This application is a U.S. National Stage application under 35 U.S.C. §371 claiming benefit of prior filed International Application Number PCT/JP2009/006187, filed Nov. 18, 2009, in which the International Application claims a priority date of May 7, 2009 based on prior filed Japanese Patent Application Number 2009-112749, the entire contents of which are incorporated herein by reference.
The present application relates to a power transmission mechanism for hybrid vehicle, more particularly, to a power transmission mechanism for parallel hybrid vehicle using powers of an engine and a motor/generator in combination.
As disclosed in Non-patent Document 1, with the aim of improving mileage by reducing a load applied to an engine in a commercial vehicle such as a truck, there has recently been proposed a parallel hybrid system using an assisting power of a motor during driving where a load is applied to the engine such as during start-up or during uphill driving.
As illustrated in
With this structure, the aforesaid hybrid system starts only with a driving force of the motor 5 with the clutch 3 being disconnected, and when the vehicle reaches a prescribed speed (in the vicinity of about 5 to 6 km/h), it synchronizes the rotations of the engine 1 and the motor 5, connects the clutch 3, and starts driving only with the engine 1.
Then, during the driving where a load is applied, such as during uphill driving, the system enters high-power driving where the engine 1 and the motor 5 are used in combination according to a depression amount of an accel pedal, and during deceleration/braking, according to the situation, the clutch 3 is disconnected and the motor 5 is reversely operated, whereby a regenerative brake corresponding to an engine brake is applied, and a regenerative energy is stored in batteries.
However, a power transmission mechanism of the aforesaid hybrid system has a drawback that during the driving only with the driving force of the engine 1, a mechanical loss occurs due to an influence of a magnet put on the rotor 13. Further, supplying electricity to a stator 17 of the motor 5 in order to cancel such a load loss newly causes the occurrence of an electric loss.
As a power transmission mechanism of a hybrid system realizing a reduction of such a loss, Non-patent Document 2 discloses an art in which a motor output shaft 19 is structured separately from an engine drive shaft system 11 and a clutch mechanism 21 formed by a dog clutch is mounted between the motor output shaft 19 and the engine drive shaft system 11, as illustrated in
However, smooth connection/disconnection of the dog clutch forming the aforesaid clutch mechanism 21 requires highly precise and complicated synchronization control of the rotation speeds.
Further, the power transmission mechanism of the hybrid system in
The present application was devised in consideration of the above circumstances and a proposition thereof is to provide a power transmission mechanism for parallel hybrid vehicle that is capable of smoothly combining and separating input/output powers of a motor and an engine, and that is applicable to a large hybrid vehicle having a load capacity over 10 tons by ensuring sufficient strength of a mechanism for combining and separating the input/output powers.
To attain such a proposition, according to a first aspect of the embodiment is a power transmission mechanism for parallel hybrid vehicle in which an engine, a main clutch, a motor/generator, a transmission, and a final reduction gear are arranged coaxially and powers of the engine and the motor/generator are used in combination, the power transmission mechanism including a motor output shaft of the motor/generator rotatable separately from an engine drive shaft system extending from the main clutch to the transmission, a motor-brake mounted on one end side of the motor output shaft to release/fix the motor output shaft, a planetary gear mechanism mounted between another end side of the motor output shaft and the engine drive shaft system and including a sun gear provided on the other end side of the motor output shaft, an outer gear provided on the engine drive shaft system and having a gear ratio to the sun gear of 1:1, a plurality of planetary gears with which the sun gear and the outer gear are engaged, and a planetary carrier picking up orbital motions of the planetary gears, and a gear brake mounted on one end side of the planetary carrier to release/fix the planetary carrier, in which, when the main clutch and the gear brake are fixed and the motor-brake is released, a driving force of the motor/generator is transmitted from the planetary gear mechanism to the engine drive shaft system to be combined with a driving force of the engine, when the main clutch and the motor-brake are released and the gear brake is fixed, only the driving force of the motor/generator is transmitted from the engine drive shaft system to the transmission, and the motor/generator reversely operates to apply a regenerative brake during braking of the vehicle, and when the main clutch and the motor-brake are fixed and the gear brake is released, only the driving force of the engine is transmitted from the engine drive shaft system to the transmission.
According to a first aspect of the embodiment when the motor/generator is in non-operation, the motor output shaft is fixed and thus does not rotate, which has an advantage that a mechanical loss and an electric loss can be more reduced than conventionally and a load of the engine is reduced, resulting in improved mileage.
Further, since the planetary gear mechanism of constant mesh type is adopted for the power transmission between the motor output shaft and the engine drive shaft system, it is possible to smoothly connect and disconnect the both shafts with/from each other, and in addition, the planetary gear mechanism can have sufficient strength, which enables the application to a heavy-duty truck requiring a high motor power.
Hereinafter, embodiments of the present invention will be described in detail based on the drawings.
Further, in the drawings, 35 denotes a motor output shaft attached to a rotor 37 of the motor 25, and the motor output shaft 35 is structured separately from the engine drive shaft system 31 and is rotatably supported by a not-illustrated motor body via a bearing. A motor-brake 39 releasing/fixing the motor output shaft 35 is mounted on one end, of the motor output shaft 35, closer to the main clutch 23.
The motor-brake 39 has a structure similar to a disk brake, for instance, and when a brake disk 41 provided on the motor output shaft 35 is sandwiched by not-illustrated brake pads or the like (the motor-brake 39 is fixed), the rotation of the motor output shaft 35 is braked, so that the motor output shaft 35 is fixed, and when the brake pads or the like separate from the brake disk 41 (the motor-brake 39 is released), the braking to the motor output shaft 35 is cancelled.
Between the other end side of the motor output shaft 35 and the engine drive shaft system 31, a planetary gear mechanism 43 is provided.
As illustrated in
On the other end side of the planetary carrier 51, a gear brake 53 is provided to release/fix the planetary carrier 51 to release/fix the orbital rotation of the planetary gears 49.
Similarly to the motor-brake 39, the gear brake 35 also has a structure similar to a disk brake, for instance, and when a brake disk 55 provided on the other end side of the planetary gears 49 is sandwiched by not-illustrated brake pads or the like (the gear brake 53 is fixed), the rotation of the planetary carrier 51 is braked, so that the orbital rotation of the planetary gears 49 is fixed, and when the brake pads or the like separate from the brake disk 55 (the gear brake 53 is released), the braking to the planetary carrier 51 is cancelled, so that the planetary gears 49 are again capable of orbital rotation.
The power transmission mechanism 57 according to this embodiment is structured as described above, and the operation thereof will be described next.
First, as illustrated in
As a result, the motor 25 and the engine drive shaft system 31 are connected, the driving force of the motor 25 is transmitted from the sun gear 45 via the planetary gears 49 and the outer gear 47 to the engine drive shaft system 31, resulting in what is called “motor full, engine assist” where the driving force of the motor 25 is used in combination with the driving force of the engine 21.
Further, for example, where the vehicle is started only with the driving force of the motor 25 without using the engine 21, the gear brake 53 (the planetary carrier 51) is “fixed”, the main clutch 23 is disconnected, and the motor-brake 39 (the motor output shaft 35) is “released” by having the brake pads or the like separate from the brake disk 41 as illustrated in
On the other hand, when the main clutch 23 is connected to be “fixed”, the motor-brake 39 (the motor output shaft 35) is “fixed” by having the brake pads or the like sandwich the brake disk 41, and the gear brake 53 (the planetary carrier 51) is “released” by having the brake pads or the like separate from the brake disk 55 as illustrated in
Therefore, it is only necessary for a controller (not illustrated) to release/fix the motor-brake 39 and the gear brake 53 as in
[1] when the accel pedal is strongly pressed down because of hill start and there is a sufficient battery volume, the controller “fixes” the gear brake 53 and “releases” the motor-brake 39 as in
Further, for example,
[2] when the battery volume is not large enough to drive the motor 25 even though the accel pedal is strongly pressed down because of the hill start, the controller “releases” the gear brake 53 and “fixes” the motor-brake 39 as illustrated in
Further,
[3] when the accel pedal is pressed down slightly because of the start on a flat road and the battery volume is sufficient, the controller “fixes” the gear brake 53 and “releases” the motor-brake 39 as illustrated in
Further, when the detection of the depression amount of the brake pedal indicates that the brake pedal is pressed down strongly, the controller operates the main clutch 23, the motor-brake 39, and the gear brake 53 to the state in
As described above, this embodiment can reduce a mechanical loss and an electric loss more than the conventional example illustrated in
Further, in this embodiment, since, for the power transmission between the motor output shaft 35 and the engine drive shaft system 31, the planetary gear mechanism 43 of constant mesh type is adopted instead of the clutch mechanism 21 formed by the dog clutch in
As described above, in the above embodiment, the sun gear 45 and the outer gear 47 of the planetary gear mechanism 43 are formed as if they are a pair of right and left differential side gears of a differential gear, with their gear ratio being 1:1, meaning that their radii of rotation are equal, and the rotation shafts of the planetary gears 49 attached to the planetary carrier 51 are set at a right angle to the motor output shaft 35, but another alternative structure may be such that, as illustrated in
A power transmission mechanism 71 according to this embodiment is thus structured, and similarly to the aforesaid embodiment, this embodiment can also attain the desired propositions, that is, it is possible to smoothly connect and disconnect the motor output shaft 35 and the engine drive shaft system 31 with/from each other, and the planetary gear mechanism 61 can have sufficient strength, which enables the application to a heavy-duty truck requiring a high motor power.
The many features and advantages of the embodiments are apparent from the detailed specification and, thus, it is intended by the appended claims to cover all such features and advantages of the embodiments that fall within the true spirit and scope thereof. Further, since numerous modifications and changes will readily occur to those skilled in the art, it is not desired to limit the inventive embodiments to exact construction and operation illustrated and described, and accordingly all suitable modifications and equivalents may be resorted to, falling within the scope thereof.
Number | Date | Country | Kind |
---|---|---|---|
2009-112749 | May 2009 | JP | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/JP2009/006187 | 11/18/2009 | WO | 00 | 11/3/2011 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2010/128542 | 11/11/2010 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
5433282 | Moroto et al. | Jul 1995 | A |
5801499 | Tsuzuki et al. | Sep 1998 | A |
6394924 | Schiebold et al. | May 2002 | B1 |
8075436 | Bachmann | Dec 2011 | B2 |
20050037883 | Motoike et al. | Feb 2005 | A1 |
20100203995 | Zhang et al. | Aug 2010 | A1 |
20110237378 | Rask et al. | Sep 2011 | A1 |
20110275466 | Rask et al. | Nov 2011 | A1 |
20120115659 | Yamada et al. | May 2012 | A1 |
20120129638 | Kaltenbach et al. | May 2012 | A1 |
20120149514 | Tiwari et al. | Jun 2012 | A1 |
20120197472 | He et al. | Aug 2012 | A1 |
20120244979 | Kruger | Sep 2012 | A1 |
20120258830 | Yoon et al. | Oct 2012 | A1 |
Number | Date | Country |
---|---|---|
9-24752 | Jan 1997 | JP |
2000-108694 | Apr 2000 | JP |
2003-191761 | Jul 2003 | JP |
Entry |
---|
“Monthly Automotive Engineering”, published by Tetsudo-Nipponsha Co., Ltd., Oct. 2006, pp. 47-49. |
“Isuzu Technical Report”, published by Isuzu Motors ltd., No. 113, 2005, pp. 66-69. |
International Preliminary Report on Patentability and Written Opinion; International Application No. PCT/JP2009/006187; International Filing Date: Nov. 18, 2009. |
Number | Date | Country | |
---|---|---|---|
20120115659 A1 | May 2012 | US |