Power transmission shaft

Information

  • Patent Application
  • 20040235575
  • Publication Number
    20040235575
  • Date Filed
    May 18, 2004
    20 years ago
  • Date Published
    November 25, 2004
    20 years ago
Abstract
An integral hollow type power transmission shaft is proposed which is superior in the balance between the static strength and the fatigue strength. The integral hollow type shaft is induction-hardened from the outer periphery to form a hardened layer, leaving unhardened layer at spline portions, so that at the spline portions, the hardness on the inner surface will be lower than at other portions. This increases the toughness and compressive residual stress of the shaft at the spline portions, which tend to be starting points of fatigue cracks, thus improving the balance between the static strength and the fatigue strength.
Description


BACKGROUND OF THE INVENTION

[0001] This invention relates to a power transmission shaft for transmitting power with both ends connected to joints such as constant-velocity universal joints.


[0002] Among transmission shafts for transmitting power with both ends connected to joints, there are ones in which the joint connecting portions are integrally formed at both ends and which are formed hollow over the entire length thereof. As such integral, hollow type power transmission shafts, ones in which one or both of the joint connecting portions are spline portions inserted into the joints are often used. For example, as power transmission shafts for power transmission mechanism of vehicles, ones in which the joint connecting portions on both sides are spline portions inserted in the inner rings of constant-velocity universal joints are often used.


[0003] Such integral, hollow type power transmission shafts have an advantage that it is possible to achieve equivalent static strength while being lighter in weight than solid ones. As means for strengthening this type of power transmission shafts, induction hardening from outer peripheries and work-hardening means by reducing diameters are often employed. There are also ones in which the intermediate portion of the shaft is strengthened by work-hardening, and the joint connecting portions at both ends thereof are strengthened by induction hardening (JP patent publication 2001-208037).


[0004] This integral hollow type power transmission shaft, in which at least one of the joint connecting portions is a spline portion, differs from solid ones in the balance between the static strength and the fatigue strength. Thus, if it is designed so as to obtain static strength equivalent to that of a solid type while reducing its weight, it will be inferior in fatigue strength to a solid one. Fatigue crack tends to occur with the rising portions of the splines as starting points.


[0005] An object of this invention is to provide an integral hollow type power transmission shaft that is superior in the balance between the static strength and the fatigue strength.



SUMMARY OF THE INVENTION

[0006] According to this invention, there is provided a power transmission shaft which has joint connecting portions at both ends, and is hollow over the entire length thereof, at least one of said joint connecting portions being a spline portion to be inserted into a joint, characterized in that said shaft is induction-hardened from the outer periphery thereof so that at the spline portions, the hardness on the inner surface of the shaft is lower than at other portions.


[0007] That is, by employing induction hardening from the outer periphery as means for strengthening the shaft so that the hardness on the inner surface at the spline portions will be lower than the hardness on the inner surface of the shaft at other portions, the toughness and the compressive residual stress of the shaft at the spline portions, which tend to be starting points of fatigue breakage, increase, so that the balance between the static strength and the fatigue strength will improve.


[0008] The difference in hardness between the outer surface and the inner surface of the shaft at the spline portions is preferably not less than ΔHRC 9 in the Rockwell hardness. The lower limit ΔHRC of the hardness difference was found from the results of the below-described twisting fatigue test.


[0009] The ratio of the hardened depth to the wall thickness of the shaft at the spline portions is preferably not less than 0.3, and the hardness on the inner surface of the shaft at the spline portions is not more than HRC 43 in Rockwell hardness. The lower limit of the hardened depth ratio of 0.3 and the upper limit HRC 43 of the hardness on the inner surface of the shaft were also found from the results of the twisting fatigue test.


[0010] By leaving unhardened layers on the inner surface of the shaft at the spline portions, it is possible to more reliably ensure the toughness of the shaft at the spline portions.


[0011] By smoothly deepening the hardened depth at the spline portions from their tips toward proximal ends, it is possible to increase the strength of the shaft at the proximal ends of the spline portions, where loads from joints are large, and to prevent stress concentration.


[0012] The terminal position where the hardness on the inner surface of the shaft at each of said spline portions is preferably adjacent to a spline shoulder portion provided at the proximal end of each of said spline portions.







BRIEF DESCRIPTION OF THE DRAWINGS

[0013] Other features and objects of the present invention will become apparent from the following description made with reference to the accompanying drawings, in which:


[0014]
FIG. 1 is a cutaway vertical sectional view showing an embodiment of the power transmission shaft;


[0015]
FIG. 2 is an enlarged cutaway vertical sectional view showing a portion near a spline portion of FIG. 1;


[0016]
FIG. 3 is a cutaway vertical sectional view showing a modified embodiment;


[0017]
FIG. 4 is a graph showing the relation between the hardened depth ratio γ and the number N of repeated twistings in a fatigue test; and


[0018]
FIG. 5 is a graph showing the relation between the inner surface hardness HRC and the number N of repeated twistings in a fatigue test.







DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

[0019] With reference to FIGS. 1-5, the embodiment of this invention will be described. This power transmission shaft is for a power transmission mechanism for a vehicle. As shown in FIG. 1, it includes an integral, hollow type shaft 1 which is hollow over the entire length, and spline portions 2 as joint connecting portions to be connected to constant-velocity universal joints (not shown) on both sides. At the tip of each spline portion 2, a snap ring groove 3 for fixing the inner ring of a constant-velocity universal joint is provided, and at the proximal end thereof, a spline shoulder portion 4 is provided. The shaft 1 is formed of a structural carbon steel pipe (STKM) and is subjected to induction hardening from its outer periphery to form a hardened layer 5 over the entire length thereof except the tip portions of the spline portions 2.


[0020] As shown in FIG. 2, near the spline portions 2, the hardened layer 5 smoothly deepens from the tip 2a of the spline portion 2 toward the proximal end 2b, curving in the shape of the letter S, so as to reach the inner surface of the shaft 1 near each spline shoulder portion 4. Thus, at each spline portion 2, an unhardened layer remains on the inner surface of the shaft 1.


[0021]
FIG. 3 shows a modified example of the hardened layer 5 near the spline portions 2. In the modified example, the hardened layer 5 deepens linearly from the tip 2a of the spline portion 2 and reaches the inner surface of the shaft 1 at a point near the spline shoulder portion 4.


[0022] Below, Examples and Comparative Examples are cited.



EXAMPLES

[0023] As examples, power transmission shafts which are the shaft 1 of the embodiment shown in FIG. 1 having different ratios γ of the hardening depth of the hardened layer 5 to the wall thickness of the shaft 1 were prepared (Examples 1-11). The hardening depth ratio γ was defined by the hardening depth value at the proximal end 2b of the spline portion 2 shown in FIG. 2. As Comparative Examples, similar power transmission shafts in which except the portion nearer to the tip than is the snap ring groove 3, a hardened layer was formed over the entire wall thickness of the shaft 1 were prepared (Comparative Examples 1-2).


[0024] For the power transmission shafts of Examples and Comparative Examples, with the spline portion 2 on one side inserted into the inner ring of a constant-velocity universal joint, a one-direction twisting fatigue test was conducted to examine the number N of repeated twistings until fatigue cracks appear. The number N of repeated twistings in the fatigue test was stopped at 2.0×106.
1TABLE 1Number ofHardeningInner surfaceHardnessrepeateddepth ratiohardnessdifferencetwistingsshaftγHRCΔHRCNExample 10.302626  8.0 × 105Example 20.442032  9.5 × 105Example 30.542131  1.1 × 106Example 40.602329  >2 × 106Example 50.602428  1.2 × 106Example 60.622824  >2 × 106Example 70.713022  >2 × 106Example 80.723121  >2 × 106Example 90.853418  >2 × 106Example 100.963715  >2 × 106Example 111.00439  >2 × 106Comp. Example 11.00533  4.3 × 105Comp. Example 21.00533  5.4 × 105


[0025] The results of the fatigue test are shown in Table 1 and FIGS. 4 and 5. In Table 1, besides the hardening depth ratio γ, the inner surface hardness HRC of the shaft 1 at the proximal end 2b of the spline portion 2 where the hardening depth ratio γ was defined, and the difference in hardness ΔHRC between the inner surface and the outer surface are also shown. In any of the Examples, the inner surface hardness was not more than HRC 43 and the difference in hardness between the inner and outer surfaces was not less than ΔHRC 9. FIG. 4 is a graph in which the relation between the hardening depth ratio γ and the number of repeated twistings N is plotted based on the results of Table 1. FIG. 5 is a graph in which the relation between the inner surface hardness HRC and the number N of repeated twistings is plotted.


[0026] From these results, it is apparent that while for Comparative Examples, in which a hardened layer was formed over the entire wall thickness, the outer surface hardness was HRC56, the inner surface hardness was HRC53, and the number N of repeated twistings was 5.0×105, for Examples, in which the inner surface hardness was lower than the outer surface hardness, the number N of repeated twistings was not less than 8.0×105, SO that the fatigue strength improved markedly.


[0027] In the Embodiments, while the joint connecting portions on both sides were spline portions, the power transmission shaft according to the present invention is applicable to one in which the joint connecting portion on one side only is a spline portion.


[0028] As described above, in the power transmission shaft of this invention, as means for strengthening an integral, hollow shaft, induction hardening from the outer periphery is employed so that the hardness on the inner surface of the shaft at the spline portions is lower than the hardness on the shaft inner surface at other portions, thereby increasing the toughness and compressive residual stress of the shaft at the spline portions, which tend to be starting points of fatigue cracks, and improving the balance between the static strength and the fatigue strength. Thus, it is suitable for e.g. a driving force transmission mechanism of an automobile for which lightweight is required.


Claims
  • 1. A power transmission shaft which has joint connecting portions integrally provided at both ends, and is hollow over the entire length thereof, at least one of said joint connecting portions being a spline portion to be inserted into a joint, wherein said shaft is subjected to induction hardening from the outer periphery thereof so that at the spline portions, the hardness on the inner surface of the shaft is lower than at other portions.
  • 2. A power transmission shaft as claimed in claim 1 wherein the difference in hardness between the outer surface and the inner surface of the shaft at said spline portions is not less than ΔHRC 9 in the Rockwell hardness.
  • 3. A power transmission shaft as claimed in claim 1 wherein the ratio of the hardened depth to the wall thickness of the shaft at said spline portions is not less than 0.3, and the hardness on the inner surface of the shaft at the spline portions is not more than HRC 43 in Rockwell hardness.
  • 4. A power transmission shaft as claimed in claim 1 wherein at said spline portions, unhardened layers remain on the inner surface of the shaft.
  • 5. A power transmission shaft as claimed in claim 1 wherein the hardened depth at said spline portions is such that it smoothly deepens from tip end of said each spline portion toward its proximal end.
  • 6. A power transmission shaft as claimed in claim 1 wherein the terminal position where the hardness on the inner surface of the shaft at each of said spline portions is adjacent to a spline shoulder portion provided at the proximal end of each of said spline portions.
  • 7. A power transmission shaft as claimed in claim 2 wherein the ratio of the hardened depth to the wall thickness of the shaft at said spline portions is not less than 0.3, and the hardness on the inner surface of the shaft at the spline portions is not more than HRC 43 in Rockwell hardness.
  • 8. A power transmission shaft which has joint connecting portions integrally provided at both ends, and is hollow over the entire length thereof, at least one of said joint connecting portions being a spline portion to be inserted into a joint, wherein said shaft is subjected to induction hardening from the outer periphery thereof so that at the spline portions, the hardness on the inner surface of the shaft is lower than at other portions, wherein the difference in hardness between the outer surface and the inner surface of the shaft at said spline portions is not less than ΔHRC 9 in the Rockwell hardness, wherein the ratio of the hardened depth to the wall thickness of the shaft at said spline portions is not less than 0.3, and the hardness on the inner surface of the shaft at the spline portions is not more than HRC 43 in Rockwell hardness, wherein at said spline portions, unhardened layers remain on the inner surface of the shaft, wherein the hardened depth at said spline portions is such that it smoothly deepens from tip end of said each spline portion toward its proximal end, and wherein the terminal position where the hardness on the inner surface of the shaft at each of said spline portions is adjacent to a spline shoulder portion provided at the proximal end of each of said spline portions.
Priority Claims (1)
Number Date Country Kind
2003-140566 May 2003 JP