1. Field of the Invention
The invention relates to a power tool having a torque transmission device that transmits torque and interrupts torque transmission between an input shaft and an output shaft, and more particularly, to a mechanical torque transmission device that transmits torque by engagement of a projection and a recess.
2. Description of the Related Art
Japanese laid-open patent publication No. 51-111550 discloses a torque transmission device provided as a torque limiter (an overload protection device) that protects a machine from excessive torque developed for any reason during torque transmission, or particularly, a mechanical torque transmission device that transmits torque by engagement of a projection and a recess.
In the above-described torque transmission device, a projection is formed on one of clutch surfaces (engagement surfaces) of a driving-side disk clutch and a driven-side disk clutch which are coaxially arranged and a recess is formed in the other clutch surface, and torque transmission is effected by engagement of the projection and the recess with each other and interrupted by disengagement of the projection and the recess from each other. The projection-side and recess-side engagement surfaces which are formed as torque transmitting surfaces on the projection and the recess are inclined at a predetermined angle in a direction of a rotational axis and linearly extend along normals of the disk clutches in radial directions.
The projection and the recess of the torque limiter are engaged with each other by spring force which defines maximum transmitting force. When overload torque is developed, the projection and the recess are caused to slide with respect to each other in an axial direction against spring force by axial force which acts between the projection-side and recess-side engagement surfaces (inclined surfaces in the direction of the rotational axis), so that the projection and the recess are disengaged from each other. Particularly, when the torque transmission device is used as the torque limiter, the engagement surfaces are disengaged from each other while being subjected to heavy load, so that the engagement surfaces easily wear. In this point, further improvement is desired.
Accordingly, it is an object of the invention to improve durability in the power tool having the torque transmission device.
Above-described object can be achieved by the claimed invention. A preferred embodiment of the power tool according to the invention has a torque transmission device that transmits torque and interrupts torque transmission between a first rotating member and a second rotating member which are coaxially arranged to be opposed to each other. The torque transmission device has a projection which is formed on one of opposed surfaces of the first and second rotating members and protrudes in a direction of a rotational axis, a recess for receiving the projection, which is formed in the other of the opposed surfaces and recessed in the direction of the rotational axis, a projection-side engagement surface formed on a side surface of the projection in a direction of torque transmission, and a recess-side engagement surface formed on a side surface of the recess in the direction of torque transmission. Torque is transmitted when the projection-side and recess-side engagement surfaces are engaged with each other by relative movement of the first and second rotating members toward each other, while the torque transmission is interrupted when the projection-side and recess-side engagement surfaces are disengaged from each other by relative movement of the first and second rotating members away from each other. The projection-side and recess-side engagement surfaces are inclined at a predetermined angle with respect to normals of the first and second rotating members. Further, in the construction in which the projection extends radially outward from the rotational axis side of the rotating member, the manner in which “the engagement surfaces are inclined” suitably includes both the manner in which the engagement surfaces are inclined in a forward direction of torque transmission toward a radially outer end of the projection in its extending direction, and the manner in which the engagement surfaces are inclined in a rearward direction of torque transmission toward the radially outer end of the projection.
According to the preferred embodiment of the invention, in the mechanical torque transmission device that transmits torque by engagement of the projection-side and recess-side engagement surfaces with each other and interrupts the torque transmission by disengagement of the projection-side and recess-side engagement surfaces from each other, the projection-side and recess-side engagement surfaces are inclined at a predetermined angle with respect to normals of the rotating members. In other words, an edge line (straight line) which connects a radially inner end and a radially outer end of the projection is inclined at the predetermined angle with respect to a normal of the rotating member. With such a construction, an area of contact between the projection-side engagement surface and the recess-side engagement surface can be increased, compared with a conventional construction in which each of the engagement surfaces linearly extends along a normal. Therefore, pressure per unit area on the engagement surfaces is reduced, so that durability can be improved.
According to a further aspect of the power tool in the invention, provided that the recess is formed on the torque transmission side, each of the projection-side and recess-side engagement surfaces is inclined in a forward direction of torque transmission toward its radially outer end. According to the invention, when viewed from the axial direction of the rotating member, each of the projection and the recess is shaped such that its width decreases toward its radially outer end in the radially extending direction. Therefore, when the rotating members are formed by using dies, they can be easily demolded, so that ease of manufacture is increased.
According to a further aspect of the power tool in the invention, the projection-side engagement surface is formed as a lead surface in which an edge line on one side (base side) adjacent to the rotating member or an edge line on the other side (top side) far from the rotating member serves as a guide. According to the invention, surface contact between the engagement surfaces can be constantly maintained while the projection-side and recess-side engagement surfaces are engaged with each other.
According to a further aspect of the power tool in the invention, the torque transmission device is provided as a torque limiter which interrupts torque transmission from the first rotating member to the second rotating member when torque exceeding a specified value acts on the second rotating member. The torque limiter is provided as an overload protection device which protects the power tool from excessive torque developed during operation. The engagement surfaces are disengaged from each other while being subjected to heavy load. Therefore, according to this invention, usefulness can be further enhanced by application to a torque limiter which is used under such tough conditions.
According to a further aspect of the power tool in the invention, the rotating member having the recess is designed as a driving-side member for transmitting torque and the rotating member having the projection is designed as a driven-side member for receiving the torque. The driving-side member has a gear integrally formed on its periphery. According to the invention, by provision of the construction in which the rotating member having the gear integrally formed on its periphery is provided as the driving-side member and the recess is formed therein, compared with a construction in which the projection is formed on the driving-side member, a gearing part can be more easily manufactured without interference of the projection.
According to the invention, a durability of a torque transmission device can be improved within a power tool having the torque transmission device. Other objects, features and advantages of the invention will be readily understood after reading the following detailed description together with the accompanying drawings and the claims.
Each of the additional features and method steps disclosed above and below may be utilized separately or in conjunction with other features and method steps to provide and manufacture improved power tools and method for using such power tools and devices utilized therein. Representative examples of the invention, which examples utilized many of these additional features and method steps in conjunction, will now be described in detail with reference to the drawings. This detailed description is merely intended to teach a person skilled in the art further details for practicing preferred aspects of the present teachings and is not intended to limit the scope of the invention. Only the claims define the scope of the claimed invention. Therefore, combinations of features and steps disclosed within the following detailed description may not be necessary to practice the invention in the broadest sense, and are instead taught merely to particularly describe some representative examples of the invention, which detailed description will now be given with reference to the accompanying drawings.
A representative embodiment of the invention is now described with reference to
The body 103 mainly includes a motor housing 105 that houses a driving motor 111 and a gear housing 107 that houses a motion converting section 113, a power transmitting section 117 and a striking part 115. The driving motor 111 is driven when the user depresses an operating member in the form of a trigger 109a which is disposed on the handgrip 109. Further, in this embodiment, for the sake of convenience of explanation, the hammer bit 119 side is taken as the front or tool front region and the handgrip 109 side as the rear or tool rear region.
The motion converting section 113 mainly includes a driving gear 121 that is disposed on a motor output shaft 112 of the driving motor 111 extending in the axial direction of the hammer bit 119 and is rotated in a vertical plane by the driving motor, a driven gear 123 that engages with the driving gear 121, a rotating element 127 that rotates together with the driven gear 123 via an intermediate shaft 125, a swinging ring 129 that is caused to swing in the axial direction of the hammer bit 119 by rotation of the rotating element 127, and a cylindrical piston 130 that has a bottom and is caused to reciprocate within a cylinder 141 by swinging movement of the swinging ring 129.
The intermediate shaft 125 is disposed in parallel (horizontally) to the axial direction of the hammer bit 119. The outer periphery of the rotating element 127 fitted onto the intermediate shaft 125 is inclined at a predetermined angle with respect to the axis of the intermediate shaft 125. The swinging ring 129 is rotatably mounted on the inclined outer periphery of the rotating element 127 via a bearing 126 and caused to swing in the axial direction of the hammer bit 119 by rotation of the rotating element 127. The swinging ring 129 has a swinging rod 128 extending upward (in the radial direction) therefrom in a direction transverse to the axial direction of the hammer bit 119. The swinging rod 128 is rotatably connected to a driving element in the form of the cylindrical piston 130 via a cylindrical element 124. The rotating element 127, the swinging ring 129 and the cylindrical piston 130 form a swinging mechanism.
The power transmitting section 117 mainly includes a first transmission gear 131 formed on the other end (front end) of the intermediate shaft 125 in its axial direction, a second transmission gear 133 that engages with the first transmission gear 131 and is caused to rotate around the axis of the hammer bit 119, the cylinder 141 connected to the second transmission gear 133 via a torque limiter 151, and the tool holder 137 that is caused to rotate around the axis of the hammer bit 119 together with the cylinder 141. The cylinder 141 and the tool holder 137 are coaxially disposed with respect to each other and form a final axis of the power transmitting section 117. The torque limiter 151 is provided as an overload protection device which serves to interrupt torque transmission when torque acting on the final axis of the power transmitting section 117 exceeds a specified value. The torque limiter 151 is a feature that corresponds to the “torque transmission device” according to the invention. The torque limiter 151 is described below.
The striking part 115 mainly includes a striker 143 that is slidably disposed within the bore of the cylindrical piston 130, and an impact bolt 145 that is slidably disposed within the tool holder 137 and transmits the kinetic energy of the striker 143 to the hammer bit 119.
In the hammer drill 101 constructed as described above, when the driving motor 111 is driven by a user's depressing operation of the trigger 109a and the intermediate shaft 125 is rotationally driven, the cylindrical piston 130 is caused to linearly slide within the cylinder 141 via the motion converting section 113 which mainly includes the swinging mechanism. The striker 143 is caused to reciprocate within the cylindrical piston 130 by the action of an air spring or air pressure fluctuations within an air chamber 130a of the cylindrical piston 130 which is caused by the sliding movement of the cylindrical piston 130. The striker 143 then collides with the impact bolt 145 and transmits the kinetic energy caused by the collision to the hammer bit 119.
When the first transmission gear 131 is caused to rotate together with the intermediate shaft 125, the cylinder 141 is caused to rotate in a vertical plane via the second transmission gear 133 engaged with the first transmission gear 131, and the torque limiter 151, which in turn causes the tool holder 137 and the hammer bit 119 held by the tool holder 137 to rotate together with the cylinder 141. Thus, the hammer bit 119 performs a hammering movement in the axial direction and a drilling movement in the circumferential direction, so that a drilling operation is performed on a workpiece (concrete).
Further, the hammer drill 101 according to this embodiment can be switched not only to hammer drill mode in which the hammer bit 119 performs a hammering movement and a drilling movement in the circumferential direction, but also to drilling mode in which the hammer bit 119 performs only a drilling movement. This mode switching mechanism is not directly related to the invention and therefore it is not described in further details.
The torque limiter 151 mounted in the power transmitting section 117 is now explained with reference to
The driving-side flange 153 is loosely fitted onto the cylinder 141 and can rotate and move in the axial direction with respect to the cylinder 141. The driven-side flange 155 is fitted onto the cylinder 141 in front of the driving-side flange 153 such that it can rotate together with the cylinder 141 via a plurality of balls (steel balls) 159. The balls 159 are disposed between a plurality of spherical recesses 155a which are formed in the inner surface of the flange 155 and radially recessed and a plurality of spherical recesses 141a which are formed in the outer surface of the cylinder 141 and shaped to be matched with the spherical recesses 155a. In this embodiment, four each of the spherical recesses 151a, 141a and the balls 159 are provided and spaced evenly (at angular intervals of 90 degrees) in the circumferential direction (see
A recess 161 and a projection 171 are formed on end surfaces of the driving-side flange 153 and the driven-side flange 155 facing each other in the axial direction and shaped to be engaged with each other. Torque is transmitted from the driving-side flange 153 to the driven-side flange 155 when the recess 161 and the projection 171 are engaged with each other, while the torque transmission is interrupted when the projection 171 is disengaged from the recess 161. In this embodiment, the recess 161 is formed in the end surface of the driving-side flange 153 in the axial direction and the projection 171 is formed in the end surface of the driven-side flange 155 in the axial direction. The biasing spring 157 is disposed on the outside of the cylinder 141 at the rear of the driving-side flange 153. Further, the biasing spring 157 is disposed between the driving-side flange 153 and a spring receiving ring 158 fixedly mounted on the cylinder 141, and presses and biases the driving-side flange 153 toward the driven-side flange 155 or in the direction that engages the recess 161 with the projection 171.
As shown in
As shown in
As shown in
Further, as shown in
Similarly, as shown in
Further, each of the two engagement surfaces 165a, 165b of the recess 161 is formed as a lead surface in which an edge line 161a on one side of the engagement surface adjacent to the flange end surface 163 of the driving-side flange 153 or an edge line 161b on the other side far from the flange end surface 163 serves as a guide. Similarly, each of the two engagement surfaces 175a, 175b of the projection 171 is formed as a lead surface in which an edge line 171a on one side of the engagement surface adjacent to the flange end surface 173 of the driven-side flange 155 or an edge line 171b on the other side far from the flange end surface 173 serves as a guide.
The torque limiter 151 of the hammer drill 101 according to this embodiment is constructed as described above. Therefore, when excessive torque exceeding a set value defined by a spring force of the biasing spring 157 is exerted on the power transmitting section 117 during drilling operation of the hammer bit 119, the driving-side flange 153 is moved rearward away from the driven-side flange 155 against the spring force of the biasing spring 157 by axial components of forces acting on the engagement surfaces 165a, 175a of the recess 161 and the projection 171 which are engaged with each other. By this movement, the projection 171 is disengaged from the recess 161 and the top surface 177 of the projection 171 climbs on the flange end surface 163 of the driving-side flange 153. As a result, torque transmission is interrupted, so that the power transmitting section 117 and the driving motor 111 can be protected from being overloaded.
According to this embodiment, the engagement surfaces 165a, 165b of the recess 161 and the engagement surfaces 175a, 175b of the projection 171 are inclined at the predetermined angle β with respect to the normals P of the driving-side flange 153 and the driven-side flange 155, respectively. With such a construction, an area of contact between the engagement surface 165a of the recess 161 and the engagement surface 175a of the projection 171 can be increased, compared with a conventional construction in which engagement surfaces of the projection and the recess are formed by inclined surfaces extending linearly along normals P. In this embodiment, by provision of the construction with the above-described inclination angle β of 30 degrees, this contact area can be increased about 15%. As a result, pressure per unit area on a torque transmission surface in the form of the engagement surface is reduced, so that wear resistance can be enhanced.
Further, according to this embodiment, each of the recess 161 and the projection 171 is configured such that its width in the circumferential direction of the flange decreases toward its radially outer end (the radially outer surface of the flange). Therefore, when the driving-side flange 153 and the driven-side flange 155 are molded by using dies, they can be easily demolded, so that ease of manufacture is increased.
Further, according to this embodiment, the engagement surfaces 165a, 165b, 175a, 175b of the recess 161 and the projection 171 are formed as the lead surfaces in which the edge lines 161a, 171a on one side of the engagement surface adjacent to the flange end surfaces 163, 173 or the edge lines 161b, 171b on the other side far from them serve as a guide. Therefore, surface contact between the engagement surfaces can be constantly maintained while the recess-side engagement surfaces 165a, 165b and the projection-side engagement surfaces 175a, 175b are engaged with each other or until they are disengaged from each other.
Further, according to this embodiment, the recess 161 is formed in the driving-side flange 153 having the second transmission gear 133 integrally formed therewith. Therefore, compared with a construction in which the projection 171 is formed on the driving-side flange 153, a gearing part can be more easily manufactured without interference of the projection.
Further, in this embodiment, the recess 161 is formed in the driving-side flange 153 and the projection 171 is formed on the driven-side flange 155, but the projection 171 may be formed on the driving-side flange 153 and the recess 161 may be formed in the driven-side flange 155. In this embodiment, each of the recess 161 and the projection 171 is shaped such that its width in the circumferential direction of the flange decreases toward its radially outer end, but may be shaped such that the width increases toward its radially outer end. Further, the inclination angle β with respect to the normal P of the engagement surface is set to 30 degrees, but it is not limited to this. Further, each of the recess 161 and the projection 171 is formed symmetrically with respect to a straight line (normal) extending from the center of rotation through the center of the recess 161 or the projection 171, but they do not have to be line-symmetric.
Further, in this embodiment, the hammer drill 101 is explained as a representative example of the power tool according to the invention, but the invention can be applied to any power tool in which a predetermined operation is performed by rotation of a tool bit.
Number | Date | Country | Kind |
---|---|---|---|
2010-100362 | Apr 2010 | JP | national |