1. Field of the Invention
The present invention relates to a power tool driven by a brushless motor and, more particularly, to a technique that can maximize the output efficiency of the brushless motor in relation to the operation of the power tool.
2. Description of the Related Art
In tightening screws by utilizing a screwdriver, two types of operations as shown in
The rotational angle of the tool bit during the hard joint operation is different from the rotational angle during the soft joint operation even if the power tool has the same torque condition for the both joints. As a result, the time required for continuously generating tightening torque until completion of the screw tightening operation becomes different between the hard joint operation and the soft joint operation. When the hard joint operation is selected, because the time required for tightening screws becomes relatively short, the inertia force of the rotating rotor can be additionally utilized for tightening the screw. On the other hand, when the soft joint operation is selected, time required for tightening the screw takes relatively long, and therefore, it is required to achieve stable tightening operation solely by means of the output torque of the motor without utilizing the inertia force of the rotor. As a result, energy efficiency to procure big torque in tightening screws should be maximized. Moreover, the output torque of the motor should be stabilized regardless of the type of operation to tighten the screw.
It is, accordingly, an object of the present teachings to provide a technique to increase efficiency of the output torque of the blushless motor to drive a power tool.
According to the present teachings, a representative power tool may comprise a tool bit, a brushless motor to drive the tool bit, a battery to operate the brushless motor and a control device. The control device may operate the brushless motor by means of the battery. The control device may include an advance angle controlling section to control an advance angle of the brushless motor. According to the present teachings, the advance angle of the brushless motor may be determined based upon indexes that reflect working condition of the tool bit when the brushless motor is under the operation. By reflecting the working condition of the tool bit to the determination of the advance angle of the brushless motor, the brushless motor can be operated with higher efficiency under the various working condition such as a hard joint operation and a soft joint operation.
Other objects, features and advantages of the present invention will be readily understood after reading the following detailed description together with the accompanying drawings and the claims.
In accordance with the present teachings, representative power tool may include a tool bit, a brushless motor, a battery and a control device. The brushless motor may have a rotor. The brushless motor may drive the tool bit by rotation of the rotor. The battery may be detachably coupled to the power tool. The battery may provide direct current to the brushless motor. The control device may operate the brushless motor by means of the battery. Further, the control device may include an advance angle controlling section to control an advance angle of the brushless motor based upon indexes that reflect working condition of the tool bit when the brushless motor is under the operation.
As for the tool bit, any type of bits that can be mounted to the power tool may be embraced. For example, tool bit for drills, saws, grinders, impact drivers, impact wrenches, cutters, trimmers, circular saws, and reciprocating saws. Particularly, the present teachings may be preferably applied to tool bits utilized within a screwdriver, because the screw driver is required to output relatively high torque in tightening screws.
Preferably, the brushless motor may be adapted and arranged to include a permanent magnet in the rotor and a coil in the stator. Preferably, the battery may typically comprise a rechargeable battery which can be detachably coupled to the power tool. Preferably, the control device may typically control the electrical passage of current to coils of the respective phases of the DC brushless motor by means of a driving circuit so as to detect the position of the rotor of the DC brushless motor in order to rotate the rotor. In such case, the driving circuit may have transistors or FETs.
According to the present teachings, the advance angle may be determined based upon indexes that reflect working condition of the tool bit when the brushless motor is under the operation. The “advance angle” may be defined as the degree of the phase angle to be corrected such that the phase current (winding current) coincides with or approximates the phase of the induced voltage when the phase current (winding current) causes a phase delay with respect to the induced voltage due to the effects of the electrical time constant of the motor winding or other similar factors. Particularly in power tools, a range of variation of the output torque required for the operation may possibly become wider, and thus the motor power may easily increase. Therefore, the electrical time constant due to the effects of the resistance components and the coil components may increase, and particularly, the phase delay during high-power operation may often take place. Control of the advance angle is particularly effective against such phase delay. Specifically, the output efficiency of the DC brushless motor can be improved by controlling the advance angle based upon various factors, which affect the shift of the current phase of the DC brushless motor during operation, such as rotational speed of the motor, reaction torque applied from the work-piece onto the tool bit, battery voltage and current, temperature of the operating environment of the battery, and battery drain according to the frequency of use.
Preferably, the advance angle of the brushless motor may be determined based upon indexes relating to the battery voltage and current during operation of the brushless motor. The indexes may comprise those showing operating conditions of the tool. The “indexes relating to the battery voltage and current” are not only directly used as a parameter showing the battery voltage and current, but also widely include parameters correlating to the battery voltage and current, such as rotational speed of the tool, temperature of the work environment in which the battery is placed, and the degree of wear of the battery according to the frequency of use. Preferably, the advance angle may be reduced in response to the increase of the battery voltage during operation of the brushless motor, while the advance angle may be increased in response to the increase of the battery current.
By controlling the advance angle of the brushless motor based upon indexes relating to the battery voltage and current during operation of the brushless motor, accurate control of the advance angle can be achieved for the power tool that has a wider variation range of output torque. As a result, reduction of the output efficiency of the brushless motor can be minimized.
Further, the advance angle of the brushless motor may preferably be controlled based upon indexes relating to the battery voltage and current in each case of the brushless motor rotating in the forward direction and the reverse direction. In screwdrivers, for example, higher output torque is often required to loosen a screw which was incorrectly tightened. Due to such requirement for higher output torque, the winding current may possibly cause a phase delay with respect to the induced voltage. Therefore, it is useful to improve the output efficiency of the DC brushless motor by accurately controlling the advance angle.
Further, an advance angle map may preferably be provided which stores in the form of mapping data a plurality of pre-determined advance angles calculated based on the combination of the battery voltage and current. When such mapping data is utilized, the battery voltage and current (or indexes which reflect them) during operation of the DC brushless motor may be detected and then, an advance angle corresponding to the detected voltage and current can be easily determined from the mapping data. Thus, the advance angle can be controlled based upon the determined advance angle. In such case, it is not necessary to calculate an optimum advance angle in each time and therefore, control of the advance angles can be achieved with a simple construction.
Each of the additional features and method steps disclosed above and below may be utilized separately or in conjunction with other features and method steps to provide improved power tool and method for using such power tool and devices utilized therein. Representative examples of the present invention, which examples utilized many of these additional features and method steps in conjunction, will now be described in detail with reference to the drawings. This detailed description is merely intended to teach a person skilled in the art further details for practicing preferred aspects of the present teachings and is not intended to limit the scope of the invention. Only the claims define the scope of the claimed invention. Therefore, combinations of features and steps disclosed within the following detailed description may not be necessary to practice the invention in the broadest sense, and are instead taught merely to particularly describe some representative examples of the invention, which detailed description will now be given with reference to the accompanying drawings.
As it is shown in
The DC brushless motor 121 uses a three-phase bipolar driving circuit operated by means of direct current. Specifically, the DC brushless motor 121 may be drivingly controlled based upon 120° energizing rectangular wave by using three Y-connected rotor driving coils.
The DC brushless motor driving circuit 151 is connected to the battery 141 via a connecting terminal 142. The driving circuit 151 may include a motor driving IC 153, position detecting circuit 155, gate drive circuit 157 and FETs (field-effect transistors) 159a, 159b, 159c, - - - 159f for the rectangular wave driving. According to this representative embodiment, six FETs in total are provided. Three coils (armature winding) 125U, 125V, 125W of the DC brushless motor 121 are connected to the FETs 159a–159f. The motor driving IC 153 is connected to the battery 141 and outputs voltage Vcc at 153a as shown in
A circulation diode 160 is arranged in antiparallel to each of the respective FETs 159a–159f in order to prevent the device from being damaged due to counter-electromotive force that may possibly be generated when each of the FETs 159a–159f is turned off.
Position detecting circuit 155 may include Hall elements. The position detecting circuit 155 detects the rotating position of a rotor 127 (see
Specifically, by such selective voltage application to the respective gates of the FETs 159a–159f, the following drive controls are performed sequentially, so that the rotor 127 of the DC brushless motor 121 makes one full turn.
First, upon application of the gate voltages of the FETs 159a and 159f, current is passed from the coil 125U to the coil 125W.
Second, upon application of the gate voltages of the FETs 159c and 159f, current is passed from the coil 125V to the coil 125W.
Third, upon application of the gate voltages of the FETs 159c and 159b, current is passed from the coil 125V to the coil 125U.
Fourth, upon application of the gate voltages of the FETs 159b and 159e, current is passed from the coil 125W to the coil 125U.
Fifth, upon application of the gate voltages of the FETs 159d and 159e, current is passed from the coil 125W to the coil 125V.
Sixth, upon application of the gate voltages of the FETs 159a and 159d, current is passed from the coil 125U to the coil 125V.
As an example,
As shown in
According to the representative embodiment, the advance angle for the DC brushless motor 121 may be determined by utilizing an advance angle map 191. The advance angle map 191 is stored in the ROM 173d of the advance angle determining IC 173.
The advance angle map 191 stores advance angles determined in accordance with changes in battery voltage and current. Respective advance angles are provided in the form of mapping data defined by the combination of the battery voltage and the battery current. Battery voltages and currents are respectively divided into groups in specified increments. For example, battery voltages are divided into groups of “0” to “F” in hexadecimal notation, in 0.5V increments in the range between 9V and 17V. On the other hand, battery currents are divided into groups of “0” to “F” in hexadecimal notation, in 3 A increments in the range between 1 A and 51 A. Such divided voltages and currents are defined as 8 bits of data. With respect to the data, four most significant bits (MSB) and four least significant bits (LSB) are respectively provided. Thus, advance angles corresponding to the respective groups of divided voltages and currents are stored in the map 191. For example, when the voltage results 10.2V and the current results 2 A, the advance angle is set to 2.1° (degree). As it can be seen from the advance angle map 191 of
In order to determine the advance angles, fall time “t” of the winding current of the coil with respect to the induced voltage is, for the first, calculated by using the equation “t=L×I/V”. In this equation, parameter “V”, “I” and “L” represent the battery voltage, battery current and coil inductance, respectively. In this representative embodiment, value of the coil inductance “L” is arranged as 36 μH (micro Henry). Then, a switching (commutating) cycle “T” is calculated based upon the drive frequency “f” of the DC brushless motor 121 by using the equation “f=1/T”. In this representative embodiment, value of the drive frequency “f” is arranged as 660 Hz (Hertz), so that the switching cycle “T” is calculated to be about 1500 μsec (micro second). Consequently, the advance angle “θ” is calculated based upon the calculated current fall time “f” and cycle “T” by using the equation “θ=2π×t/T”. Moreover, following these calculating procedures, advance angles are calculated so as to correspond to each of the battery voltages and currents. The calculated advance angles are stored as mapping data in the advance angle map 191 as shown in
As to the use of the representative screw driver 101, when the user of the screw driver 101 operates the trigger switch 113 as it is shown in
At this time, as it is shown in
In order to alleviate or prevent such phase delay, the advance angle determining section 171 is adapted and arranged to detect the source voltage and current of the battery 141 by means of the battery voltage detecting section 175 and battery current detecting section 179. Further, based upon the detected battery source voltage and current, the advance angle determining section determines the optimum advance angle in accordance with the advance angle map 191 as shown in
The advance angle determining section 171 then inputs the determined optimum advance angle into the advance angle input section 153b of the DC brushless motor driving circuit 151. The DC brushless motor driving circuit 151 controls the advance angle of the DC brushless motor based on the inputted advance angle. As a result of such control, a phase delay of the winding current with respect to the induced voltage can be alleviated or eliminated. Specifically, as shown in
According to the representative embodiment, the DC brushless motor 121 is controlled by accurately determining an advance angle based on the battery voltage and current. Therefore, the DC brushless motor 121 can be accurately controlled in response to changes of torque requirement during operation of the screw driver 101. Further, the DC brushless motor 121 can be accurately controlled in response to various factors such as internal resistance and operating conditions of the battery, which affect the motor output characteristics of the power tool. As a result, the DC brushless motor 121 can be operated with higher efficiency even in a screw tightening operation in the soft joint as shown in
Further, according to the representative embodiment, because motor operating efficiency in the screw tightening operation in the soft joint can be increased, the mean shift can be minimized. In other words, a difference between the measured torque in the hard joint and the measured torque in the soft joint can be minimized.
Although, FETs are used in the above described embodiment, transistors may be used instead of the FETs.
In the representative embodiment, the advance angle map 191 is adapted and arranged to store advance angles determined in accordance with the battery voltage and current. However, without providing such map, it may be designed such that an optimum advance angle can be calculated in real time during operation of the power tool. In such case, the advance angles may be sequentially calculated. Alternatively, the battery voltage and current (or indexes which reflect them) may be measured at pre-determined sampling time intervals, and optimum advance angles in the sampling time may be calculated based upon the measured battery voltage and current.
Although, in the above-mentioned embodiment, the DC brushless motor driving circuit 151 and the advance angle determining section 171 have respective separate ICs, the two ICs may be integrated into one IC.
Number | Date | Country | Kind |
---|---|---|---|
2001-403124 | Dec 2001 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
3908130 | Lafuze | Sep 1975 | A |
4072888 | Bechtle et al. | Feb 1978 | A |
4316512 | Kibblewhite et al. | Feb 1982 | A |
4455514 | Ohno | Jun 1984 | A |
4546293 | Peterson et al. | Oct 1985 | A |
4633158 | Hirata et al. | Dec 1986 | A |
4641066 | Nagata et al. | Feb 1987 | A |
4922169 | Freeman | May 1990 | A |
5115174 | Masuda et al. | May 1992 | A |
5287044 | Izawa et al. | Feb 1994 | A |
5298839 | Takeda | Mar 1994 | A |
5360073 | Akazawa | Nov 1994 | A |
5589746 | Lewis | Dec 1996 | A |
5637968 | Kainec et al. | Jun 1997 | A |
5701065 | Ishizaki | Dec 1997 | A |
5982133 | Murakami et al. | Nov 1999 | A |
6134973 | Schoeps | Oct 2000 | A |
6239567 | Sunaga et al. | May 2001 | B1 |
6424798 | Kitamine | Jul 2002 | B1 |
6536536 | Gass et al. | Mar 2003 | B1 |
6538403 | Gorti et al. | Mar 2003 | B1 |
Number | Date | Country |
---|---|---|
02-315434 | Jul 1992 | JP |
09-326479 | Jun 1999 | JP |
11-132628 | Nov 2000 | JP |
Number | Date | Country | |
---|---|---|---|
20030121685 A1 | Jul 2003 | US |