The present general inventive concept relates to an equipment crane system for a farm vehicle, and, more particularly, to a pivotable power winch equipment crane which may be affixed to a vehicle roll bar to aid in the coupling and decoupling of heavy equipment to the vehicle.
Farm vehicles such as tractors are used for a variety of heavy work applications. A host of different work apparatuses may be attached to, and powered by, the tractor. For example, a tractor may be provided with a backhoe attachment, a rototiller, a plow, a hay baler, or any number of other such devices/systems. However, being designed for heavy duty, most of all of these attachments are themselves very heavy, and being able to lift them into place for all the necessary couplings to the tractor can be very difficult, especially for a lone user. For example, some large tillers need to be lifted into position for hookup to a 3-point hitch. Additionally, a complicated series of maneuvers is often required, for which a relatively long time in which the implements must be lifted. Attempting such a procedure by hand creates a situation in which the user could be seriously injured. Some approaches to this problem involve attaching a hoist to a beam of a structure such as a barn to mechanically lift the implements into place, or installing a quick hitch to the back of the tractor. However, these approaches are problematic. Arranging and relying on a barn hoist is both complicated and limiting as far as having to position the implements to be attached to the tractor, leading to some of the same problems for a single user. The use of quick hitches changes the arrangement of the implement arms, and can be cumbersome, obtrusive, and lacking in aesthetics. Therefore, an easier and more convenient way to maneuver heavy equipment into place for connection to the tractor would be desirable.
According to various example embodiments of the present general inventive concept, a power winch support is provided that is selectively positionable between a stored position and a position to allow a piece of equipment to be lifted by the power winch to a desirable position to be hooked to the tractor.
Additional aspects and advantages of the present general inventive concept will be set forth in part in the description which follows, and, in part, will be obvious from the description, or may be learned by practice of the present general inventive concept.
The foregoing and/or other aspects and advantages of the present general inventive concept may be achieved by providing a power winch equipment crane system to be used with a tractor roll bar, the system including a winch support bar configured to be generally U-shaped having two side portions and a middle portion connecting the two side portions, a power winch attached to the winch support bar proximate a midpoint of the middle portion of the winch support bar, and hinge members provided respectively proximate each end of the winch support bar and configured to couple the winch support bar to the tractor roll bar in a pivoting arrangement, the hinge members configured such that the winch support bar is pivotable between a substantially vertical position when not in use, and a substantially horizontal position in which the power winch is positioned at a point spaced back from the tractor so as to be located over an implement that is attachable to the tractor.
The foregoing and/or other aspects and advantages of the present general inventive concept may also be achieved by providing a power winch equipment crane system to be used with a tractor roll bar, the system including a winch support bar configured to be generally U-shaped having two side portions and a middle portion connecting the two side portions, a power winch attached to the winch support bar proximate a midpoint of the middle portion of the winch support bar, hinge members provided respectively at each end of the winch support bar and configured to secure the winch support bar to a bracket on the tractor roll bar, the hinge members configured to form a pivoting connection to the winch support bar such that the winch support bar is pivotable between a substantially vertical position when not in use, and a substantially horizontal position in which the power winch is positioned at a point spaced back from the tractor, stop members extending from each end of the winch support bar and configured to contact the tractor roll bar when in the substantially horizontal position to brace the winch support bar against the tractor roll bar, and at least one movable securing member attached to the winch support bar and configured to be selectively positioned so as to contact the tractor roll bar to hold the winch support bar in the substantially vertical position.
Other features and aspects may be apparent from the following detailed description, the drawings, and the claims.
The following example embodiments are representative of example techniques and structures designed to carry out the objects of the present general inventive concept, but the present general inventive concept is not limited to these example embodiments. In the accompanying drawings and illustrations, the sizes and relative sizes, shapes, and qualities of lines, entities, and regions may be exaggerated for clarity. A wide variety of additional embodiments will be more readily understood and appreciated through the following detailed description of the example embodiments, with reference to the accompanying drawings in which:
Reference will now be made to the example embodiments of the present general inventive concept, examples of which are illustrated in the accompanying drawings and illustrations. The example embodiments are described herein in order to explain the present general inventive concept by referring to the figures.
The following detailed description is provided to assist the reader in gaining a comprehensive understanding of the structures and fabrication techniques described herein. Accordingly, various changes, modification, and equivalents of the structures and fabrication techniques described herein will be suggested to those of ordinary skill in the art. The progression of fabrication operations described are merely examples, however, and the sequence type of operations is not limited to that set forth herein and may be changed as is known in the art, with the exception of operations necessarily occurring in a certain order. Also, description of well-known functions and constructions may be simplified and/or omitted for increased clarity and conciseness.
Note that spatially relative terms, such as “up,” “down,” “right,” “left,” “beneath,” “below,” “lower,” “above,” “upper” and the like, may be used herein for ease of description to describe one element or feature's relationship to another element(s) or feature(s) as illustrated in the figures. Spatially relative terms are intended to encompass different orientations of the device in use or operation in addition to the orientation depicted in the figures. For example, if the device in the figures is turned over or rotated, elements described as “below” or “beneath” other elements or features would then be oriented “above” the other elements or features. Thus, the exemplary term “below” can encompass both an orientation of above and below. The device may be otherwise oriented (rotated 90 degrees or at other orientations) and the spatially relative descriptors used herein interpreted accordingly.
Various example embodiments of the present general inventive concept provide a power winch support system, or power winch equipment crane system, which allows a user to lower a power winch down over a tractor implement and lift the implement for easier and more convenient attachment to the tractor. Thus, the power winch is positionable at a point extending back and away from the tractor so as to be placed over the implement for a lifting and lowering operation. The system then allows the user to move the power winch back to a stowed position that is not obtrusive to the operation of the tractor. Many modern tractors are provided with a roll over protection system (ROPS), which may be referred to herein as a tractor roll bar, or simply a roll bar. In various example embodiments of the present general inventive concept, the power winch may be attached to a support bar that is similar in shape to the tractor roll bar, and which can be connected to the tractor roll bar and rotated to a vertical position that is aesthetically pleasing, as well as out of the way of other equipment operations, when the power winch is not in use. Such systems may be formed integrally with the tractor roll bar, or may be retro-fitted onto existing roll bars. When the user desires to use the power winch, the support bar can simply be moved down to position the power winch over the implement to be lifted, allowing the implement to be hooked up to the tractor connections easily and conveniently by one person. Although the term “tractor” is used in most of the descriptions herein, it is understood that various embodiments of the present general inventive concept may be used with other vehicles as well. It is also noted that the term “implement” is used to generally refer to a number of systems/attachments that may be connected to and utilized by a tractor, such as, for example, a backhoe attachment, a rototiller, a plow, a hay baler, and so on. These implements typically have various pin and linkage connections to be connected to the tractor for proper operation, and by utilizing the power winch system of the present general inventive concept these connections may be conveniently made by a single user. Thus, according to various example embodiments of the present general inventive concept, a power winch support is provided that is selectively positionable between a stored or stowed position and a position to allow a piece of equipment, generally referred to herein as an implement, to be lifted by a power winch, which is installed on the power winch support, to a desirable position to be hooked to the tractor.
With various implements that may be of a larger size and/or weight, there may be situations in which a user could more conveniently lift the implement from a suspension point that is further back from the tractor than the placement of the power winch 22 on the winch support bar 26. There may also be an added convenience when the suspension point is also at least slightly higher than the placement of the power winch 22. With such situations in mind,
Various example embodiments of the power winch support system may include a variety of hooks and other attachments to be used with system 10.
The sliding balance hook 110 serves as the lifting point of the power winch equipment crane system when installed on the winch cable. The sliding balance hook 110 moves along the winch cable to raise the position of any implement being installed to the three point hitch. It provides the stabilization in both the height off of the ground and the horizontal movement needed to align the implement perpendicular to the tractor. The sliding balance hook 110 provides the ability to balance a load's weight along the balance hook 110 connection and stabilize any load it lifts as desired. The selection of which hook an installer uses is up to the person using the crane. The four support hooks 126 provide connection points for chains used with the system to lift implements. The chains are connected to the implement or load being lifted by the system. There are two brakes (one on each pulley), referred to as the tightening screws 122 above, to keep the load being lifted in a stationary position. The balance hook 110 uses the power winch's cable that is anchored to one of the anchoring points 75,76,77 provided at various points of the system. In some example embodiments there is also one or two anchoring points located on the winch roller guides. As the cable is lengthened or tightened it raises or lowers the balance hook 110. The winch cable is routed through the center of the balance hook 110, engaging the bottom of the two pulleys 118. The cable route is between the two sliding support hooks 130 in the center of the device. This route allows the free movement of the two sliding support hooks 130 along the horizontal slots 138. The thumb screw 134 is tightened in the slot 138 when the load is balanced. This action secures the load distribution along the cable when lifting an unbalanced load.
In various example embodiments of the present general inventive concept, the winch support system described herein may be formed integrally with the roll bar rather than retro-fitted onto an existing roll bar. The winch support system can also be conveniently detached from the roll bar when desired. In other various example embodiments, the winch support may be formed to act as the roll bar when in the vertical position, with the upper portion of the “roll bar” able to be rotated back to the horizontal position with the power winch installed thereon. In other various example embodiments, the power winch may be attached to the roll bar, and the pivotable support bar may include an alignment portion to support and align the cable coming from the power winch so that the cable extends down vertically over the implement from the alignment portion of the support bar, given a roll bar with the structural capability to support such an arrangement.
Embodiments of the present general inventive concept allow a single user to change out heavy equipment attached and detached form a tractor or other type vehicle with ease and convenience. Embodiments of the present general inventive concept also provide a host of other advantages. For example, as the whole system is separate from the tractor, there need to be no permanent connections, such as welding, to the tractor. This allows the winch support bar or crane to be easily attached and removed without damage to the tractor. In various example embodiments, the entire system may be attached to the roll bar by two number two—16 metric bolts hold the crane to the roll bar, and quick disconnect plugs can be used in the power leads to the winch. In various example embodiments no clamps are required to allow the crane to be raised and lowered from the roll bar. The power winch may be removed from the winch support bar and installed on a lower portion of the tractor, and various example embodiments may employ a tie bar with a mounting plate attached to the tow bar for the power winch. Off the shelf power winches may be used with the system. In various example embodiments, the power winch may be a 2,500 pound capacity power winch may be connected to the tractor's battery supply with size 10 wiring through a 50-amp breaker. Other various example embodiments may include differently rated and sized components, such as, for example, a 3,500 pound capacity power winch connected to the tractor's battery supply with size 6 wiring, and so on.
Various example embodiments of the present general inventive concept may provide a power winch equipment crane system to be used with a tractor roll bar, the system including a winch support bar configured to be generally U-shaped having two side portions and a middle portion connecting the two side portions, a power winch attached to the winch support bar proximate a midpoint of the middle portion of the winch support bar, and hinge members provided respectively proximate each end of the winch support bar and configured to couple the winch support bar to the tractor roll bar in a pivoting arrangement, the hinge members configured such that the winch support bar is pivotable between a substantially vertical position when not in use, and a substantially horizontal position in which the power winch is positioned at a point spaced back from the tractor so as to be located over an implement that is attachable to the tractor. The winch support bar may be shaped to correspond to at least a portion of the tractor roll bar. The system may further include stop members extending from the ends of the winch support bar and configured to contact the tractor roll bar to limit downward rotation of the winch support bar when in the substantially horizontal position. The system may further include at least one securing member attached to the winch support bar and configured to be selectively positioned so as to contact the tractor roll bar when the winch support bar is in the substantially vertical position to secure the winch support bar to prevent rotation. The at least one securing member may include a hook portion configured to contact a surface of the tractor roll bar facing away from the winch support bar when the at least one securing member is positioned to secure the winch support bar. The at least one securing member may further include a sleeve portion configured to wrap around the winch support bar and to be reciprocally slidable along a length of the winch support bar, the hook portion being attached to the sleeve portion. The sleeve portion may be configured to be reciprocally slidable to and from a first position that allows the winch support bar to be moved to and away from the substantially vertical position without the hook portion contacting the tractor roll bar, and a second position that allows the hook portion to contact the surface of the tractor roll bar facing away from the winch support bar when in the substantially vertical position. The sleeve portion may be configured to be reciprocally slidable along a first one of the side portions of the winch support bar. Movement of the sleeve portion in a direction toward the middle portion of the winch support bar may be limited by a bend between the middle portion and the first one of the side portions of the winch support bar. The system may further include coupling members configured to be attached to the tractor roll bar so as to extend back therefrom, and to connect to the hinge members of the winch support bar proximate the respective ends thereof to form the pivoting arrangement. The coupling members may be brackets configured to be welded to the tractor roll bar. The system may further include a crane boom configured to be selectively attached to, and detached from, the winch support bar, the crane boom including a crossmember mount configured to be attached at each end to the respective side portions of the winch support bar so as to sit thereon when the winch support bar is in the substantially horizontal position, a boom arm extending away from proximate a midpoint of the crossmember mount such that a distal end of the boom arm is positioned at a point farther away from the tractor roll bar than the power winch, and a pulley attached proximate the distal end of the boom arm and configured to support a cable of the power winch. The crane boom may further include a mounting bracket proximate each end of the crossmember mount, the mounting brackets being configured to extend below the winch support bar, and to receive a securing bolt below the winch support bar, to secure the crossmember mount to the winch support bar. The boom arm may include a boom arm base portion connected to the crossmember mount, and a boom arm telescoping portion extending from a distal end of the boom arm base portion and configured to slide in an axial direction relative to the boom arm portion such that the boom arm has an adjustable length. A portion of the boom arm telescoping portion may be configured to slide in and out of the distal end of the boom arm base portion to adjust the length of the boom arm, a proximal end of the boom arm telescoping portion being provided with a plurality of apertures formed along its length and configured to receive a position fixing pin passing through the boom arm base portion. The crane boom may further include a riser portion provided at a bottom of the boom arm and configured to contact the middle portion of the winch support bar so as to raise the boom arm to a position in which the pulley is positioned at a point higher than the power winch. The crane boom may further include a wire guide provided at the distal end of the boom arm to guard against the cable slipping off of the pulley, the wire guide being selectively positionable between a guard position proximate the pulley, and an away position extended away from the pulley. The crane boom may further include an anchor point formed on the crossmember mount and configured to receive a hook on an end of the winch cable. The system may further include a sliding balance hook configured to be supported on the winch cable when the winch cable from the power winch extends from the pulley back to the crossmember mount, the sliding balance hook including an elongate body, a balance hook pulley provided at each end of the elongate body, and a plurality of support hooks provided at points proximate a bottom of the elongate body and configured to support various points of the implement that is attachable to a tractor.
Various example embodiments of the present general inventive concept may provide a power winch equipment crane system to be used with a tractor roll bar, the system including a winch support bar configured to be generally U-shaped having two side portions and a middle portion connecting the two side portions, a power winch attached to the winch support bar proximate a midpoint of the middle portion of the winch support bar, hinge members provided respectively at each end of the winch support bar and configured to secure the winch support bar to a bracket on the tractor roll bar, the hinge members configured to form a pivoting connection to the winch support bar such that the winch support bar is pivotable between a substantially vertical position when not in use, and a substantially horizontal position in which the power winch is positioned at a point spaced back from the tractor, stop members extending from each end of the winch support bar and configured to contact the tractor roll bar when in the substantially horizontal position to brace the winch support bar against the tractor roll bar, and at least one movable securing member attached to the winch support bar and configured to be selectively positioned so as to contact the tractor roll bar to hold the winch support bar in the substantially vertical position.
Numerous variations, modifications, and additional embodiments are possible, and accordingly, all such variations, modifications, and embodiments are to be regarded as being within the spirit and scope of the present general inventive concept. For example, regardless of the content of any portion of this application, unless clearly specified to the contrary, there is no requirement for the inclusion in any claim herein or of any application claiming priority hereto of any particular described or illustrated activity or element, any particular sequence of such activities, or any particular interrelationship of such elements. Moreover, any activity can be repeated, any activity can be performed by multiple entities, and/or any element can be duplicated.
It is noted that the simplified diagrams and drawings included in the present application do not illustrate all the various connections and assemblies of the various components, however, those skilled in the art will understand how to implement such connections and assemblies, based on the illustrated components, figures, and descriptions provided herein, using sound engineering judgment. Numerous variations, modification, and additional embodiments are possible, and, accordingly, all such variations, modifications, and embodiments are to be regarded as being within the spirit and scope of the present general inventive concept.
While the present general inventive concept has been illustrated by description of several example embodiments, and while the illustrative embodiments have been described in detail, it is not the intention of the applicant to restrict or in any way limit the scope of the general inventive concept to such descriptions and illustrations. Instead, the descriptions, drawings, and claims herein are to be regarded as illustrative in nature, and not as restrictive, and additional embodiments will readily appear to those skilled in the art upon reading the above description and drawings. Additional modifications will readily appear to those skilled in the art. Accordingly, departures may be made from such details without departing from the spirit or scope of applicant's general inventive concept.
This application claims the benefit of U.S. Provisional Patent Application Ser. No. 62/932,162, filed on Nov. 7, 2019, which is incorporated herein in its entirety by reference.
Number | Name | Date | Kind |
---|---|---|---|
122973 | Spragg et al. | Jan 1872 | A |
1901566 | Presbrey | Mar 1933 | A |
2259553 | Clapper | Oct 1941 | A |
2298199 | Court et al. | Oct 1942 | A |
2336965 | Shoemaker | Dec 1943 | A |
2366115 | Kuch et al. | Dec 1944 | A |
2381731 | Erdahl | Aug 1945 | A |
2519974 | Mork | Aug 1950 | A |
2713218 | Dyer | Jul 1955 | A |
2746612 | Wirz | May 1956 | A |
2772004 | Noble | Nov 1956 | A |
2787383 | Antos et al. | Apr 1957 | A |
2794382 | Ellson | Jun 1957 | A |
3229830 | Smith | Jan 1966 | A |
3266636 | Dom | Aug 1966 | A |
3390795 | Mannix | Jul 1968 | A |
3473679 | Weichel | Oct 1969 | A |
3570614 | Del Bagno | Mar 1971 | A |
3598347 | Marburger | Aug 1971 | A |
3818551 | Coughran, Jr. | Jun 1974 | A |
3888368 | Hawkins | Jun 1975 | A |
3899089 | Wardlaw | Aug 1975 | A |
3901328 | Stanfield | Aug 1975 | A |
4042116 | Bertolino | Aug 1977 | A |
4067471 | Roatcap | Jan 1978 | A |
4172688 | Cecchi et al. | Oct 1979 | A |
4222186 | Molby | Sep 1980 | A |
4316617 | Flaugh | Feb 1982 | A |
4484760 | Rach | Nov 1984 | A |
4838753 | Gehman et al. | Jun 1989 | A |
4846624 | Hohn | Jul 1989 | A |
4929143 | Dohnalik | May 1990 | A |
5029650 | Smit | Jul 1991 | A |
5169279 | Zimmerman | Dec 1992 | A |
5314289 | O'Leary | May 1994 | A |
5347939 | Hood, Jr. et al. | Sep 1994 | A |
5348172 | Wilson | Sep 1994 | A |
5393194 | Smith | Feb 1995 | A |
5722677 | Lichter et al. | Mar 1998 | A |
5727803 | Johnson | Mar 1998 | A |
6257347 | Campisi | Jul 2001 | B1 |
6349959 | Schlegel et al. | Feb 2002 | B2 |
6481694 | Kozak | Nov 2002 | B2 |
6533042 | Marine, Sr. et al. | Mar 2003 | B1 |
6612549 | Woods, Jr. | Sep 2003 | B1 |
6981834 | Henry | Jan 2006 | B1 |
7100704 | Potter | Sep 2006 | B2 |
7604134 | Lichinchi | Oct 2009 | B2 |
8690514 | Marola | Apr 2014 | B2 |
9434582 | Arthur | Sep 2016 | B2 |
9775276 | Hyder | Oct 2017 | B2 |
9963329 | Guess, Jr. | May 2018 | B1 |
10160395 | Robinson | Dec 2018 | B2 |
10172275 | Totten et al. | Jan 2019 | B2 |
20030039535 | Gourand | Feb 2003 | A1 |
20050023012 | Bowden | Feb 2005 | A1 |
20070166138 | Brooks | Jul 2007 | A1 |
20070221600 | Davis | Sep 2007 | A1 |
20090230071 | Thompson | Sep 2009 | A1 |
20100200822 | Kitchens, Sr. | Aug 2010 | A1 |
20110206488 | Windsor | Aug 2011 | A1 |
20130087521 | Walker | Apr 2013 | A1 |
20160122973 | Lyle et al. | May 2016 | A1 |
20160167933 | Birch | Jun 2016 | A1 |
20160280516 | Rieger | Sep 2016 | A1 |
20170055430 | Steiner | Mar 2017 | A1 |
20200047655 | Urbanick | Feb 2020 | A1 |
20200165110 | Wilson | May 2020 | A1 |
Number | Date | Country |
---|---|---|
571346 | Feb 1959 | CA |
892881 | Feb 1972 | CA |
201087999 | Jul 2008 | CN |
202528985 | Nov 2012 | CN |
2592042 | May 2013 | EP |
642680 | Sep 1950 | GB |
745243 | Feb 1956 | GB |
890630 | Mar 1962 | GB |
1267645 | Mar 1972 | GB |
Number | Date | Country | |
---|---|---|---|
62932162 | Nov 2019 | US |