gear assembly 5 is joined to the body housing 2 by fastening the bosses 15 to a front end of the body housing 2 by screws 15a (see
A planetary gear speed reduction mechanism 20 is disposed inside the gear assembly 5. In the gear assembly 5, three sets of carriers 21A, 21B, 21C each of which support a plurality of planetary gears 22 configured to revolve inside a corresponding internal gear 23A, 23B, 23C are arranged in the axial direction. First-stage planetary gears 22 provided at a first stage (i.e., the planetary gears 22 supported by the carrier 21A inside the internal gear 23A) of the planetary gear speed reduction mechanism 20 are in mesh with the output shaft 4 of the motor 3.
A pair of joint plates 24 is formed in each of upper and lower portions of the motor bracket 8. The joint plates 24 of each pair are spaced to the right and to the left at a predetermined interval and configured to protrude frontward with apertures 25 formed at opposed faces thereof. On the other hand, at an outer peripheral surface of a rear end portion of the first gear case 9, projections 26 protruding rightward and leftward are formed in its upper and lower positions corresponding to the joint plates 24. The length of each projection 26 in the right-left direction coincides with the interval between the right and left joint plates 24. A through hole 27 extending in the right-left direction is formed in each projection 26. The motor bracket 8 and the first gear case 9 are, as also shown in
The first-stage internal gear 23A provided at the first stage (arranged at the front side of the motor bracket 8) of the planetary gear speed reduction mechanism 20 includes a pair of partially trimmed portions at upper and lower portions thereof, each of which is composed of an offset surface 29 and a flange portion 30. The partially trimmed portions are configured to be arranged (i.e., to have offset surfaces 29 disposed) in positions corresponding to those of the pins 28 pierced through the motor bracket 8 and the first gear case 9. Each flange portion 30 protrudes from a rear edge of the corresponding offset surface 29 in a direction perpendicular to the offset surface 29 and in a radial direction of the internal gear 23A. When the motor bracket 8 and the first gear case 9 are combined together, the upper and lower pins 28 are pierced through the first gear case 9 along the offset surfaces 29 at the fronts of the flange portions 30 in the partially trimmed portions of the internal gear 23A. Accordingly, the internal gear 23A is restrained from rotating by the pins 28 engaged in the partially trimmed portions (i. e., fitted on the offset surfaces 29), and is located in position in the front-rear direction (i.e., the axial direction of the internal gear 23A) by the pins 28 abutted on the flange portions 30. A washer 31 is interposed between the motor bracket 8 and the internal gear 23A.
Furthermore, in the planetary gear speed reduction mechanism 20, the second-stage internal gear 23B provided at the second stage of the planetary gear speed reduction mechanism 20 is configured to be rotatable and movable frontward and rearward in the axial direction. At the outer peripheral surface of the internal gear 23B, a plurality of external gear teeth 32 and an engageable groove 33 are provided. The plurality of external gear teeth 32 extending in the axial direction are arranged at predetermined intervals in its circumferential direction protrusively on a front half region of the outer peripheral surface of the internal gear 23B. The engageable groove 33 extending in the circumferential direction is provided in a rear half region of the outer peripheral surface of the internal gear 23B. A joint ring 34 is held inside a front portion of the first gear case 9. A plurality of internal gear teeth 35 extending in the axial direction are protrusively provided on an inner peripheral surface of the joint ring 34. The number of the internal gear teeth 35 is the same as that of the external gear teeth 32 of the internal gear 23B. A plurality of ridges 36 extending in its circumferential direction are provided at regular intervals in the circumferential direction protrusively on an outer peripheral surface of the joint ring 34. A plurality of restriction grooves 37 extending in the axial direction are provided in an inner peripheral surface of the front end portion of the first gear case 9. The ridges 36 are fitted in the restriction grooves 37 to thereby restrain the joint ring 34 from rotating.
On the other hand, a speed change ring 38 is fitted on the rear half region of the outer peripheral surface of the internal gear 23B. The speed change ring 38 has projections 39 provided on an outer peripheral surface thereof. The projections 39 of the speed change ring 38 are engaged with guide grooves 40 formed in a rear side region of an inner peripheral surface of the first gear case 9. The guide grooves 40 extend in the axial direction of the first gear case 9 so that the speed change ring 38 engaged there with can move only in the front-rear direction. Joint pins 41 are pierced through holes provided in the projections 39, from outside in radial directions of the speed change ring 38, and an inner end portion of each joint pin 41 is fitted in the corresponding engageable groove 33 of the internal gear 23B. One of the projections 39 disposed on an upper portion of the internal gear 23B has an extension portion 42 extending rearward to exhibit a rearwardly elongated shape. A coupling piece 43 is protrusively provided on an upper surface of a rear end portion of the extension portion 42. A speed change slider control 44 is provided in the body housing 2 in such a manner that the speed change slider control 44 is slidable in the front-rear direction, and the coupling piece 43 of the extension portion 42 is coupled to the speed change slider control 44 with coil springs 45 interposed therebetween.
Accordingly, when the speed change slider control 44 is slid rearward, the coupling piece 43 is pushed rearward and thus the speed change ring 38 is moved rearward, then, the internal gear 23B connected via the joint pins 41 with the speed change ring 38 is brought into mesh with gear teeth 46 provided on an outer peripheral surface of a first-stage carrier 21A (one of the carriers provided at the first stage of the planetary gear speed reduction mechanism 20) while being kept in mesh with second-stage planetary gears 22 (a set of planetary gears provided at the second stage of the planetary gear speed reduction mechanism 20). As a result, the second-stage speed reduction is cancelled to achieve a high-speed mode. Contrariwise, when the speed change slider control 44 is slid frontward, the internal gear 23B is moved together with the speed change ring 38 and separated from the carrier 21A, then, the external gear teeth 32 of the internal gear 23B is brought into mesh with the internal gear teeth 35 of the joint ring 34 while the internal gear 2313 is kept in mesh with the second-stage planetary gears 22. As a result, the second-stage speed reduction is enabled to achieve a low-speed mode.
In this embodiment, a vibration mechanism 50 configured to impart a vibratory motion in the axial direction to the spindle 6 is provided inside the small-diameter portion 12 of the second gear case 10, and a clutch mechanism 90 configured to interrupt transmission of torque to the spindle 6 at overload beyond a predetermined threshold is provided outside the small-diameter portion 12 of the second gear case 10, so that a mode change operation as will be described later may be performed for selection among a percussion drill mode in which the spindle 6 is caused to make a vibratory motion while making a rotatory motion, a drill mode in which the spindle 6 is caused to make the rotatory motion only, and a clutch mode (driver mode) in which a transmission of torque to the spindle 6 is interrupted at overload beyond the predetermined threshold. The next discussion focuses on each of these mechanisms 50, 90.
In the vibration mechanism 50, the spindle 6 is rotatably supported on front and rear ball bearings 16, 17 in the small-diameter portion 12, and a rear end portion of the spindle 6 is spline-fitted in a lock cam 51 that is formed integrally with the third-stage carrier 21C, so that the spindle 6 can move in the front-rear direction. A cap 52 is put over the lock cam 51 from a front side and fitted thereto in the small-diameter portion 12.
The spindle 6 has a flange 53 formed at a position therein closer to a front end of the spindle 6. A retaining ring 55 is fitted on the spindle 6 in a position rearward of the ball bearings 17. In a normal state, the spindle 6 is biased by a coil spring 54 fitted thereon in a position between the flange 53 and the ball bearings 17, toward an advanced position in which the retaining ring 55 is brought into contact with the ball bearings 17. A spacer 56 is fitted in a front end portion of the small-diameter portion 12 to locate the ball bearings 17 in position.
A first cam 57 and a second cam 58 each shaped like a ring are arranged in this order from the front and fitted coaxially on the spindle 6, and positioned between the ball bearings 16 and the ball bearings 17. The first cam 57 has first cam teeth 59 circumferentially arranged and radially formed contiguously on a rear end of the first cam 57. The first cam 57 is fixed on the spindle 6. The second cam 58 has second cam teeth 60 formed, symmetrically to the first cam teeth 59, on a front end of the second cam 58 which is opposite to the first cam teeth 59 formed on the rear end of the first cam 57. The second cam 58 is loosely fitted on the spindle 6. A flange 61 is formed at a peripheral edge of the front end portion of the second cam 58. Three engageable projections 62 are protrusively provided in positions which are rearwardly of the flange 61 and equidistantly arranged on an outer peripheral surface of the second cam 58, as also shown in
Furthermore, an annular stepped portion 63 is protrusively provided in a position frontward of the second cam 58 on an inner peripheral surface of the small-diameter portion 12, and a washer 66 is provided in a position rearward of the second cam 58, and held on a plurality of steel balls 65 which are held on a front side of a stopper plate 64 fixed inside the small-diameter portion 12. Accordingly, the second cam 58 is restrained from moving in the axial direction between the stepped portion 63 and the washer 66.
On the other hand, inside the small-diameter portion 12, a slide ring 67 is accommodated, and is disposed on an outer peripheral surface of the second cam 58. The slide ring 67 has substantially the same diameter as that of the second cam 58. In this slide ring 67, as shown in
Elongate holes 71 extending in the front-rear direction are provided in the small-diameter portion 12, as shown in
On the other hand, a tubular vibration switch cam 76 is rotatably fitted on the outer peripheral surface of the small-diameter portion 12 in a position outside the connecting pins 72. The vibration switch cam 76 is restrained from moving frontward by a stopper ring 75. On an inner peripheral surface of the vibration switch cam 76, at a front end portion thereof, a cam ridge 77 is provided to protrude inwardly therefrom, and outer end portions of the connecting pins 72 are in contact with the cam ridge 77 so that the slide ring 67 is restrained from moving frontward. On the rear edge of the cam ridge 77, three trapezoidal engageable recessed portions 78 are formed in positions arranged equidistantly in the circumferential direction, as shown in
With this configuration, when the vibration switch cam 76 is rotated to a first angular position in which the engageable recessed portions 78 are in phase (in positions phase-matched) with the connecting pins 72, the connecting pins 72 get engaged with the engageable recessed portions 78 and located into advanced positions. On the other hand, when the vibration switch cam 76 is rotated to a second angular position in which the engageable recessed portions 78 are out of the positions phase-matched with the connecting pins 72, the connecting pins 72 get out of the engageable recessed portions 78, running on the rear end portion of the cam ridge 77, and come to retreated positions in which the connecting pins 72 are retained. When the connecting pins 72 come to the advanced positions, the slide ring 67 is also advanced and brought into contact with the flange 61 of the second cam 58 so that the restraining projections 68 of the slide ring 67 are positioned between the engageable projections 62 of the second cam 58 to restrain the second cam 58 from rotating (i.e., the slide ring 67 comes to a first slide position). On the other hand, when the connecting pins 72 come to the retreated positions, the slide ring 67 is also retreated so that the restraining projections 68 of the slide ring 67 are retreated and disengaged from the engageable projections 62 of the second cam 58 to make the second cam 58 freely rotatable (i.e., the slide ring 67 comes to a second slide position).
The rotatory motion of the vibration switch cam 76 is caused by means of a mode change ring 79 which is rotatably fitted on the large-diameter portion 11 of the second gear case 10. The mode change ring 79 has a two-diameter stepped structure and includes an operating portion 80 and an insert portion 81. The operating portion 80 having substantially the same diameter as that of the large-diameter portion 11 is disposed frontward, and the insert portion 81 having such a smaller diameter as to be inserted in the large-diameter portion 11 is disposed rearward. On an outer peripheral surface of the insert portion 81, three engageable grooves 82 extending in the axial direction are formed in positions arranged equidistantly in the circumferential direction. Similarly, three notches 83 are formed in positions phase-matched with the engageable grooves 82 at a rear end of the vibration switch cam 76.
On the other hand, in a front surface of a blocking portion 18 which connects the large-diameter portion 11 and the small-diameter portion 12 of the second gear case 10, three receptacle recessed portions 84 having a predetermined length in the circumferential direction are formed as shown in
Next, the clutch mechanism 90 will be described hereafter.
A clutch ring 91 with a spring holder 93 disposed inside is rotatably fitted on the small-diameter portion 12 in a position frontward of the mode change ring 79. An internal thread portion 92 is formed on an inner peripheral surface of the clutch ring 91, and an external thread portion 94 is formed on an outer peripheral surface of the spring holder 93. The spring holder 93 is screwed in the clutch ring 91 and fitted on the small-diameter portion 12. The spring holder 93 includes projections 95 formed at an inner peripheral surface thereof, and the projections 95 are fitted in grooves 96 formed in the axial direction in an outer peripheral surface of the small-diameter portion 12 so that the spring holder 93 can move frontward and rearward in the axial direction while being restrained from rotating. A coil spring 97 is fitted on the small-diameter portion 12 in a position rearward of the spring holder 93. The coil spring 97 has an internal diameter larger than the diameter of the vibration switch cam 76. A front end of the coil spring 97 is held in the spring holder 93. A rear end of the coil spring 97 is in contact with a washer 98 provided at a front surface of the blocking portion 18. This washer 98 is disposed between the legs (inner and outer end portions 86, 87) of the coupling rods 85 and abuts on the front surface of the blocking portion 18 so that the washer 98 would not interfere with the coupling rods 85 moving according as the mode switch ring 79 rotates.
Six engageable pins 99 are pierced through the blocking portion 18 in positions arranged equidistantly in the circumferential direction in such a manner that the engageable pins 99 can move in the front-rear direction. Front ends of the engageable pins 99 are in contact with the washer 98. Rear ends of the engageable pins 99 are in contact with a front surface of the third-stage internal gear 23C. Trapezoidal cam projections 100 arranged equidistantly in the circumferential direction are disposed between the engageable pins 99 and brought into contact with the front surface of the internal gear 23C.
Accordingly, the engageable pins 99 receive the biasing force of the coil spring 97 transmitted through the washer 98 and is thereby pressed against the front surface of the internal gear 23C. As a result, the engageable pins 99 engage with the cam projections 100 in the circumferential direction so that the internal gear 23C is restrained from rotating. When the clutch ring 91 is operated to rotate, the spring holder 93 is screwed forward or backward in the axial direction to extend or contract the coil spring 97 in the axial direction so that an adjustment can be made to the pressing force. A click plate 102 is fixed to the small-diameter portion 12 by the stopper ring 101 in a position frontward of the clutch ring 91. The click plate 102 has a click pawl 103 configured to engage with and disengage from a plurality of detents 104 formed on a front surface of the clutch ring 91 so that a tactile click response is obtained during the operation of rotating the clutch ring 91.
On the other hand, retaining grooves 105 are formed in an inner peripheral surface of a front portion of the first gear case 9. The retaining grooves 105 extending in the axial direction from the front end of the first gear case 9 are arranged at predetermined intervals in the circumferential direction in positions other than the positions in which the restriction grooves 37 are formed, as shown in
Moreover, restriction pins 107 are loosely fitted, from the front as shown in
In the percussion driver drill 1 configured as described above, three operation modes are selectable through the operation of rotating the mode change ring 79.
First, when the mode change ring 79 is in a first angular switch position (i.e., the position in which the coupling rods 85 are in positions (A) indicated by chain double-dashed lines in
In this clutch mode, when the motor 3 is activated to cause the spindle 6 to spin, various operations, such as fastening, can be performed, for example, by turning and driving a screw with a driver bit installed on the drill chuck 7. In this operation mode, a resistance for retarding the rotation of the internal gear 23C is given by the rubber pins 106, and thus as long as the predetermined pressing force of the coil spring 97 is small enough, the internal gear 23C is prevented from running idle even if the startup torque of the motor 3 is added instantaneously thereto, so that premature disengagement of the clutch can be avoided.
When tightening of the screw proceeds and the load imposed on the spindle 6 exceeds the pressing force of the coil spring 97 which retains the internal gear 23C in position, the cam projections 100 of the internal gear 23C pushes the engageable pins 99 out frontward and causes the engageable pins 99 to run over the cam projections 100 relatively, to cause the internal gear 23C to run idle and the tightening of the screw is finished (i.e., the clutch is activated). In this occasion, the internal gear 23C runs idle even under the resisting action by the rubber pins 106. It is to be understood that even if the driver bit is pressed against the screw and causes the spindle 6 to be moved rearward until the first cam 57 is brought into contact with the second cam 58, the second cam 58 rotates together with the first cam 57 because the second cam 58 is in the freely rotatable state. Therefore, the spindle 6 would not make vibratory motion.
Second, when the mode change ring 79 is turned from the first angular switch position corresponding to the clutch mode to the left as viewed from the front into a second angular switch position (i.e., the position in which the coupling rods 85 are in positions (B) indicated by solid lines in
In this drill mode, when the spindle 6 is caused to spin, the spindle 6 continues to rotate regardless of the magnitude of the load imposed on the spindle 6. It goes without saying that the spindle 6 would not make vibratory motion by any means.
Third, when the mode change ring 79 is turned further from the second angular switch position corresponding to the drill mode to the left into a third angular switch position (i.e., the position in which the coupling rods 85 are in positions (C) indicated by chain double-dashed lines in
In this percussion drill mode, when the drill bit or other tool installed is caused to spin while being applied to and pressed against a workpiece thereby causing the spindle 6 to move to the rear, the first cam teeth 59 of the first cam 57 rotating together with the spindle 6 interferes with the second cam teeth 60 of the second cam 58 of which rotation is restricted. Thus, the spindle 6 is caused to make an axial vibratory motion. Since the internal gear 23C is locked so as not to rotate, the spindle 6 continues to rotate regardless of the magnitude of the load imposed on the spindle 6.
An indicator 111 for indicating a currently selected operation mode is placed on outer peripheral surface of the large-diameter portion 11 of the second gear case 10, as shown in
With the percussion driver drill 1 configured in accordance with the present embodiment described above, the rubber pin 106 which presses the outer peripheral surface of the internal gear 23C to give resistance to the internal gear 23C at idle is held in the inner peripheral surface of the first gear case 9, and thus the total length in the axial direction of the percussion driver drill 1 is not elongated, so that its compact body can be maintained. Furthermore, even if the maximum torque is small, the premature disengagement of the clutch can be prevented easily and reliably.
In particular, in this embodiment, the elastic member is configured as a pin-shaped member (rubber pin 106) disposed parallel to the axis of the internal gear 23C, and thus resistance to the internal gear 23C rotating at idle can be given effectively with a minimum construction.
It is to be appreciated that the number and arrangement of the rubber pins consistent with the present invention are not limited to the illustrated embodiment, but can be modified where appropriate. For example, the number of the rubber pins may be one as long as it can give a sufficient level of rotational resistance to the internal gear. The cross-sectional shape of the rubber pin may not be circular, but elliptic, semicircular, or other shape may be adopted as appropriate.
The elastic member may have the other shapes (other than the shape like a pin), for example, elastic member shaped like a plate or sheet or any other shape may be adopted. Moreover, the elastic member may not be of rubber but may be of synthetic resin or other material. A leaf spring or a coil spring or any other elastic member may be adopted to give resistance to the rotating internal gear.
Although the elastic member in the above-described embodiment is held at the inner peripheral surface of the gear case, the present invention is not limited to this specific configuration. Alternatively, a holding groove formed in an outer peripheral surface of the internal gear may be used to hold the elastic member so that the inner peripheral surface of the gear case is pressed from the internal gear side to give resistance to the internal gear rotating at idle.
On the other hand, the configuration of the clutch mechanism may not be limited to the illustrated embodiment. For example, the number and arrangement of the engageable pins may be modified, or any other type of engageable members such as steel balls may be substituted for the engageable pins and adapted to be pressed by the coil spring.
The power tool consistent with the present invention is not limited to the percussion driver drill as illustrated according to the present invention, but the present invention is applicable to any other type of power tool such as a power driver, a power drill or an impact driver as long as the tool comprises a clutch mechanism using an internal gear.
It is explicitly stated that all features disclosed in the description and/or the claims are intended to be disclosed separately and independently from each other for the purpose of original disclosure as well as for the purpose of restricting the claimed invention independent of the composition of the features in the embodiments and/or the claims. It is explicitly stated that all value ranges or indications of groups of entities disclose every possible intermediate value or intermediate entity for the purpose of original disclosure as well as for the purpose of restricting the claimed invention, in particular as limits of value ranges.
Number | Date | Country | Kind |
---|---|---|---|
2011-083936 | Apr 2011 | JP | national |