The present application claims priority from Japanese Patent Applications No. 2013-244446 filed on Nov. 26, 2013, the entire contents of which are incorporated by reference herein.
The present invention relates to a power tool which drives a tool bit and performs a predetermined operation.
WO 2007/068535 discloses a rotary hammer having a drive unit and a transmission unit. A driving torque of the drive unit is transmitted to the transmission unit and thereby an operation is performed. The rotary hammer further comprises a housing unit which houses the drive unit and another housing unit which houses the transmission unit. The housing unit for the drive unit has a main handle integrally jointed to it. Further, the housing unit for the drive unit and the housing unit for the transmission unit are moved relatively to each other and thereby transmission of vibration between the both housing unit is prevented.
In the rotary hammer described above, since the drive unit and the transmission unit are moved relatively to each other, a specially formed bellow-like transmitting member is utilized to allow the relative movement between both housing units and to transmit the drive torque from the drive unit to the transmission unit. However, to use the specially formed member which is not widely or generally used member may make price of the rotary hammer expensive, and further loss of the transmission of the drive torque may be increased.
Accordingly, an object of the present invention is, in consideration of the above described problem, to provide an improved technique for transmission of torque of the motor and a vibration proof of a main handle in a power tool.
Above-mentioned problem is solved by the present invention. According to a preferable aspect of the invention, a power tool which drives a tool bit in a longitudinal direction of the tool bit and performs an operation is provided. The power tool comprises a motor which has an output shaft being parallel to the longitudinal direction of the tool bit, a driving mechanism which is connected to the output shaft of the motor and driven by the motor, a main body which houses the motor and the driving mechanism, a main handle which is movable with respect to the main body, a guide element which guides the main handle such that the main handle moves in the longitudinal direction of the tool bit with respect to the main body, and a biasing member which is arranged between the main body and the main handle and biases the main body and the main handle in the longitudinal direction of the tool bit. Further, the main handle moves against the main body in a state that the main handle is biased by the biasing member, and transmission of vibration generated during the operation from the main body to the main handle is prevented. Typically, in the power tool, the driving mechanism may include a movable member for driving the tool bit, and a moving direction of the movable member and the longitudinal direction of the tool bit may be in conformity to each other. Further, a moving direction of the main handle with respect to the main body may be preferably only along the longitudinal direction of the tool bit.
According to this aspect, the driving mechanism and the motor are housed in the main body. Therefore, a specially formed transmitting member to transmit rotation of the motor to the driving mechanism is not needed. Further, the main handle is movable against the main body in a state that the main handle is biased by the biasing member. Thus, vibration transmission from the main body to the main handle is prevented. As a result, both of transmission of rotation of the motor to the driving mechanism and reduction of vibration transmission to the main handle are effectively achieved. Further, the main handle is moved in the longitudinal direction of the tool bit by the guide element. In other words, the guide member can prevent the main handle from moving in other direction than the longitudinal direction of the tool bit. Therefore, compared with a known power tool in which a handle is moved in a several directions with respect to a main body, the biasing member reduces vibration in the longitudinal direction of the tool bit effectively. As a result, usability of the power tool is improved.
According to a further preferable aspect of the invention, a periphery of the motor is formed cylindrically. Further, the guide element is arranged outside the motor in a radial direction of the motor. Typically, the guide element may be formed by at least a pair of guide element components and the main handle may be arranged outside the main body. In such a construction, the guide element may be provided both on an outer surface of the main body which houses the motor and on an inner surface of the main handle.
According to this aspect, the guide element is arranged at the outer region of the motor. Thus, a sliding area of the main body and the main handle is defined so as to overlap to the motor in the longitudinal direction of the tool bit. Accordingly, the outer region (space) of the motor is rationally utilized.
According to a further preferable aspect of the invention, the guide element comprises a pair of guide element components. Typically, one of the guide element components is formed as a projection, and the other is formed as a recess which engages with the projection. Thus, the main handle is guided by the sliding between the projection and the recess. Further, the projection and the recess may extend in the longitudinal direction of the tool bit and the moving direction of the main handle with respect to the main body may be limited to the longitudinal direction of the tool bit. Further, a plurality of guide elements are arranged at respective positions which are different to each other in a circumference direction around the longitudinal direction of the tool bit. Further, respective guide elements may be arranged in positions with respect to the longitudinal direction of the tool bit. Further, the main handle includes a grip which extends in a direction crossing the longitudinal direction of the tool bit. Preferably, a plurality of the guide elements may be symmetrically arranged with respect to a plane which includes both of a longitudinal line of the tool bit and an extending line of the grip.
According to this aspect, the guide elements are arranged in respective positions in the longitudinal direction of the tool bit. Thus, movement of the main handle against the main body in the circumference direction is prevented. Accordingly, the main handle is stably guided in the longitudinal direction of the tool bit.
According to a further preferable aspect of the invention, a pair of the guide element components comprises a metallic guide member arranged on one member among the main body and the main handle and a resin guide member arranged on the other member among the main body and the main handle.
According to this aspect, a pair of the guide element components are provided with the metallic member and the resin member. Thus, the main handle is guided by sliding of the pair of the guide element components which are made of different materials. Accordingly, sliding resistance on a contact surface between the pair of the guide element components is reduced by the materials being different to each other. As a result, the main handle is moved smoothly with respect to the main body and transmission of vibration from the main body to the main handle is effectively prevented.
According to a further preferable aspect of the invention, the guide element includes a movement amount defining part which defines amount of movement of the main handle with respect to the main body in the longitudinal direction of the tool bit. Typically, the movement amount defining part may be provided by a contact surface of the recess which is contactable with the projection. That is, the contact surface may be arranged perpendicular to the longitudinal direction of the tool bit.
According to this aspect, movement amount of the main handle with respect to the main body is defined as an enough movement amount for reducing vibration of the main handle. Thus, usability of the power tool is ensured and transmission of vibration to the main handle is prevented.
According to a further preferable aspect of the invention, the main handle includes a grip portion which is held by a user and an auxiliary handle attachable portion to which an auxiliary handle is attached. Further, the grip portion and the auxiliary handle attachable portion are configured to move integrally in the longitudinal direction of the tool bit with respect to the main body.
According to this aspect, the grip portion and the auxiliary handle attachable portion are moved integrally. Therefore, an auxiliary handle which is attached to the auxiliary handle attachable portion and the grip portion of the main handle are moved simultaneously in the longitudinal direction of the tool bit. Accordingly, usability of the power tool is further improved.
According to a further preferable aspect of the invention, the power tool comprises a guide portion which guides the auxiliary handle attachable portion against the main body. Typically, the auxiliary handle attachable portion is arranged outside the main body and the guide portion is arranged both on the outer surface of the main body and on the inner surface of the auxiliary handle attachable portion.
According to this aspect, the guide portion which guides the auxiliary handle attachable portion is provided. Accordingly, the main handle which includes the auxiliary handle attachable portion is stably guided by both of the guide portion and the guide element.
According to a further preferable aspect of the invention, the auxiliary handle attachable portion includes a ring portion which has an outer periphery to which the auxiliary handle is attached. Typically, the auxiliary handle is attached on the ring portion such that the auxiliary handle surrounds the ring portion. Further, the ring portion is configured to surround a part of the main body.
According to this aspect, the auxiliary handle attached portion is strengthened (reinforced) due to the form of the ring portion, In a construction in which the auxiliary handle is attached by surrounding the ring portion, the auxiliary handle is stably mounted to the auxiliary handle attachable portion.
According to a further preferable aspect of the invention, the main handle includes a connecting portion which fixedly connects the grip portion and the auxiliary handle attachable portion. Further, the auxiliary handle attachable portion is arranged closer to the tool bit than the main handle in the longitudinal direction of the tool bit, and the grip portion is arranged opposite to the tool bit with respect to the auxiliary handle attachable portion in the longitudinal direction of the tool bit. That is, the auxiliary handle attachable portion is arranged on the front region of the main body and the grip portion is arranged on the rear region of the main body.
According to this aspect, the auxiliary handle attachable portion which is provided on the tool bit side and the grip portion which is provided on the opposite side in the longitudinal direction of the tool bit are coupled by the connecting portion. Accordingly, the auxiliary handle attachable portion is assembled from the tool bit side (front side) to the main body and the grip portion is assembled from the opposite side (rear side) to the main body, and thereafter the auxiliary handle attachable portion and the grip portion is coupled by the connecting portion. Accordingly, workability to assemble the main handle with respect to the main body is improved.
According to a further preferable aspect of the invention, the main body includes a housing member which houses the motor and the driving mechanism. Further, the auxiliary handle attachable portion includes a contact portion which is configured to contact with the housing member. Further, the contact portion defines amount of movement of the main handle far from the tool bit in the longitudinal direction of the tool bit by contacting with the housing member. Accordingly, the main handle is moved with respect to the main body within a predetermined region in a direction far from the tool bit.
According to this aspect, movement amount of the main handle is as an enough movement amount for reducing vibration of the main handle. Thus, usability of the power tool is ensured and transmission of vibration to the main handle is prevented.
According to a further preferable aspect of the invention, the biasing member comprises a plurality of biasing elements which are arranged at respective positions being different to each other in a circumference direction around the longitudinal direction of the tool bit. The biasing member is preferably provided with at least three biasing elements. Further, the plurality of the biasing elements may be arranged at the same interval in the circumference direction.
According to this aspect, the main handle is able to be evenly biased in the circumference direction by the biasing elements. That is, the main handle is biased in well balance with respect to the main body. As a result, movement of the main handle against the main body becomes stable.
According to a further preferable aspect of the invention, the power tool comprises a sealing member which seals a gap between the main handle and the main body.
According to this aspect, although a gap is formed between the main handle and the main body due to a relative movement between the main handle and the main body, the gap is covered (sealed) by the sealing member. Thus, dust is prevented from entering into a space between the main handle and the main body by the sealing member.
Accordingly, an improved technique for transmission of torque of the motor and a vibration proof of a main handle in a power tool is provided.
Other objects, features and advantages of the invention will be readily understood after reading the following detailed description together with the accompanying drawings and the claims.
Each of the additional features and method steps disclosed above and below may be utilized separately or in conjunction with other features and method steps to provide and manufacture improved power tools and method for using such power tools and devices utilized therein. Representative examples of the invention, which examples utilized many of these additional features and method steps in conjunction, will now be described in detail with reference to the drawings. This detailed description is merely intended to teach a person skilled in the art further details for practicing preferred aspects of the present teachings and is not intended to limit the scope of the invention. Only the claims define the scope of the claimed invention. Therefore, combinations of features and steps disclosed within the following detailed description may not be necessary to practice the invention in the broadest sense, and are instead taught merely to particularly describe some representative examples of the invention, which detailed description will now be given with reference to the accompanying drawings.
(First Embodiment)
An exemplary embodiment of the present invention is explained with reference to
(Driving Mechanism)
As shown in
The driving motor ill is arranged such that its rotation axis extends parallel to a longitudinal direction of the hammer bit 119. A cooling fan 112 is mounted on a rotation shaft of the driving motor 111 at a front region of the driving motor 111. That is, the cooling fan 112 is arranged between the driving mechanism and the driving motor ill with respect to the longitudinal direction of the hammer bit 119. When the driving motor 111 is turned on, the cooling fan 112 is driven and thereby a cooling air is generated. The cooling fan 112 is formed as a centrifugal fan. The cooling air which is flowed through inside the gear housing 107 is discharged from the opening 107b which is formed on a side surface of the gear housing 107. That is, the opening 107b is provided so as to correspond to the cooling fan 112. A rotational output (torque) of the driving motor 111 is converted to a linear motion in the longitudinal direction of the hammer bit 119 by the motion converting mechanism 113 which is arranged in front of the driving motor 111. Further, the linear motion is transmitted to the hammering element 115 and thereby impact force (hammering force) in the longitudinal direction (lateral direction of the
The motion converting mechanism 113 is mainly provided with an intermediate shaft 125, a swing member 129 and a cylindrical piston 131. The intermediate shaft 125 is arranged parallel to the rotation shaft of the driving motor 111 and driven by the driving motor 111. When the intermediate shaft 125 is rotationally driven, the swing member 129 is swung in the longitudinal direction of the hammer bit 119 via a rotation body 127 mounted on the intermediate shaft 125. When the swing member 129 is swung, the cylindrical piston 131 is linearly driven (reciprocated) in the longitudinal direction.
The rotation transmission mechanism 117 is mainly provided with a speed reducing gear mechanism which comprises a plurality of gears. The speed reducing gear mechanism is provided with a small diameter gear 133 which is driven integrally with the intermediate shaft 125 and a large diameter gear 135 which meshes with the small diameter gear 133. The rotation transmission mechanism 117 transmits rotation of the driving motor 111 to the tool holder 137. The tool holder 137 is rotatably supported by the bearing 137a which is held on the bearing holding portion 107a. Accordingly, the tool holder 137 is rotationally driven and thereby the hammer bit 119 held by the tool holder 137 is rotationally driven. The bearing holding portion 107a is formed as a metallic cylindrical member made by aluminum like that.
The hammering element 115 is mainly provided with a striker 143 and an impact bolt 145. The striker 143 is provided as a hammering element which is slidably arranged within the cylindrical piston 131. The impact bolt 145 is provided as an intermediate element which is slidably arranged within the tool holder 137. The striker 143 is driven (slid) by an air spring (air fluctuation) of an air chamber 131a caused by the driving of the cylindrical piston 131 and strikes the impact bolt 145. Accordingly, the hammering force on the hammer bit 119 is caused by the impact bolt 145.
In the hammer drill 101 described above, when the driving motor 111 is electrically driven, rotation of the driving motor 111 is converted into the linear motion by the motion converting mechanism 113 and then transmitted to the hammer bit 119 via the hammering element 115. Thus, the hammer bit 119 is linearly driven. Further, rotation of the driving motor 111 is transmitted to the hammer bit 119 via the rotation transmission mechanism 117. Thus, the hammer bit 119 is rotationally driven. As a result, the hammer bit 119 performs a hammer drill operation on a workplace by the linear and rotational motion of the hammer bit 119.
As to driving modes of the hammer drill 101, as shown in
(Main Handle)
As shown in
The handle front side portion 155 is mainly provided with an auxiliary handle attachable portion 156 to which an auxiliary handle is attached and an extending portion 157 which is extended in the longitudinal direction of the hammer bit 119. The extending portion 157 is arranged at a rear of the auxiliary handle attachable portion 156. The auxiliary handle attachable portion 156 is formed as a ring-like member which surrounds the bearing holding portion 107a of the gear housing 107. Specifically, as shown in
Further, as shown in
As shown in
As shown in
A bellow-like member 108 is arranged between the gear housing 107 and the handle rear side portion 150. The bellow-like member 108 is an annular rubber member surrounding the gear housing 107 and extendable and contractable in the longitudinal direction of the hammer bit 119. Accordingly, a relative movement of the handle 109 against the gear housing 107 in the longitudinal direction of the hammer bit 119 is allowed. The bellow-like member 108 is also served as a sealing member which seals a gap between the main body 103 and the handle 109. The bellow-like member 108 is one example which corresponds to “a sealing member” according to the present invention.
(Auxiliary Handle)
As shown in
In the auxiliary handle 190 described above, the bolt 194 is screwed to the nut 197 and unscrewed from the nut 197 by rotating the holding portion 191 around the longitudinal direction of the holding portion 191 against the band holding portion 198. Accordingly, a distance between the nut 197 and the flange 193 is changed. In a state that the engagement band 196 is arranged so as to surround the auxiliary handle attachable portion 156 of the handle 109, when the holding portion 191 is rotated in one direction around its axis, the engagement band 196 clamps the auxiliary handle attachable portion 156. At this time, the band holding portion 193 is interveningly arranged between the engagement band 196 and the flange 193 and thereby the auxiliary handle 190 is mounted to the auxiliary handle attachable portion 156. That is, the auxiliary handle 190 is attached so as to cover (surround) the auxiliary handle attachable portion 156. While, when the holding portion 191 is rotated in another direction around its axis, the engagement band 196 releases the auxiliary handle attachable portion 156. Accordingly, the auxiliary handle 190 is detached from the auxiliary handle attachable portion 156.
(Driving of Hammer Drill)
In the hammer drill 110 described above, when a user pulls the trigger 109a, the driving motor 111 is turned on. Accordingly, a hammer operation or a hammer drill operation is performed based on the driving mode selected by the mode select switch 110. During the operation by the hammer drill 101, vibration mainly in the longitudinal direction of the hammer bit 119 is occurred on the main body 103. At this time, as the handle 109 is movable with respect to the main body 103 in the longitudinal direction of the hammer bit 119, the handle 109 moves in the longitudinal direction of the hammer bit 119 based on vibration occurred during the operation.
Specifically, as shown in
As shown in
On the other hand, as shown in
The sliding guide 106 and the recess 154a are provided so as to extend parallel to the longitudinal direction of the hammer bit 119. The handle 109 is moved in a state that the sliding guide 106 of the motor housing 105 and the recess 154a of the handle rear side part 150 are engaged with each other, and thereby a moving direction of the handle 109 between the front position and the rear position is defined as being parallel to the longitudinal direction of the hammer bit 119. Further, the reinforcing ring 156a of the auxiliary handle attachable portion 156 is slid on the projection 107c of the gear housing 107 and thereby a moving direction of the auxiliary handle attachable portion 156 is defined as being parallel to the longitudinal direction of the hammer bit 119. The sliding guide 106 and the recess 154a are one example which corresponds to “a guide element” according to the present invention, that is, the sliding guide 106 and the recess 154a correspond to “a pair of guide element components” according to the present invention. Further, each of the reinforcing ring 156a and the projection 107c is one example which corresponds to “a guide portion” according to the present invention.
As described above, in a state that the handle 109 is biased by the coil spring 160, the handle 109 is reciprocally moved between the front position and the rear position by the vibration in the longitudinal direction of the hammer bit 119 during the operation. Thus, kinetic energy of the vibration is consumed by extension and contraction of the coil spring 160, and thereby vibration transmission from the main body 103 to the handle 109 is reduced.
The cooling air generated by the cooling fan 112 is exhausted from inside to outside the gear housing 107 via the opening 107b. Thereafter, the cooling air is flowed the cooling air passage 157A between the gear housing 107 and the extending portion 157. Further, the cooling air is passed along the outer surface of the metallic bearing holding portion 107a and then exhausted to outside of the hammer drill 101 via the through hole 159b. When the cooling air passes the metallic bearing holding portion 107a, the bearing 137a which is held by the bearing holding portion 107a. is cooled. As shown in
According to this embodiment described above, the sliding guide 106 guides the handle 109 in the longitudinal direction of the hammer bit 119. Accordingly, in the hammer drill 101 in which vibration mainly in the longitudinal direction of the hammer bit 119 is occurred, since a main direction of the vibration and the moving direction of the handle 109 are in conformity to each other, vibration transmission to the handle 109 is effectively reduced. Further, the driving motor 111 is housed in the motor housing 105 of the main body 103, therefore the lightweight handle 109 is provided. As a result, vibration of the handle 109 is effectively reduced without increasing a consumption amount of kinetic energy of the vibration, by the coil spring 160. Further, a distance between the driving motor 111 and the motion converting mechanism 113 as well as the rotation transmission mechanism 117 is maintained constant. Accordingly, a specially formed transmitting member which is not widely or generally used member such as a bellow-like transmitting member for transmitting rotation of the driving motor 111 to the motion converting mechanism 113 or the rotation transmission mechanism 117 is not needed.
Further, according to this embodiment, a plurality of sliding guide 106 are arranged around the longitudinal direction of the hammer bit 119, Thus, the handle 109 is prevented from moving in a direction other than the longitudinal direction of the hammer bit 119. That is, the handle 109 is moved only in the longitudinal direction of the hammer bit 119. As a result, usability of the hammer drill 101 in which the handle 109 is moved against the main body 103 is improved.
Further, according to this embodiment, the handle 106 is guided by the metallic sliding guide 106 and the resin recess 154a, When the handle 109 is moved, a sliding between different materials is occurred. Accordingly, sliding resistance between the sliding guide 106 and the recess 154a is decreased, and thereby the handle 109 is smoothly moved. As a result, vibration transmission to the handle 109 is effectively reduced.
Further, according to this embodiment, the handle rear side part 150 and the handle front side part 155 are moved integrally. Therefore, a distance between the grip portion 151 of the handle rear side part 150 and the auxiliary handle 190 which is attached to the auxiliary handle attachable portion 156 of the handle front side part 155 is maintained constant. Accordingly, usability for a user holding the grip portion 151 and the auxiliary handle 190 is improved.
Further, according to this embodiment, the extending portion 157 connects the auxiliary handle attachable portion 156 with the housing portion 152 and farther forms the cooling air passage 157A. Therefore, another member providing a cooling air passage for cooling the bearing 137a which holds the tool holder 137 is not necessary. Accordingly, number of members of the hammer drill 101 is reduced.
Further, according to this embodiment, a plurality of coil springs 160 are arranged around the longitudinal direction of the hammer bit 119. Thus, the handle 109 is stably biased by the springs 160. As a result, vibration transmission to the handle 109 is effectively reduced by the plurality of springs 160.
Further, according to this embodiment, coil springs 160 and sliding guides 106 are arranged in the same region with respect to the longitudinal direction of the hammer bit 119. Further, the coil springs 160 and the sliding guides 106 are arranged at respective positions which are different to each other with respect to the circumference direction around the hammer bit 119. Accordingly, outer space of the driving motor 111 is rationally utilized.
Further, according to this embodiment, the cooling air flows between the auxiliary handle attachable portion 156 and the gear housing 107, Accordingly, heat generated by a relative sliding of the auxiliary handle attachable portion 156 to the gear housing 107 is effectively discharged to the air.
In the embodiment described above, the coil spring 160 is disposed as a biasing member, however other kind of spring or a rubber like that may be applied to the present invention. Further, the sliding guide 106 maybe formed by resin and the recess 154a may be formed by metal . Further, the power tool, according to the present invention is not limited to the hammer drill 101. That is, an electric hammer or a reciprocating saw may be applied to the present invention as a power tool, as long as a power tool generates vibration in a predetermined longitudinal direction.
Having regard to an aspect of the invention, following features are provided, Each feature may be utilized independently or in conjunction with other feature(s) or claimed invention(s).
(Feature 1)
A power tool to which an auxiliary handle is attached, the power tool being configured to drive a movable member reciprocally in a longitudinal direction and performs a predetermined operation by a tool bit driven by the movable member, the power tool comprising:
a motor which has an output shaft being parallel to the longitudinal direction,
a driving mechanism which has the movable member, the driving mechanism being connected to the output shaft and the movable member being driven by the motor,
a main body which houses the motor and the driving mechanism,
a main handle which is movable with respect to the main body,
a guide element which guides the main handle such that the main handle moves only in the longitudinal direction with respect to the main body, and
a biasing member which is arranged between the main body and the main handle and biases the main body and the main handle in the longitudinal direction,
wherein the main handle moves against the main body in a state that the main handle is biased by the biasing member, and transmission of vibration generated during the operation from the main body to the main handle is prevented.
(Feature 2)
The movable member is served as an impact bolt which is configured to strike the tool bit.
(Feature 3)
The guide element is provided with a pair of guide element components, and the plurality of the guide element components are arranged in respective positions which are different in the longitudinal direction of the tool bit.
(Feature 4)
The ring portion is formed such that a radial force is applied from the auxiliary handle and the auxiliary handle is attached to the ring portion.
(Feature 5)
The main handle is assembled on the main body such that the auxiliary handle attachable portion is moved from the front to the rear of the main body in the longitudinal direction and the grip portion is moved from the rear to the front of the main body in the longitudinal direction and the auxiliary handle attachable portion and the grip portion are connected by the connecting portion.
(Feature 6)
The biasing member is provided with at least three biasing elements.
A correspondence relation between each components of the embodiments and features of the invention is explained as follows. Further, each embodiment is one example to utilize the invention therefore the invention is not limited to the embodiments.
The hammer drill 101 corresponds to “a power tool” of the invention.
The driving motor 111 corresponds to “a motor” of the invention.
The motion converting mechanism 113 corresponds to “a driving mechanism” of the invention.
The hammering element 115 corresponds to “a driving mechanism” of the invention.
The rotation transmission mechanism 117 corresponds to “a driving mechanism” of the invention.
The main body 103 corresponds to “a main body” of the invention.
The motor housing 105 corresponds to “a main body” of the invention.
The gear housing 107 corresponds to “a main body” of the invention.
The handle 109 corresponds to “a main handle” of the invention.
The sliding guide 106 corresponds to “a guide element” of the invention.
The sliding guide 106 corresponds to “a metallic guide member” of the invention.
The sliding guide 106 corresponds to “a guide element component” of the invention.
The recess 154a corresponds to “a guide element” of the invention.
The recess 154a corresponds to “a resin guide member” of the invention.
The recess 154a corresponds to “a guide element component” of the invention.
The coil spring 160 corresponds to “a biasing member” of the invention.
The contact portion 154c corresponds to “a movement amount defining part” of the invention.
The grip portion 151 corresponds to “a grip portion” of the invention.
The auxiliary handle attachable portion 156 corresponds to “an auxiliary handle attachable portion” of the invention.
The extending portion 157 corresponds to “a connecting portion” of the invention.
The reinforcing ring 156a corresponds to “a ring portion” of the invention.
The bellow-like member 108 corresponds to “a sealing member” of the invention.
Number | Date | Country | Kind |
---|---|---|---|
2013-244446 | Nov 2013 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
9434062 | Kamegai | Sep 2016 | B2 |
20030037937 | Frauhammer et al. | Feb 2003 | A1 |
20090266571 | Baumann et al. | Oct 2009 | A1 |
20110011608 | Saur | Jan 2011 | A1 |
20120160533 | Kamegai | Jun 2012 | A1 |
20150041170 | Yoshikane et al. | Feb 2015 | A1 |
Number | Date | Country |
---|---|---|
2444206 | Apr 2012 | EP |
2009-509790 | Mar 2009 | JP |
2011-000684 | Jan 2011 | JP |
2013-151055 | Aug 2013 | JP |
0206015 | Jan 2002 | WO |
WO 2007068535 | Jun 2007 | WO |
2008097555 | Aug 2008 | WO |
Entry |
---|
Mar. 26, 2015 Exteneded Search Report issued in European Patent Application No. 14194519.6. |
Mar. 15, 2017 Office Action issued in Japanese Patent Application No. 2013-244446. |
Jul. 11, 2017 Office Action issued in Japanese Patent Application No. 2013-244446. |
Number | Date | Country | |
---|---|---|---|
20150144366 A1 | May 2015 | US |