The present invention relates to a power transfer system configured to transfer electric power in a noncontact manner.
Patent Literature 1 discloses a system configured to transfer electric power through capacitive coupling.
The power transfer system disclosed in Patent Literature 1 comprises: a power transmission device including a high-frequency high-voltage generator circuit, a passive electrode, and an active electrode; and a power reception device including a high-frequency high-voltage load, a passive electrode, and an active electrode.
The power transfer system of the structure described in Patent Literature 1 transfers electric power by utilizing an electric field generated between the active electrodes 3 and 6 and that generated between the passive electrodes 2 and 7. For this reason, the power transfer system involves a problem that when the capacitance between the passive electrodes 2 and 7 is small, that is, when the capacitive coupling between the passive electrodes 2 and 7 is weak, the electric potentials of the passive electrodes 2 and 7 fluctuate largely. Further, since the passive electrode 7 of the power reception device is isolated from the ground potential and hence becomes a radiation source of an unnecessary electromagnetic field, the power transfer system also involves a problem that such an unnecessary electromagnetic field radiates with electric potential fluctuations of the passive electrode 7.
According to Patent Literature 1, an attempt is made to stabilize the electric potential of the passive electrode by increasing the area of the passive electrode. Though no problem arises if the passive electrode is shaped sufficiently large, a sufficient effect cannot be obtained in some apparatus configurations.
Accordingly, it is an object of the present invention to provide a power transfer system which is capable of suppressing radiation of the unnecessary electromagnetic field from the passive electrode of the power reception device.
A power transfer system according to the present invention has the following configuration:
a power transmission device that includes a power transmission device side active electrode, a power transmission device side passive electrode, and a high-frequency high-voltage generator circuit configured to apply a high voltage of high frequency to between the power transmission device side active electrode and the power transmission device side passive electrode; and
a power reception device that includes a power reception device side active electrode opposed to the power transmission device side active electrode, a power reception device side passive electrode, and a high-frequency high-voltage load circuit connected between the power reception device side active electrode and the power reception device side passive electrode,
wherein the high-frequency high-voltage generator circuit generates a high voltage having a frequency such that a phase difference between a phase of an electric potential difference between the power transmission device side active electrode and the power transmission device side passive electrode and a phase of an electric potential difference between the power reception device side active electrode and the power reception device side passive electrode has an absolute value of not less than zero degrees and less than 90 degrees.
With this configuration, a fluctuation in the electric potential of the power reception device side passive electrode is the same (in polarity) as that in the electric potential of the power transmission device side passive electrode which is close to the ground potential, whereby the electric potential fluctuation of the power reception device side passive electrode can be suppressed. Thus, it is possible to suppress radiation of an unnecessary electromagnetic field without lowering the power efficiency.
In a specific embodiment, a resonance frequency of a power transmission circuit comprising the power transmission device side active electrode, the power transmission device side passive electrode and the high-frequency high-voltage generator circuit is substantially equal to a resonance frequency of a power reception circuit comprising the power reception device side active electrode, the power reception device side passive electrode and the high-frequency high-voltage load circuit, while the frequency of the high voltage to be applied to between the power transmission device side active electrode and the power transmission device side passive electrode is a higher one of frequencies of two coupled modes which are generated when the power transmission device and the power reception device are coupled to each other.
When the power transmission device side passive electrode has an electric potential substantially equal to a ground potential (i.e., the electric potential of the earth or housing), the electric potential of the power reception device side passive electrode is stabilized, so that radiation of the unnecessary electromagnetic field is suppressed effectively.
When the power transmission device side passive electrode is larger in size than the power transmission device side active electrode or when the power reception device side passive electrode is larger in size than the power reception device side active electrode, a change in the electric potential of the power reception device side passive electrode becomes small relative to the electric potential of the power transmission device side passive electrode. Therefore, the electric potential of the power reception device side passive electrode is further stabilized, so that radiation of the unnecessary electromagnetic field is suppressed effectively.
When the power transmission device side active electrode, the power transmission device side passive electrode, the power reception device side active electrode and the power reception device side passive electrode are disposed in such a manner that the power transmission device side passive electrode is opposed to the power reception device side passive electrode while the power transmission device side active electrode is opposed to the power reception device side active electrode, the capacitance generated between the power transmission device side passive electrode and the power reception device side passive electrode becomes larger, which makes the electric potential fluctuation of the power reception device side passive electrode smaller, thereby suppressing radiation of the unnecessary electromagnetic field effectively.
When the power transmission device is provided with an LC resonance circuit, the resonance frequency of the power transmission circuit can be easily set to a predetermined frequency. Likewise, when the power reception device is provided with an LC resonance circuit, the resonance frequency of the power reception circuit can be easily fixed to a predetermined frequency.
According to the present invention, it is possible to control the electric potential fluctuation of the power reception device side passive electrode, thereby to suppress radiation of the unnecessary electromagnetic field from the power reception device side passive electrode.
The configuration of a power transfer system according to a First Embodiment will be described with reference to
In
The capacitances C1, C2 and Cm are capacitances generated by power transmission device side active and passive electrodes and power reception device side active and passive electrodes. The capacitances C1, C2 and Cm are simplified representations of capacitance components derived from electric field distributions that occur over the three-dimensional structures of the respective electrodes.
In
Thus, the power transmission device 101 has a power transmission circuit provided with an LC resonance circuit, while the power reception device 201 has a power reception circuit provided with an LC resonance circuit.
With reference to
The relation between voltages V1 and V2, currents I1 and I2 and capacitances C1, C2 and Cm in
Assuming that: the resonance circuits are symmetrical circuits; the inductors L1 and L2 each have an inductance L; and the capacitances C1 and C2 are each a capacitance C, the resonance frequencies of the circuits coupled to each other are represented by the following expressions:
As can be seen from the expressions, a lower resonance frequency f1 and a higher resonance frequency f2 are generated. Note that when the coupling capacitance Cm is zero, that is, when the power transmission device 101 and the power reception device 201 stand alone in an uncoupled state, the resonance circuits generate an equal resonance frequency which is a mid-frequency between f1 and f2.
L1=50 mH, Q=100
L2=50 mH, Q=100
C1=10 pF
C2=10 pF
C3=5 pF
C4=10 pF
R=20 Ω
For simplicity, C1 to C4 are lossless values.
As can be seen from
When the frequency of the high-frequency high-voltage generator 11 is set to a mid-frequency ((f1+f2)/2) between the higher resonance frequency f2 and the lower resonance frequency f1, the voltage at the power reception device side passive electrode is lowered to a value about ½ as high as the voltage obtained with the frequency of the high-frequency high-voltage generator 11 set to f1.
For this reason, the high-frequency high-voltage generator 11 is inhibited to operate at least in a frequency region close to the lower resonance frequency f1. That is, the high-frequency high-voltage generator 11 is allowed to operate within a frequency region enclosed by a box in
As apparent from
As can be seen from
Therefore, by setting the absolute value of the phase difference between the phase of an electric potential difference between the power transmission device side active electrode and the power transmission device side passive electrode and the phase of an electric potential difference between the power reception device side active electrode and the power reception device side passive electrode to a value of not less than zero degrees and less than 90 degrees, the voltage at the power reception device side passive electrode is lowered to a value about ½ to about ⅓ as high as the voltage obtained with the frequency of the high-frequency high-voltage generator 11 set to f1.
A Second Embodiment includes some exemplary resonance circuit configurations for use in the power transmission device and power reception device.
A Third Embodiment includes several exemplary electrode structures for use in the power transmission device and power reception device.
In the example shown in
The housing of the power transmission device 104 is a molded member of a plastic such as ABS resin for example. By molding the housing integrally with the active electrode 3 and passive electrode 2 in such a manner as to position these electrodes inside the housing, the housing has an outer surface with an insulating structure.
In the vicinity of a lower surface of the housing of the power reception device 204, there are formed a power reception device side active electrode 6 and a power reception device side passive electrode 7 which surrounds the active electrode 6 so as to be isolated from the active electrode 6. In the housing of the power reception device 204, a load circuit 5 is disposed which is associated with electric power induced between the active electrode 6 and the passive electrode 7. In this example, the passive electrode 7 extends along an inner peripheral surface of the housing. Therefore, the load circuit 5 is covered with the passive electrode 7.
The housing of the power reception device 204 is also a molded member of a plastic such as ABS resin for example. By molding the housing integrally with the active electrode 6 and passive electrode 7 in such a manner as to position these electrodes inside the housing, the housing has an outer surface with an insulating structure.
The active electrode 3 of the power transmission device 104 is shaped circular. The passive electrode 2 has a circular opening positioned coaxially with the active electrode 3. That is, the passive electrode 2 is positioned to surround the active electrode 3 so as to be isolated from the active electrode 3. The active electrode 6 of the power reception device 204 is also shaped circular. The passive electrode 7 has a circular opening positioned coaxially with the active electrode 6 and hence is positioned to surround the active electrode 6 so as to be isolated from the active electrode 6.
Such a structure enables the capacitance between the power transmission device side passive electrode 2 and the power reception device side passive electrode 7 to increase, thereby reducing electric potential fluctuations of the passive electrodes 2 and 7.
In the example shown in
With such a structure, the active electrodes 3 and 6 and the openings of the passive electrodes 2 and 7 can be located to have positional relations therebetween with a higher degree of freedom.
In the example shown in
Such a structure enhances the electric field shielding effect of the passive electrodes 2 and 7 over the active electrodes 3 and 6, thereby making it possible to further reduce electric field radiation toward the outside (i.e., leakage electric field). This structure also enables the capacitance between the passive electrodes 2 and 7 to increase, thereby further reducing electric potential fluctuations of the passive electrodes 2 and 7.
In the example shown in
Such a structure enhances the shielding effect of the passive electrode 2 over a high-frequency high-voltage generator circuit 1, as well as the shielding effect of the passive electrode 7 over a load circuit 5. Since the passive electrodes 2 and 7 extend between the active electrodes 3 and 6, the degree of freedom in establishing a resonant capacitance C can be improved.
A Fourth Embodiment includes exemplary structures for setting the resonance frequencies of resonance circuits used in the power transmission device and power reception device.
In the example shown in
The equivalent circuit of this power transfer system is as shown in
In the example shown in
A Fifth Embodiment includes a specific configuration of a high-frequency high-voltage generator circuit in the power transmission device and a specific configuration of a high-frequency high-voltage load circuit in the power reception device.
The power transmission device 110 includes a high-frequency high-voltage generator 11 and a step-up transformer T1 having a primary winding connected to the high-frequency high-voltage generator 11 and a secondary winding connected between an active electrode 3 and a passive electrode 2.
The power reception device 210 includes a load circuit 5 comprising a rectifier smoothing circuit 30 and a low voltage circuit portion 29. The rectifier smoothing circuit 30 includes a step-down transformer T2, rectifier diodes D1 and D2, and a smoothing capacitor C. The transformer T2 has a primary winding with one end connected to an active electrode 6 and the other end connected to a passive electrode 7. A secondary winding of the transformer T2 is connected to a full-wave rectifier circuit comprising the rectifier diodes D1 and D2 and the smoothing capacitor C.
In the example shown, the power reception device 210 forms a noncontact charger device in which the low voltage circuit portion 29 includes a control circuit 31 and a secondary battery 32 which operate using a voltage rectified and smoothed by the rectifier smoothing circuit 30 as a power source. The control circuit 31 performs a charge control over the secondary battery 32, a charge control using the secondary battery 32 as a power source, and other predetermined circuit operations.
The power reception device may further include an additional device connected to the low voltage circuit portion 29, though such an additional device is not shown in
The high-frequency high-voltage generator 11 is configured to generate a high voltage having a high frequency ranging from 100 kHz to several tens of MHz for example. This frequency is a fixed frequency corresponding to the higher frequency of coupled modes described earlier.
Number | Date | Country | Kind |
---|---|---|---|
2010-122227 | May 2010 | JP | national |
The present application is a continuation of International application No. PCT/JP2011/061149, filed May 16, 2011, which claims priority to Japanese Patent Application No. 2010-122227, filed May 28, 2010, the entire contents of each of which are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
2483889 | De Groot | Oct 1949 | A |
6859050 | van de Goor et al. | Feb 2005 | B2 |
6865409 | Getsla et al. | Mar 2005 | B2 |
8587157 | Camurati et al. | Nov 2013 | B2 |
20090206675 | Camurati | Aug 2009 | A1 |
20090302690 | Kubono | Dec 2009 | A1 |
20100164295 | Ichikawa | Jul 2010 | A1 |
20110080054 | Urano | Apr 2011 | A1 |
20110285212 | Higuma | Nov 2011 | A1 |
20120032521 | Inoue | Feb 2012 | A1 |
20120235508 | Ichikawa | Sep 2012 | A1 |
Number | Date | Country |
---|---|---|
2309620 | Oct 2010 | EP |
2875649 | Mar 2006 | FR |
2009-531009 | Aug 2009 | JP |
2009-296857 | Dec 2009 | JP |
2010-150316 | Jul 2010 | JP |
2010-213554 | Sep 2010 | JP |
WO-2007-107642 | Sep 2007 | WO |
WO 2007107642 | Sep 2007 | WO |
WO-2009-024731 | Feb 2009 | WO |
WO-2010-150317 | Dec 2010 | WO |
WO-2010-150318 | Dec 2010 | WO |
WO-2010150316 | Dec 2010 | WO |
Entry |
---|
PCT/JP2011061149 International Report date Aug. 16, 2011. |
Number | Date | Country | |
---|---|---|---|
20120299392 A1 | Nov 2012 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/JP2011/061149 | May 2011 | US |
Child | 13569277 | US |