In order to increase the ease of use and flexibility, some handheld power tools have allowed interchangeability of tool heads. Permitting interchangeability of the tool heads, while keeping the same tool body, allows for the same tool body to operate as a variety of different tools—such as a drill, drill/driver, circular saw, sander, jigsaw, etc.
There have been various attempts made to make such power tools with interchangeable heads. Such previous attempts have met with varying amounts of success.
In general, different tools have different shapes for ergonomic and other reasons. Accordingly, one challenge when making a power tool with interchangeable heads is to make one tool body ergonomic for use with a variety of different tools. This may be particularly important when contemplating the design of the tool when it is being used as a drill, since a drill is a well known and widely used power tool. When a user is using a drill head and using the power tool as a drill, the user wants the look, feel and comfort of a stand-alone drill. Additionally, when the drill head is removed and a sander head, for example, is attached to the power tool body such that the power tool is now intended to operate as a sander, the user wants the sander to operate comfortably and ergonomically.
Furthermore, because the tool head is removable, there are challenges with supporting the tool head. In some power tools with removable heads, the tool head has been provided with extra support by having a dual or D-shaped handle.
In those previous attempts, the tool handle and trigger are far back from where the tool head is attached to the tool body and the work surface when a pistol grip is employed. When the trigger is far back from the work surface, it is difficult for a user to control the tool. Particularly, the user's hand in these cases is far from the work surface. That makes it difficult for a user to judge where the tool will hit the work surface.
Additionally, much of the weight in the previous attempts is forward of the connection between the tool base unit and tool head. This tends to cause the tool to tend to rotate out of a users hand/grip.
It is therefore beneficial to provide an improved power tool system with interchangeable tool heads.
According to one aspect, an embodiment of the present application includes a power tool including a power tool body, the power tool body including a motor surrounded by a motor housing, a trigger for activating the motor, a foot, a single handle disposed between the motor housing and the foot and a ledge where the handle meet; an attachment head removably attached to the power tool body; the angle between a longitudinal axis of the handle and a longitudinal axis of the motor being between 65 and 115 degrees. The ledge may be substantially parallel to the longitudinal axis of the motor and the attachment head is at least partially supported by the ledge.
The attachment head may be a sander head and a distance from an action point of the trigger to a work surface may be less than 110 mm.
There may be at least two attachment heads which may be selectively attached and removed from the base unit and wherein when each of the at least two attachment heads is attached to the base unit, a distance from an action point of the trigger to a work surface is less than 150 mm.
The at least two attachment heads may include a drill head and a sander head.
The at least two attachment heads may include a drill head a sander head and a saw head.
At least two attachment heads which may be selectively attached and removed from the base unit and wherein when each of the at least two attachment heads is attached to the base unit, a distance from an action point of the trigger to a work surface may be less than 110 mm.
The at least two attachment heads may include a drill head and a sander head.
A center of gravity of the tool when either of the two tool heads is connected to the base unit may be less than 30 mm forward of an interface where the base unit and the tool heads meet.
A center of gravity of the tool when either of the two tool heads may be connected to the base unit is less than 20 mm forward of an interface where the base unit and the tool heads meet.
According to another aspect, an embodiment includes a power tool with a power tool body, the power tool body including a motor surrounded by a motor housing, a trigger for activating the motor, a foot, a single handle disposed between the motor housing and the foot, the angle between a longitudinal axis of the handle and a longitudinal axis of the motor being between 65 and 115 degrees; an attachment head is removably attached to the power tool body; the power tool body and the power tool head define an interface surface where the power tool body and the power tool head meet; and the trigger lies on a line that runs along the interface surface.
At least two attachment heads may be selectively attached and removed from the base unit and wherein when each of the at least two attachment heads is attached to the base unit and a distance from an action point of the trigger to a work surface may less than 150 mm.
The base unit may include a first coupler and the tool head comprises a second coupler, the first and second couplers being coupled together to transfer rotational motion from the motor to the tool head and a motor mount may be attached to the motor and a plate is attached to a rear face of the tool head and the motor mount and the plate have complementary alignment features which align the first and second couplers.
According to another aspect, an exemplary embodiment includes a kit comprising a first tool body having a first motor housing and a first handle, the first handle disposed substantially mid-way between a front end and a rear end of the first motor housing, a DC motor having a first output shaft disposed within the motor housing, the first output shaft extending along a first output shaft axis; a second tool body having a second motor housing and a second handle, the second handle disposed substantially mid-way between a front end and a rear end of the second motor housing; an AC motor having a second output shaft disposed within the second motor housing, the second output shaft extending along a second output shaft axis; a drill tool head removably attachable to both the first tool body and the second tool body, the drill tool head including a drill tool head driven shaft in driving engagement with the first output shaft when the drill tool head is attached to the first tool body and in driving engagement with the second output shaft when the drill tool head is attached to the second tool body, the drill tool head driven shaft in driving engagement with a drill tool head output spindle, the drill tool head output spindle extending along an axis which is substantially parallel to the first output shaft axis when the drill tool head is attached to the first tool body and along an axis which is substantially parallel to the second output shaft axis when the drill tool head is attached to the second tool body; and a sander tool head removably attachable to both the first tool body and the second tool body, the sander tool head including a sander tool head driven shaft in driving engagement with the first output shaft when the sander tool head is attached to the first tool body and with the second output shaft when the sander tool head is attached to the second tool body, the sander tool head driven shaft in driving engagement with a sander platen, the sander platen having a sanding surface which extends substantially parallel to the first output shaft axis when the sander tool head is attached to the first tool body and to the second output shaft axis when the sander tool head is attached to the second tool body.
When the sander tool head is attached to either the first tool body or the second tool body to form a power sander, and the power sander is set down with the sander platen resting on a work surface, the power sander may rest stably on the work surface.
When the sander tool head is attached to the second tool body at a forward surface of the second motor housing as defined relative to a region where the second handle extends from the second motor housing to thereby form a power sander, the percentage of the total combined weight of the second motor housing and the sander tool head which is disposed rearwardly of a rearwardmost location of the region may be in the range of 10-50%.
When the sander tool head is attached to the second tool body at a forward surface of the second motor housing as defined relative to a region where the second handle extends from the second motor housing to thereby form a power sander, the percentage of the total combined weight of the second motor housing and the sander tool head which is disposed rearwardly of a forwardmost location of the region may be in the range of 25-75%.
When the drill tool head is attached to the second tool body at a forward surface of the second motor housing as defined relative to a region where the second handle extends from the second motor housing to thereby form a power drill, the percentage of the total combined weight of the second motor housing and the drill tool head which is disposed rearwardly of a rearwardmost location of the region may be in the range of 10-50%.
When the drill tool head is attached to the second tool body at a forward surface of the second motor housing as defined relative to a region where the second handle extends from the second motor housing to thereby form a power drill, the percentage of the total combined weight of the second motor housing and the drill tool head which is disposed rearwardly of a forwardmost location of the region may be in the range of 25-75%.
When the sander tool head is attached to the first tool body at a forward surface of the first motor housing as defined relative to a region where the first handle extends from the first motor housing to thereby form a power sander, the percentage of the total combined weight of the first motor housing and the sander tool head which is disposed rearwardly of a rearwardmost location of the region may be in the range of 10-50%.
According to another aspect, an exemplary embodiment includes a sander tool head for a kit, the kit including a first tool body having a first motor housing and a first handle, the first handle disposed substantially mid-way between a front end and a rear end of the first motor housing, a DC motor having a first output shaft disposed within the motor housing, the first output shaft extending along a first output shaft axis; a second tool body having a second motor housing and a second handle, the second handle disposed substantially mid-way between a front end and a rear end of the second motor housing; an AC motor having a second output shaft disposed within the second motor housing, the second output shaft extending along a second output shaft axis, and a drill tool head removably attachable to both the first tool body and the second tool body, the drill tool head including a drill tool head driven shaft in driving engagement with the first output shaft when the drill tool head is attached to the first tool body and with the second output shaft when the drill tool head is attached to the second tool body, the drill tool head driven shaft in driving engagement with a drill head output spindle, the drill head output spindle extending along an axis which is substantially parallel to the first output shaft axis when the drill tool head is attached to the first tool body and along an axis which is substantially parallel to the second output shaft axis when the drill tool head is attached to the second tool body. The sander tool head may be removably attachable to both the first tool body and the second tool body, the sander tool head including a sander tool head driven shaft in driving engagement with the first output shaft when the sander tool head is attached to the first tool body and with the second output shaft when the sander tool head is attached to the second tool body, the sander platen having a sanding surface which extends substantially parallel to the first output shaft axis when the sander tool head is attached to the first tool body and to the second output shaft axis when the sander tool head is attached to the second tool body.
According to another aspect, there is an embodiment of a kit including a first tool body having a first motor housing and a first handle, the first handle disposed substantially mid-way between a front end and a rear end of the first motor housing, a DC motor having a first output shaft disposed within the motor housing, the first output shaft extending along a first output shaft axis. A second tool body has a second motor housing and a second handle, the second handle disposed substantially mid-way between a front end and a rear end of the second motor housing; an AC motor having a second output shaft disposed within the second motor housing, the second output shaft extending along a second output shaft axis. A drill tool head may be removably attachable to both the first tool body and the second tool body, the drill tool head including a drill tool head driven shaft in driving engagement with the first output shaft when the drill tool head is attached to the first tool body and in driving engagement with the second output shaft when the drill tool head is attached to the second tool body, the drill tool head driven shaft in driving engagement with a drill tool head output spindle, the drill tool head output spindle extending along an axis which is substantially parallel to the first output shaft axis when the drill tool head is attached to the first tool body and along an axis which is substantially parallel to the second output shaft axis when the drill tool head is attached to the second tool body. A saw tool head may be removably attachable to both the first tool body and the second tool body, the saw tool head including a saw tool head driven shaft in driving engagement with the first output shaft when the saw tool head is attached to the first tool body and with the second output shaft when the saw tool head is attached to the second tool body, the saw tool head driven shaft in driving engagement with a saw output shaft which is driven in reciprocating motion along an axis which is substantially parallel to the first output shaft axis when the saw head is attached to the first tool body and along an axis which is substantially parallel to the second output shaft axis when the saw head is attached to the second tool body.
As shown in
As shown in
Typical power tools have only a single configuration and any tool head is not readily removable and interchangeable with other tool heads. Because the tool heads in such typical power tools are simply integrated into the power tool, the tool head is held in place by non-removable construction. In a power tool system with removable and interchangeable heads the tool head is removable and therefore not attached in the permanent manner of stand alone power tools. In an exemplary embodiment of the present application, there is provided a power tool system with a base unit with a ledge 104 which is substantially parallel to an axis of the motor 400 and/or the longitudinal axis A of the motor housing. The tool ledge 104 allows the tool to have a single mid-handle 102 that is angled with respect to the longitudinal axis A of the motor housing, while sufficiently supporting the tool head. Having a ledge 104 of this type also allows for a good portion of the tool head to be exposed so that controls can be exposed for the user on another side of the tool head (see, for example, the two speed hammer drill head 262 having a gear change shifter 272 as shown in
The drill head 200 and the tool base unit 100 meet at an interface C. The ledge 104 extends forward from this interface C and a line running through the interface intersects the trigger 120.
As seen in
Furthermore, as can be seen in
The coupling portion of the tool head 200 is shown in
The tool head 200 coupling portion further includes a second protrusion portion 220 which extends from the first protrusion 210. The second protrusion portion 220 is generally cylindrical in shape. It includes slots 221 and ribs 222 and 223. It further includes a recess 224 which receives a spring 425 (see
As shown in the exemplary embodiment, the features of the plate 201 directly mate with those of the motor mount 161. As can be appreciated, in a tool system with interchangeable heads according to an exemplary embodiment of the present application, the male coupler 160 is aligned with the female coupler 250 in order to transfer drive from the motor 400 to the tool head 200 and the output of the tool head 200. In the present exemplary embodiment, the motor 400 is clamped tightly into the motor housing 101 and the male coupler 160 and female coupler 250 have to be closely aligned. By making the tolerance alignment features on the plate 201 and the motor mount 161, as described above, unnecessary tolerance stack-up (as may be seen if the outside of the motor housing 101 were used for tolerance alignment) is avoided. That is, at least some of the features on the plate 201 and the motor mount 161 are used as alignment features. If features on the outside of housing of the drill head 200 were used in conjunction with features on the motor housing 101 to align the tool head 200 and the tool base unit 100, there can be a much more significant tolerance stack-up, because of the number of assembled parts between the alignment features and the male and female couples 110, 250, which are aligned to transfer power from the motor 400 to the tool head 200.
As shown in
As shown in
A cut-away view of the reciprocating saw tool head 268 is shown in
As discussed above, the design of the exemplary embodiment of the power tool system shown in the present application allows for the work surface to be spaced an efficient distance from the tool trigger. As shown in the figures, the drill driver 200, impact driver 261, sander 260, router 264, trim saw 265 and oscillating 267 tool heads each have distances from the action point of the trigger 120 to the work surfaces which are less than 110 mm. The two speed hammer drill 262 is has a trigger to work surface distance that is somewhat longer due to the additional gears needed to provide a hammer mode and a gear change. However, it still has a trigger to work surface distance of less than 150 mm.
Furthermore, the configuration of the power tool system allows a center of gravity of the assembled power tool to be well placed for at least some of the most commonly used tool heads.
A center of gravity location is beneficial for a number of reasons. Initially, by being located above the ledge 140, the center of gravity location allows for the tool heads to be well supported by the ledge and helps to facilitate the single, mid-handle design. Additionally, by having the CG less than 30 mm forward of the interface C, the ledge 140 does not have to be made unnecessarily long to support the CG. Additionally, that provides a CG near the actuation point of the trigger.
According to another aspect of the present application, the weight of the power tool with respect to a region where the handle extend from the motor housing is designed for ergonomic usage of different tool heads. As discussed above, exemplary embodiments of the present application improve the ergonomics of a power tool system with interchangeable heads. Therefore, according to one aspect of the present application, the percentage of weight when the sander tool head 200 is attached to the base unit 100 shown in
The foregoing description of the embodiments has been provided for purposes of illustration and description. It is not intended to be exhaustive or to limit the invention. Individual elements or features of a particular embodiment are generally not limited to that particular embodiment, but, where applicable, are interchangeable and can be used in a selected embodiment, even if not specifically shown or described. The same may also be varied. Such variations are not to be regarded as a departure from the invention and all such modifications are intended to be included within the scope of the invention.
Example embodiments are provided. It will be apparent to those skilled in the art that specific details need not be employed, that example embodiments may be embodied in many different forms and that neither should be construed to limit the scope of the disclosure. In some example embodiments, well-known processes, well-known device structures, and well-known technologies are not described in detail.
This application is a continuation-in-part of U.S. patent application Ser. No. 13/530,629, filed Jun. 22, 2012. This application also claims the benefit of U.S. Patent Application No. 61/610,268 filed Mar. 13, 2012; U.S. Patent Application No. 61/508,962 filed Jul. 18, 2011; and U.S. Patent Application No. 61/788,627, filed Mar. 15, 2013. The entire disclosures of each of the above references are incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
61610268 | Mar 2012 | US | |
61508962 | Jul 2011 | US | |
61788627 | Mar 2013 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13530629 | Jun 2012 | US |
Child | 13863018 | US |