This disclosure generally relates to a contact lens having a power transducer integrated therein or thereon for providing power to a retinal implant.
A retinal implant is a biomedical device used to restore useful vision to individuals that have lost vision due to degenerative eye conditions such as retinitis pigmentosa or macular degeneration. Retinal implants provide low resolution images by electrically stimulating retinal cells. Such images may be sufficient for restoring specific visual abilities, such as light perception and object recognition.
Retinal implants are surgically implanted into the eye of an individual and are intended to remain in place for long periods of time, so long as the implant operates properly. However, retinal implants are difficult to power. Due to their limited lifetime, batteries as a power source for retinal implants unavoidably leads to surgical removal and replacement of implants; a processes that is costly and cumbersome to the patient. Moreover, batteries add bulkiness and weight to a retinal implant; can cause adverse physical reactions in response to battery leakage or corrosion.
In one or more aspects, the disclosed subject matter relates to a contact lens having a power transducer integrated therein or thereon for providing power to another device. In an aspect, the contact lens includes a substrate that forms at least part of a body of the contact lens and a circuit disposed on or within the substrate. The circuit can include a power harvesting component configured to receive energy in a first form from an external power source and convert the energy from the first form to a second form, and an energy transfer component configured to transmit the energy in the second form to a device remote from the contact lens when the contact lens is worn over an eye. In various aspects, the remote device is a retinal implant integrated on or within part of the eye. In an aspect, the power harvesting component can include one or more solar power cells configured to capture solar energy and convert the solar energy to radio frequency energy. The energy transfer component can then transmit the radio frequency energy to the device.
In addition, a method is disclosed that includes receiving at a contact lens worn over an eye, energy in a first form from an external power source, converting the energy from the first form to a second form using a transducer disposed on or within the contact lens, and transmitting the energy in the second form to a device remote from the contact lens using an energy transfer component disposed on or within the contact lens. In various aspects, the remote device is a retinal implant integrated on or within part of the eye. In an aspect, the converting includes converting the energy in the first form to radio frequency energy, and the transmitting includes transmitting the radio frequency energy to the remote device using a radio frequency antenna disposed on or within the contact lens.
In another embodiment, a system is disclosed that includes a retinal implant configured to implant on or within an eye and a contact lens configured to provide power to the retinal implant when worn over the eye. In an aspect, the retinal implant includes a substrate configured to contact a surface of a retina of the eye and a circuit disposed on or within the substrate. The circuit can include a receiver configured to wirelessly receive energy in a first form from the contact lens; and a transducer configured to convert the energy in the first form to energy in a second form. The retinal implant employs the energy in the second form to power operations of the retinal implant. In an aspect, the receiver includes a radio frequency antenna configured to receive the energy in the first form as radio frequency energy.
Various aspects are now described with reference to the drawings, wherein like reference numerals are used to refer to like elements throughout. It should be appreciated that one or more aspects of the drawings from are not drawn to scale. In the following description, for purposes of explanation, numerous specific details are set forth in order to provide a more thorough understanding of one or more aspects. It should be evident, however, that such aspects can be practiced without these specific details. In other instances, structures and devices are shown in block diagram form in order to facilitate describing one or more aspects.
With reference now to the drawings,
Contact lens 102 can also be used to power other devices 128 aside from a retinal implant. For example, contact lens 102 can be used to provide power to another biomedical device associated with the individual wearing contact lens 102 or a non-biomedical device associated with the individual. Accordingly, system 100 further depicts contact lens 102 providing power 126 to another remote device 128. It should be appreciated that although system 100 depicts contact lens 102 providing power to both retinal implant 120 and remote device 128, system 100 can include a contact lens 102 providing power to a single device (e.g. either retinal implant 120 or remote device 128). In other aspects, system 100 can include a contact lens 102 providing power to N devices N (where N is an integer).
System 100 includes a contact lens 102 that is worn over an eye 116. Contact lens 102 includes a circuit 104 disposed on or within a substrate 106. In an aspect, the substrate 106 is a hydrogel—however, contact lenses disclosed herein can include any suitable material. In an aspect, the contact lenses disclosed herein can include soft lenses made from one or more soft polymer materials including but not limited to, a hydrogel, a silicone based hydrogel, a polyacrlyamide, or a hydrophilic polymer. For example, in an aspect, contact lenses disclosed herein can include crosslinked hydrogels including hydrophilic monomers (e.g. N-Vinylpyrrolidone, N,N-dimethylacrylamide, 2-hydroxyethyl methacrylate, hydroxyethyl acrylate, methacrylic acid and acrylic acid), strengthening agents, ultraviolent light (UV) blockers, or tints. In another aspect, contact lenses disclosed herein can include silicone hydrogels (e.g. crosslinked hydrogels containing silicone macromers and monomers, as well as hydrophilic monomers that absorb water). In yet another aspect, contact lenses disclosed herein can include hard lenses made from one or more rigid materials including but not limited to, a silicone polymer, polymethyl methacrylate, or rigid gas permeable materials.
Although not to be limited to such shape, contact lenses disclosed herein, such as contact lens 102, are generally provided in a spherical shape that conforms to shape of an eye. With reference to
Contact lens circuit 104 can have any suitable size and shape that allows for inclusion of circuitry and various components that facilitate receipt of external power, processing of the power, and transmission of the power, without irritating the eye, without disrupting functions of the eye or the contact lens, and without causing discomfort to the wearer. Contact lens 102 (and additional contact lenses described herein) has a thickness or width that spans in a horizontal direction between inner surface 110 and outer surface 108. Dashed line W indicates direction of the width or depth of the contact lens 102. Diameter of the contact lens 102 is indicated by dashed line D. The particular dimensions (including dimensions attributable to thickness, diameter, curvature, and etc.) of the subject contact lenses are not critical and can vary. One or more components of contact lens circuit 104 can be located throughout the thickness of the contact lens substrate 106, suspended within a thickness of the substrate, and/or adjacent to an inner 110 or outer surface 108 of the contact lens 102. In various aspects, contact lens circuit 104 is disposed within the substrate so as to not interfere/overlap with a visual region of the eye (e.g. the pupil/iris).
Contact lens circuit 104 can include various electrical components that facilitate energy harvesting and wireless energy transfer. In an aspect, circuit 104 includes a power harvesting component (not shown) configured to receive energy in a first form from an external power source (e.g. solar power from sunlight) and convert the energy from the first form to a second form (e.g. radio frequency energy). According to this aspect, the power harvesting component functions as a transducer. The circuit 104 can further include an energy transfer component (not shown) configured to transmit the energy in the second form to a device remote from the contact lens. In particular, in system 100, circuit 104 wirelessly transmits energy (e.g. energy 124 and/or energy 126) to a retinal implant 120 that is located on or within an eye 116 over which contact lens 102 is worn and/or another remote device 128. Contact lens circuit 104 is described in greater detail with respect to
A retinal implant is a biomedical device used to restore useful vision to people who have lost their vision due to degenerative eye conditions such as retinitis pigmentosa or macular degeneration. Retinal implants provide people with low resolution images by electrically stimulating retinal cells. Such images may be sufficient for restoring specific visual abilities, such as light perception and object recognition. In some aspects retinal implants are placed on or within the retina (e.g. epiretinal implants). In other aspects, retinal implants are implanted behind the retina (subretianl implants) and placed between the outer retinal layer and the retinal pigment epithelium.
As seen in
Retinal implant 120 and remote device 128 respectively include at least a circuit 118 that facilitates powering the respective devices. Circuit 118 includes a receiver (not shown) configured to wirelessly receive energy in a first form from contact lens 102. The circuit 118 can further include a transducer configured to convert the energy in the first form to energy in a second form. The respective devices (e.g. device 118 and device 128) can further employ the energy received from contact lens 102 to power operations of the respective devices. Circuit 118 is described in greater detail with respect to
Turning now to
As shown in
As discussed above, contact lens circuit 104 includes power harvesting component 202 is configured to receive energy in a first form from an external power source and convert the energy from the first form to a second form. Power harvesting component 202 include suitable circuitry that facilitates gathering or receiving the energy in the first form (e.g. solar, mechanical, thermal, acoustic, chemical, or RF) and converting the energy into a second form, (e.g. usable energy and/or transferable energy). Accordingly, power harvesting component 202 functions in part as a transducer.
In a primary embodiment, power harvesting component 202 harvests solar energy (e.g. light/sunlight). With this embodiment, power harvesting component 202 can include one or more photovoltaic (e.g. solar) cells disposed on or within the substrate of the contact lens 102. The one or more solar cells are configured to receive incident light and convert the light energy into an electrical signal that can be employed to power a device. For example, contact lens 102 can include one or more solar cells disposed on or near an outer surface of the lens. The one or more solar cells can receive incident sunlight and convert the sunlight into an electrical power, such as a direct current (DC).
The one or more solar cells of energy harvesting component 202 can include various suitable light absorbing materials that facilitate integration on or within contact lens 102. For example, a solar cell can include at least one of: silicon (e.g. silicon in a thin film form), amorphous silicon, crystalline silicon, (including monocrystalline silicon and polycrystalline silicon), cadmium telluride, or copper indium selenide/sulfide.
In other embodiments, power harvesting component 202 can harvest energy from other types of external sources in addition to or in the alternative of solar energy. In particular, power harvesting component 202 can be configured to harvest various forms of energy including but not limited to: mechanical energy, thermal energy, acoustic energy, or chemical energy. For example, power harvesting component 202 can include a mechanically derived power source (e.g., a MEMs system) configured to harvest energy generated in response to body movement, eye movement, eyelid movement. In another example, energy harvesting component 202 can include a device that converts body heat and/or external heat into usable energy.
In some aspects, power harvesting component 202 is configured to harvest external radio frequency (RF) energy. According to this aspect, energy harvesting component can include a receiver or transceiver (e.g. an RF antenna) configured to receive emitted RF power. In some aspects, the emitted RF power can be intentionally emitted to contact lens 102 from an external device. In another other aspects, energy harvesting component 202 can be configured to harvest ambient RF energy present in the environment. The energy harvesting component 202 can then either convert the received RF energy into usable energy, store the energy, and/or provide the RF energy to energy transfer component 204 for transfer of the energy to another device remote from contact lens 102 (e.g. a retinal implant).
In various aspects, energy harvesting component 202 can harvest energy from two or more external energy sources. For example, energy harvesting component can employ both a solar cell and a MEMs system for harvesting solar energy and mechanical energy respectively. According to this aspect, energy harvesting component can pool energy received from various external sources.
Regardless of the source of the energy, energy harvesting component 202 receives or generates energy that can be employed to power various components of contact lens 102, stored in an energy storage component 206, and/or transmitted to another device. Energy storage component 206 can include any suitable power storage component configured to store power. For example, energy storage component 206 can include a battery or a capacitor. In some aspects, contact lens 202 can include energy storage component 202 as a means to store energy received and/or generated by contact lens circuit 106. In other aspects, contact lens 202 includes energy storage component 206 as a source of internal energy that can be used to power components of contact lens 102 and/or that can be employed to transmit power to an external device.
However, in other aspects, contact lens 102 does not include an energy storage component 206. According to these aspects, contact lens 102 directly employs energy generated by power harvesting component 202 and/or transmits the energy to another device (e.g. a retinal implant) using energy transfer component 204.
Energy transfer component 204 is configured to transmit energy from contact lens 102 to another device remote from contact lens 102. In an aspect, energy transfer component 204 is configured to transmit energy received by and/or generated by power harvesting component 204. In another aspect, energy transfer component 204 is configured to transmit energy stored in energy storage component 206 to an external device.
Energy transfer component 204 can include suitable hardware components that facilitate transmission of wireless energy in various forms. In an embodiment, energy transfer component 204 transmits energy from contact lens 102 to anther device (e.g. a retinal implant) as RF energy. According to this embodiment, energy transfer component can include a transmitter, such as an RF antenna, configured to transmit RF energy from contact lens 102 to a remote device. In particular, power harvesting component 202 and/or energy transfer component 204 can convert power received or stored at contact lens 102 to RF energy and energy transfer component 204 can transmit the RF energy to a remote device using an RF transmitter. For example, power harvesting component 202 can generate a direct current from solar energy (e.g. using one or more solar cells) and/or mechanical energy (e.g. using a MEMs device). The power harvesting component 202 or the energy transfer component can then convert the direct current into radio frequency energy using a DC/RF converter. The energy transfer component 206 can then transmit the RF energy to an external device using an RF antenna.
It should be appreciated that the precise circuit configuration for converting external energy to RF energy and transmitting the RF energy to an external device by contact lens circuit 104 can vary and is not critical to the general purpose of circuit 104. For example, in some aspects, power harvesting component 202 and energy transfer component 204 can share various circuit hardware. For example, in an aspect, power harvesting component 202 and energy transfer component 204 can be embodied in a transceiver configured to receive external RF energy and relay the external RF energy to another device (e.g. a retinal implant).
In another embodiment, energy transfer component 204 can include an induction coil configured to transfer energy from contact lens 102 as an evanescent wave. According to this embodiment, energy transfer component 204 can wirelessly transmit energy from contact lens 102 using direct induction or resonant magnetic induction. For example, energy transfer component 204 can employ energy generated by power harvesting component 202 (e.g. DC power) and/or stored by energy storage component 206 to cause a primary induction coil to resonate a predetermined frequency matching a receiving induction coil provided in an external device, thereby causing energy to transfer from the primary induction coil to the secondary induction coil.
It should be appreciated that contact lens circuit 104 can further include the appropriate circuitry 208 to facilitate functions of contact lens circuit 204. For example, circuitry 208 can include various hardware that facilitates operation of power harvesting component 202, energy transfer component 204 and/or energy storage component 206. For example, circuitry can include power converters, rectifiers, filters, and/or amplifiers. In an aspect, circuitry (associated with power harvesting component 202 and/or energy transfer component 204) includes an RF power amplifier configured to amplify an RF signal for transmission to a remote device (e.g. a retinal implant).
Referring now to
Receiving device 300 can include a device configured to receive wireless power transferred from a contact lens (e.g. contact lens 102 as disclosed herein) and employ the received power to power operations of the device. In an aspect, receiving device 300 is a retinal implant, such as retinal implant 120. In another aspect, receiving device 300 is another biomedical device worn by an individual who wears a contact lens 102. For example, receiving device 300 can include a cochlear implant or drug delivery device. Still, in other aspects, the receiving device can include a non-medical device.
As shown in
Energy receiving component 302 is configured to wirelessly receive energy in a first form from a contact lens worn over an eye of an individual. In an aspect, energy receiving component 302 includes an RF receiver, such as an RF antenna, configured to receive the energy in the first form as RF energy. In another aspect, the energy receiving component 302 includes an induction coil configured to receive energy from a contact lens via direct induction or resonant magnetic induction. According to this aspect, the induction coil can be configured to resonate at a same frequency as a primary induction coil provided within the contact lens and receive energy transferred from the primary induction coil as an evanescent wave.
Energy transducer component 304 is configured to convert energy received at energy receiving component 302 into usable energy for powering operations of the device 300. In an aspect, energy transducer component includes a power converter configured to convert RF energy into usable DC power. In another aspect, energy transducer component 304 is configured to convert magnetic energy (e.g. induction based energy induced in an induction coil of the energy receiver component 302) into a voltage current or DC power. The DC power generated by the energy transducer component can be employed by device 300 to facilitate operations of the device and/or stored in energy storage component 306 for future use.
Energy storage component 306 can include any suitable power storage component configured to store power. For example, energy storage component 306 can include a battery or a capacitor. In an aspect, receiving device 300 can include an energy storage component to store energy received from a contact lens for later use. In another aspect, receiving device 300 can employ energy transfer from a contact lens as a means to recharge energy storage component 306. According to this aspect, energy storage component 306 can include a rechargeable power source.
However, in a primary embodiment, receiving device 300 does not include an energy storage component 306. In particular, receiving device 300 can operate solely on power transferred thereto from a contact lens (e.g. contact lens 102). For example, when receiving device 300 is a retinal implant, the retinal implant can operate without a battery using energy transferred from a contact lens. Circuit 118 can further include the appropriate circuitry 308 to facilitate functions of the circuit. For example, circuitry 308 can include hardware that facilitates operation of energy receiving component 302, energy transducer component 304, and/or energy storage component. For example, circuitry 308 can include power converters, rectifiers, filters, and/or amplifiers.
Referring now to
With reference initially to
Referring now to
What has been described above includes examples of one or more aspects. It is, of course, not possible to describe every conceivable combination of components or methodologies for purposes of describing the aforementioned aspects, but one of ordinary skill in the art can recognize that many further combinations and permutations of various aspects are possible. Accordingly, the described aspects are intended to embrace all such alterations, modifications and variations that fall within the spirit and scope of the appended claims.
Moreover, the term “or” is intended to mean an inclusive “or” rather than an exclusive “or.” That is, unless specified otherwise, or clear from the context, the phrase “X employs A or B” is intended to mean any of the natural inclusive permutations. That is, the phrase “X employs A or B” is satisfied by any of the following instances: X employs A; X employs B; or X employs both A and B. In addition, the articles “a” and “an” as used in this application and the appended claims should generally be construed to mean “one or more” unless specified otherwise or clear from the context to be directed to a singular form.
The aforementioned systems have been described with respect to interaction between several components. It can be appreciated that such systems and components can include those components or specified sub-components. Sub-components can also be implemented as components communicatively coupled to other components rather than included within parent components (hierarchical). Additionally, it is to be noted that one or more components can be combined into a single component providing aggregate functionality. Any components described in this disclosure can also interact with one or more other components not specifically described in this disclosure but generally known by those of skill in the art.
In view of the exemplary systems described above methodologies that can be implemented in accordance with the described subject matter will be better appreciated with reference to the flowcharts of the various figures. While for purposes of simplicity of explanation, the methodologies are shown and described as a series of blocks, it is to be understood and appreciated that the claimed subject matter is not limited by the order of the blocks, as some blocks can occur in different orders and/or concurrently with other blocks from what is depicted and described in this disclosure. Where non-sequential, or branched, flow is illustrated via flowchart, it can be appreciated that various other branches, flow paths, and orders of the blocks, can be implemented which achieve the same or a similar result. Moreover, not all illustrated blocks may be required to implement the methodologies described in this disclosure after.
In addition to the various aspects described in this disclosure, it is to be understood that other similar aspects can be used or modifications and additions can be made to the described aspect(s) for performing the same or equivalent function of the corresponding aspect(s) without deviating there from. Still further, multiple processing chips or multiple devices can share the performance of one or more functions described in this disclosure, and similarly, storage can be provided across a plurality of devices. The invention is not to be limited to any single aspect, but rather can be construed in breadth, spirit and scope in accordance with the appended claims.
The present application is a divisional of, and claims priority to, U.S. application Ser. No. 13/627,548, filed on Sep. 26, 2012, now U.S. Pat. No. 9,884,180 which is hereby incorporated in its entirety herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
3958560 | March | May 1976 | A |
4014321 | March | Mar 1977 | A |
4055378 | Feneberg et al. | Oct 1977 | A |
4122942 | Wolfson | Oct 1978 | A |
4136250 | Mueller et al. | Jan 1979 | A |
4143949 | Chen | Mar 1979 | A |
4153641 | Deichert et al. | May 1979 | A |
4214014 | Hofer et al. | Jul 1980 | A |
4309085 | Morrison | Jan 1982 | A |
4312575 | Peyman et al. | Jan 1982 | A |
4401371 | Neefe | Aug 1983 | A |
4463149 | Ellis | Jul 1984 | A |
4555372 | Kunzler et al. | Nov 1985 | A |
4604479 | Ellis | Aug 1986 | A |
4632844 | Yanagihara et al. | Dec 1986 | A |
4686267 | Ellis et al. | Aug 1987 | A |
4740533 | Su et al. | Apr 1988 | A |
4826936 | Ellis | May 1989 | A |
4996275 | Ellis et al. | Feb 1991 | A |
4997770 | Giles et al. | Mar 1991 | A |
5032658 | Baron et al. | Jul 1991 | A |
5034461 | Lai et al. | Jul 1991 | A |
5070215 | Bambury et al. | Dec 1991 | A |
5135297 | Valint et al. | Aug 1992 | A |
5177165 | Valint et al. | Jan 1993 | A |
5177168 | Baron et al. | Jan 1993 | A |
5219965 | Valint et al. | Jun 1993 | A |
5260000 | Nandu et al. | Nov 1993 | A |
5271875 | Appleton et al. | Dec 1993 | A |
5310779 | Lai | May 1994 | A |
5321108 | Kunzler et al. | Jun 1994 | A |
5326584 | Kamel et al. | Jul 1994 | A |
5336797 | McGee et al. | Aug 1994 | A |
5346976 | Ellis et al. | Sep 1994 | A |
5358995 | Lai et al. | Oct 1994 | A |
5364918 | Valint et al. | Nov 1994 | A |
5387662 | Kunzler et al. | Feb 1995 | A |
5449729 | Lai | Sep 1995 | A |
5472436 | Fremstad | Dec 1995 | A |
5512205 | Lai | Apr 1996 | A |
5585871 | Linden | Dec 1996 | A |
5585953 | Zavrel | Dec 1996 | A |
5610252 | Bambury et al. | Mar 1997 | A |
5616757 | Bambury et al. | Apr 1997 | A |
5682210 | Weirich | Oct 1997 | A |
5708094 | Lai et al. | Jan 1998 | A |
5710302 | Kunzler et al. | Jan 1998 | A |
5714557 | Kunzler et al. | Feb 1998 | A |
5726733 | Lai et al. | Mar 1998 | A |
5760100 | Nicholson et al. | Jun 1998 | A |
5908906 | Kunzler et al. | Jun 1999 | A |
5935155 | Humayun et al. | Aug 1999 | A |
5981669 | Valint et al. | Nov 1999 | A |
6087941 | Ferraz et al. | Jul 2000 | A |
6131580 | Ratner et al. | Oct 2000 | A |
6193369 | Valint et al. | Feb 2001 | B1 |
6200626 | Grobe et al. | Mar 2001 | B1 |
6213604 | Valint et al. | Apr 2001 | B1 |
6312393 | Abreu | Nov 2001 | B1 |
6348507 | Heiler et al. | Feb 2002 | B1 |
6366794 | Moussy et al. | Apr 2002 | B1 |
6423001 | Abreu | Jul 2002 | B1 |
6428839 | Kunzler et al. | Aug 2002 | B1 |
6431705 | Linden | Aug 2002 | B1 |
6440571 | Valint et al. | Aug 2002 | B1 |
6450642 | Jethmalani et al. | Sep 2002 | B1 |
6532298 | Cambier et al. | Mar 2003 | B1 |
6550915 | Grobe, III | Apr 2003 | B1 |
6570386 | Goldstein | May 2003 | B2 |
6579235 | Abita et al. | Jun 2003 | B1 |
6599559 | McGee et al. | Jul 2003 | B1 |
6614408 | Mann | Sep 2003 | B1 |
6630243 | Valint et al. | Oct 2003 | B2 |
6638563 | McGee et al. | Oct 2003 | B2 |
6726322 | Andino et al. | Apr 2004 | B2 |
6735328 | Helbing et al. | May 2004 | B1 |
6779888 | Marmo | Aug 2004 | B2 |
6804560 | Nisch et al. | Oct 2004 | B2 |
6851805 | Blum et al. | Feb 2005 | B2 |
6885818 | Goldstein | Apr 2005 | B2 |
6939299 | Petersen et al. | Sep 2005 | B1 |
6980842 | March et al. | Dec 2005 | B2 |
7018040 | Blum et al. | Mar 2006 | B2 |
7131945 | Fink et al. | Nov 2006 | B2 |
7169106 | Fleischman et al. | Jan 2007 | B2 |
7398119 | Lambert et al. | Jul 2008 | B2 |
7423801 | Kaufman et al. | Sep 2008 | B2 |
7429465 | Muller et al. | Sep 2008 | B2 |
7441892 | Hsu | Oct 2008 | B2 |
7443016 | Tsai et al. | Oct 2008 | B2 |
7450981 | Jeon | Nov 2008 | B2 |
7639845 | Utsunomiya | Dec 2009 | B2 |
7654671 | Glynn | Feb 2010 | B2 |
7699465 | Dootjes et al. | Apr 2010 | B2 |
7728949 | Clarke et al. | Jun 2010 | B2 |
7751896 | Graf et al. | Jul 2010 | B2 |
7799243 | Mather et al. | Sep 2010 | B2 |
7809417 | Abreu | Oct 2010 | B2 |
7878650 | Fritsch et al. | Feb 2011 | B2 |
7885698 | Feldman | Feb 2011 | B2 |
7907931 | Hartigan et al. | Mar 2011 | B2 |
7926940 | Blum et al. | Apr 2011 | B2 |
7931832 | Pugh et al. | Apr 2011 | B2 |
7964390 | Rozakis et al. | Jun 2011 | B2 |
8080187 | Tepedino, Jr. et al. | Dec 2011 | B2 |
8096654 | Amirparviz et al. | Jan 2012 | B2 |
8118752 | Hetling et al. | Feb 2012 | B2 |
8142016 | Legerton et al. | Mar 2012 | B2 |
8224415 | Budiman | Jul 2012 | B2 |
20020193674 | Fleischman et al. | Dec 2002 | A1 |
20030179094 | Abreu | Sep 2003 | A1 |
20040027536 | Blum et al. | Feb 2004 | A1 |
20040106965 | Chow | Jun 2004 | A1 |
20040116794 | Fink et al. | Jun 2004 | A1 |
20050045589 | Rastogi et al. | Mar 2005 | A1 |
20050221276 | Rozakis et al. | Oct 2005 | A1 |
20070016074 | Abreu | Jan 2007 | A1 |
20070030443 | Chapoy et al. | Feb 2007 | A1 |
20070121065 | Cox et al. | May 2007 | A1 |
20070179552 | Dennis | Aug 2007 | A1 |
20070188710 | Hetling et al. | Aug 2007 | A1 |
20080208335 | Blum | Aug 2008 | A1 |
20080218696 | Mir | Sep 2008 | A1 |
20090033863 | Blum et al. | Feb 2009 | A1 |
20090036761 | Abreu | Feb 2009 | A1 |
20090057164 | Minick et al. | Mar 2009 | A1 |
20090076367 | Sit et al. | Mar 2009 | A1 |
20090118604 | Phan et al. | May 2009 | A1 |
20090189830 | Deering et al. | Jul 2009 | A1 |
20090196460 | Jakobs et al. | Aug 2009 | A1 |
20100001926 | Amirparviz et al. | Jan 2010 | A1 |
20100013114 | Bowers et al. | Jan 2010 | A1 |
20100016704 | Naber et al. | Jan 2010 | A1 |
20100028559 | Yan et al. | Feb 2010 | A1 |
20100072643 | Pugh et al. | Mar 2010 | A1 |
20100103368 | Amirparviz | Apr 2010 | A1 |
20100109175 | Pugh et al. | May 2010 | A1 |
20100110372 | Pugh et al. | May 2010 | A1 |
20100113901 | Zhang et al. | May 2010 | A1 |
20100133510 | Kim et al. | Jun 2010 | A1 |
20100156629 | Sexton | Jun 2010 | A1 |
20100249548 | Muller | Sep 2010 | A1 |
20100280417 | Skelton et al. | Nov 2010 | A1 |
20110015512 | Pan et al. | Jan 2011 | A1 |
20110028807 | Abreu | Feb 2011 | A1 |
20110040161 | Abreu | Feb 2011 | A1 |
20110055317 | Vonog et al. | Mar 2011 | A1 |
20110063568 | Meng et al. | Mar 2011 | A1 |
20110084834 | Sabeta | Apr 2011 | A1 |
20110116035 | Fritsch et al. | May 2011 | A1 |
20110157541 | Peyman | Jun 2011 | A1 |
20110157544 | Pugh et al. | Jun 2011 | A1 |
20110184271 | Veciana et al. | Jul 2011 | A1 |
20110274680 | Mazed et al. | Nov 2011 | A1 |
20110286064 | Burles et al. | Nov 2011 | A1 |
20110298794 | Freedman | Dec 2011 | A1 |
20120026458 | Qiu et al. | Feb 2012 | A1 |
20120038881 | Amirparviz et al. | Feb 2012 | A1 |
20120041287 | Goodall et al. | Feb 2012 | A1 |
20120041552 | Chuck et al. | Feb 2012 | A1 |
20120069254 | Burton | Mar 2012 | A1 |
20120075168 | Osterhout et al. | Mar 2012 | A1 |
20120075574 | Pugh et al. | Mar 2012 | A1 |
20120078071 | Bohm et al. | Mar 2012 | A1 |
20120088258 | Bishop et al. | Apr 2012 | A1 |
20120092612 | Binder et al. | Apr 2012 | A1 |
20120109296 | Fan | May 2012 | A1 |
20120111339 | Barthe | May 2012 | A1 |
20120177576 | Hu | Jul 2012 | A1 |
20120201755 | Rozakis et al. | Aug 2012 | A1 |
20120245444 | Otis et al. | Sep 2012 | A1 |
20120259188 | Besling | Oct 2012 | A1 |
20120271121 | Della Torre et al. | Oct 2012 | A1 |
20130211389 | Chuck | Aug 2013 | A1 |
Number | Date | Country |
---|---|---|
0369942 | May 1990 | EP |
0686372 | Dec 1995 | EP |
1061874 | Dec 2000 | EP |
1818008 | Aug 2007 | EP |
1947501 | Jul 2008 | EP |
1617757 | Aug 2009 | EP |
2457122 | May 2012 | EP |
1995004609 | Feb 1995 | WO |
2001016641 | Mar 2001 | WO |
2001034312 | May 2001 | WO |
2003065876 | Aug 2003 | WO |
2004060431 | Jul 2004 | WO |
2004064629 | Aug 2004 | WO |
2006015315 | Feb 2006 | WO |
2009094643 | Jul 2009 | WO |
2010105728 | Sep 2010 | WO |
2010133317 | Nov 2010 | WO |
2011011344 | Jan 2011 | WO |
2011034592 | Mar 2011 | WO |
2011035228 | Mar 2011 | WO |
2011035262 | Mar 2011 | WO |
2011083105 | Jul 2011 | WO |
2011163080 | Dec 2011 | WO |
2012035429 | Mar 2012 | WO |
2012037455 | Mar 2012 | WO |
2012051167 | Apr 2012 | WO |
2012051223 | Apr 2012 | WO |
2012052765 | Apr 2012 | WO |
Entry |
---|
Bionic contact lens ‘to project emails before eyes,’ http://www.kurzweilai.netforums/topic/bionic-contact-lens-to-project-emails-before-eyes, Last accessed Mar. 14, 2012, 2 pages. |
Brahim, et al., “Polypyrrole-hydrogel composites for the construction of clinically important biosensors,” 2002, Biosensors & Bioelectronics, pp. 53-59, vol. 17. |
Chen, et al., “Microfabricated Implantable Parylene-Based Wireless Passive Intraocular Pressure Sensors,” Journal of Microelectromechanical Systems, Dec. 2008, pp. 1342-1351, vol. 17, No. 6. |
Chu, et al., “Soft Contact-lens Sensor for Monitoring Tear Sugar as Novel Wearable Device of Body Sensor Network,” http://www.ksi edu/seke/dms11/DMS/2_Kohji_Mitsubayashi.pdf, Last accessed Jul. 27, 2012, 4 pages. |
“Contact Lenses: Look Into My Eyes,” The Economist, Jun. 2, 2011 , http://www.economist.com/node/18750624/print, Last accessed Mar. 13, 2012, 8 pages. |
Haders, “New Controlled Release Technologies Broaden Opportunities for Ophthalmic Therapies,” Drug Delivery Technology, Jul./Aug. 2009, pp. 48-53, vol. 8, No. 7. |
Holloway, “Microsoft developing electronic contact lens to monitor blood sugar,” Gizmag, Jan. 5, 2012, http://www.gizmag.com/microsoft-electronic-diabetic-contact-lens/20987/, Last accessed Mar. 13, 2012. 5 pages. |
Huang, et al., “Wrinkling of Ultrathin Polymer Films,” Mater. Res. Soc. Symp. Proc., 2006, 6 pages, vol. 924, Materials Research Society. |
Hurst, “How contact lenses could help save your life,” Mail Online, Apr. 19, 2010, http://www.dailymail.co.uk/health/article-1267345/How-contact-lenses-help-save-life.html, Last accessed Jul. 27, 2012. |
Liao, et al., “A 3-μW CMOS Glucose Sensor for Wireless Contact-Lens Tear Glucose Monitoring ,” IEEE Journal of Solid-State Circuits, Jan. 2012, pp. 335-344, vol. 47, No. 1. |
Liao, et al., “A 3-μW Wirelessly Powered CMOS Glucose Sensor for an Active Contact Lens,” 2011 IEEE International Solid-State Circuits Conference, Session 2, Feb. 21, 2011, 3 pages. |
Lingley, et al., “A Single-Pixel Wireless Contact Lens Display,” Journal of Micromechanics and Microengineering, 2011, pp. 1-8. |
Lingley, et al., “Multipurpose integrated active contact lenses,” SPIE, 2009, 2 pages. |
Liu, et al., “Miniature Amperometric Self-Powered Continuous Glucose Sensor with Linear Response,” Analytical Chemistry, 2012, 7 pages. |
Loncar, et al., “Design and Fabrication of Silicon Photonic Crystal Optical Waveguides,” Journal of Lightwave Technology, Oct. 2000, pp. 1402-1411, vol. 18, No. 10. |
Murdan, “Electro-responsive drug delivery from hydrogels,” Journal of Controlled Release, 2003, pp. 1-17, vol. 92. |
Pandey, et al., “A Fully Integrated RF-Powered Contact Lens With a Single Element Display,” IEEE Transactions on Biomedical Circuits and Systems, Dec. 2010, pp. 454-461, vol. 4, No. 6. |
Parviz, Babak A., “Augmented Reality in a Contact Lens,” IEEE Spectrum, Sep. 2009, http://spectrum.ieee.org/biomedical/bionics/augmented-reality-in-a-contact-lens/0, Last accessed Mar. 14, 2012, 6 pages. |
Selner, et al., “Novel Contact Lens Electrode Array for Multi-electrode Electroretinography (meERG),” IEEE, 2011, 2 pages. |
Singh et al., “Novel Approaches in Formulation and Drug Delivery using Contact Lenses,” Journal of Basic and Clinical Pharmacy, May 2011, pp. 87-101, vol. 2, Issue 2. |
Thomas, et al., “Functional Contact Lenses for Remote Health Monitoring in Developing Countries,” IEEE Global Humanitarian Technology Conference, 2011, pp. 212-217, IEEE Computer Society. |
Tweedie, et al., “Contact creep compliance of viscoelastic materials via nanoindentation,” J. Mater. Res., Jun. 2006, pp. 1576-1589, vol. 21, No. 2, Materials Research Society. |
Wall, K., “Active contact lens that lets you see like the Terminator patented,” Feb. 10, 2012, http://www.patexia.com/feed/active-contact-lens-that-lets-you-see-like-the-terminator-patented-2407, Last accessed Mar. 28, 2012, 5 pages. |
Zarbin, et al., “Nanotechnology in ophthalmology,” Can J Ophthalmol, 2010, pp. 457-476, vol. 45, No. 5. |
Badugu et al., “A Glucose Sensing Contact Lens: A Non-Invasive Technique for Continuous Physiological Glucose Monitoring,” Journal of Fluorescence, Sep. 2003, pp. 371-374, vol. 13, No. 5. |
Carlson et al., “A 20 mV Input Boost Converter With Efficient Digital Control for Thermoelectric Energy Harvesting,” IEEE Journal of Solid-State Circuits, Apr. 2010, pp. 741-750, vol. 45, No. 4. |
Chu et al., “Biomedical soft contact-lens sensor for in situ ocular biomonitoring of tear contents,” Biomed Microdevices, 2011, pp. 603-611, vol. 13. |
Chu et al., “Soft contact lens biosensor for in situ monitoring of tear glucose as non-invasive blood sugar assessment,” Talanta, 2011, pp. 960-965, vol. 83. |
Ho et al., “Contact Lens With Integrated Inorganic Semiconductor Devices,” MEMS 2008. IEEE 21st International Conference on. IEEE, 2008., pp. 403-406. |
Lähdesmäki et al., “Possibilities for Continuous Glucose Monitoring by a Functional Contact Lens,” IEEE Instrumentation & Measurement Magazine, Jun. 2010, pp. 14-17. |
Lingley et al., “A contact lens with integrated micro solar cells,” Microsyst Technol, 2012, pp. 453-458, vol. 18. |
Parviz, Babak A., “For Your Eyes Only,” IEEE Spectrum, Sep. 2009, pp. 36-41. |
Saeedi, E. et al., “Self-assembled crystalline semiconductor optoelectronics on glass and plastic,” J. Micromech. Microeng., 2008, pp. 1-7, vol. 18. |
Saeedi et al., “Self-Assembled Inorganic Micro-Display on Plastic,” Micro Electro Mechanical Systems, 2007. MEMS. IEEE 20th International Conference on. IEEE, 2007., pp. 755-758. |
Sensimed Triggerfish, Sensimed Brochure, 2010, 10 pages. |
Shih, Yi-Chun et al., “An Inductorless DC-DC Converter for Energy Harvesting With a 1.2-μW Bandgap-Referenced Output Controller,” IEEE Transactions on Circuits and Systems-II: Express Briefs, Dec. 2011, pp. 832-836, vol. 58, No. 12. |
Shum et al., “Functional modular contact lens,” Proc. of SPIE, 2009, pp. 73970K-1 to 73970K-8, vol. 7397. |
Stauth et al., “Self-assembled single-crystal silicon circuits on plastic,” PNAS, Sep. 19, 2006, pp. 13922-13927, vol. 103, No. 38. |
Yao, H. et al., “A contact lens with integrated telecommunication circuit and sensors for wireless and continuous tear glucose monitoring,” J. Micromech. Microeng., 2012, pp. 1-10, vol. 22. |
Yao, H. et al., “A Dual Microscal Glucose Sensor on a Contact Lens, Tested in Conditions Mimicking the Eye,” Micro Electro Mechanical Systems (MEMS), 2011 IEEE 24th International Conference on. IEEE, 2011, pp. 25-28. |
Yao et al., “A contact lens with embedded sensor for monitoring tear glucose level,” Biosensors and Bioelectronics, 2011, pp. 3290-3296, vol. 26. |
Yao, H. et al., “A Soft Hydrogel Contact Lens with an Encapsulated Sensor for Tear Glucose Monitoring,” Micro Electro Mechanical Systems (MEMS), 2012 IEEE 25th International Conference on. IEEE, 2012, pp. 769-772. |
Yeager et al., “A 9 μA, Addressable Gen2 Sensor Tag for Biosignal Acquistion,” IEEE Journal of Solid-State Circuits, Oct. 2010, pp. 2198-2209, vol. 45, No. 10. |
Zhang et al., “Design for Ultra-Low Power Biopotential Amplifiers for Biosignal Acquistion Applications,” IEEE Transactions on Biomedical Circuits and Systems, 2012, pp. 344-355, vol 6, No. 4. |
Number | Date | Country | |
---|---|---|---|
20180104475 A1 | Apr 2018 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13627548 | Sep 2012 | US |
Child | 15843807 | US |