Powered driven door presenter for vehicle doors

Information

  • Patent Grant
  • 10697224
  • Patent Number
    10,697,224
  • Date Filed
    Monday, August 27, 2018
    6 years ago
  • Date Issued
    Tuesday, June 30, 2020
    4 years ago
Abstract
A vehicle includes a body and a door that is movably mounted to the body. The door has a powered latch and an electrically-powered actuator that extends and retracts a plunger from an inner side of the door. A controller unlatches the powered latch and actuates the electrically-powered actuator such that the plunger contacts the body and pushes the door open. The controller then controls the electrically-powered actuator to retract the plunger while the door is open.
Description
BACKGROUND OF THE INVENTION

Various vehicle door latching and opening mechanisms have been developed. For example, passive entry passive start (PEPS) systems typically include a wireless “fob” that transmits a security code to a vehicle. When a user carrying an authorized fob approaches a vehicle, the user can then insert a hand into an opening adjacent the handle. A sensor detects the user's hand and unlocks the vehicle door. The user then grasps the handle and moves the handle outwardly to unlatch and open the door. In this type of an arrangement, the handle is mechanically connected to a pawl in the door latch mechanism such that movement of the handle mechanically shifts the pawl to a release position to allow a claw or catch of the latch to move and disengage a striker to permit the vehicle door to be opened.


Powered door latch mechanisms have also been developed. Powered door latch mechanisms may include a powered actuator that shifts a pawl to permit movement of the claw to disengage a striker. Thus, in a powered door latch, movement of a door handle is not required because the powered actuator shifts the pawl to a released position to permit the door to be opened. Powered latches may include a lock mechanism or lock state requiring receipt of an authorized code and/or other inputs to unlock the powered latch prior to unlatching the powered latch. Known vehicle doors with powered latches include an exterior handle on the door whereby a user can grasp the handle to manually open the door after the door is unlatched.


SUMMARY OF THE INVENTION

One aspect of the present disclosure is an apparatus including a vehicle door that does not have an exterior handle. The vehicle door includes a first side edge portion that is configured to be pivotably mounted to a vehicle body structure, and a second side edge portion opposite the first side edge portion. The vehicle door handle includes a powered latch mechanism having a first electrically-powered actuator that can be actuated to unlatch the latch mechanism to permit the vehicle door to be opened. The vehicle door also includes an outer side that is free of an exterior door handle. The vehicle door also includes a powered door presenter mechanism that includes a plunger and a second electrically-powered actuator that can be actuated to shift the plunger between retracted and extended positions. The plunger engages the vehicle body and pushes the door to a partially open position to define a gap between the second side edge portion and a vehicle body whereby a user can insert a portion of a hand and pull the door to a fully open position. The apparatus further includes a controller that may be mounted in the door. Alternatively, the controller may be mounted in the main vehicle. The controller is configured to actuate the first electrically-powered actuator to unlatch the latch mechanism. The controller is also configured to actuate the second electrically-powered actuator a first time to shift the plunger from the retracted position to the extended position to partially open the vehicle door. The controller is also configured to actuate the second electrically-powered actuator a second time to shift the plunger from the extended position to the retracted position while the door is open. After the plunger is retracted, the door can be closed without interference from the plunger.


Another aspect of the present disclosure is a vehicle including a body and a door that is movably mounted to the body. The door has a powered latch and an electrically-powered actuator that extends and retracts a plunger from an inner side of the door. The vehicle also includes a controller that unlatches the powered latch and actuates the electrically-powered actuator such that the plunger contacts the body and pushes the door open, followed by actuating the electrically-powered actuator to retract the plunger.


Another aspect of the present disclosure is a method of opening a vehicle door from outside the vehicle without grasping an exterior handle of the vehicle. The method includes causing a powered door latch to unlock and to unlatch. The method further includes causing an electrically-powered actuator on the door to actuate and extend a plunger from an inner side of the door such that the plunger pushes on a body of the vehicle and at least partially opens the door to form a gap between an edge of the door and a body of the vehicle. A user then inserts a portion of a hand into the gap and pulls on the door to move the door further open. The method further includes causing the electrically-powered actuator on the door to actuate and retract the plunger while the door is open.


These and other aspects, objects, and features of the present invention will be understood and appreciated by those skilled in the art upon studying the following specification, claims, and appended drawings.





BRIEF DESCRIPTION OF THE DRAWINGS

In the drawings:



FIG. 1 is a partially fragmentary isometric view of a vehicle door in a closed position;



FIG. 2 is a partially fragmentary isometric view of a vehicle door in a partially opened position;



FIG. 3 is a partially fragmentary view of a powered door presenter mechanism showing a plunger in a retracted position;



FIG. 4 is a partially fragmentary view of a powered door presenter mechanism showing a plunger in an extended position;



FIG. 5 is a partially schematic view of a vehicle door;



FIG. 6 is a partially schematic view of a powered latch mechanism;



FIG. 7 is a schematic view of a control system and powered latch mechanism; and



FIG. 8 is a flow chart showing operation of a powered door latch and powered door presenter.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

For purposes of description herein, the terms “upper,” “lower,” “right,” “left,” “rear,” “front,” “vertical,” “horizontal,” and derivatives thereof shall relate to the disclosure as oriented in FIG. 1. However, it is to be understood that the disclosure may assume various alternative orientations and step sequences, except where expressly specified to the contrary. It is also to be understood that the specific devices and processes illustrated in the attached drawings, and described in the following specification are simply exemplary embodiments of the inventive concepts defined in the appended claims. Hence, specific dimensions and other physical characteristics relating to the embodiments disclosed herein are not to be considered as limiting, unless the claims expressly state otherwise.


With reference to FIG. 1, a motor vehicle 1 includes first (front) and second (rear) doors 10 and 10A, respectively. The vehicle 1 may include additional doors on an opposite side of the vehicle (not shown). One or more of the vehicle doors 10, 10A, etc. may include a powered door presenter mechanism 20. As discussed in more detail below, door 10 may also include a powered latch mechanism 106 having a controller 116. An outside release switch 113 (see also FIG. 5) is operably connected to the controller 116. The exterior unlatch switch 113 may be mounted in various locations as shown by the dashed lines 113A, 113B, and 113C of FIG. 1. The unlatch switch 113 may comprise a conventional movable switch member, a touch sensor, or a capacitive sensor. As discussed in more detail below in connection with FIGS. 5-7, a user actuates the powered latch 106 by actuation of switch 113 to thereby unlatch the powered latch mechanism 106. The powered latch mechanism may be configured to communicate with a wireless device 6. The wireless device 6 may comprise a conventional fob, or the wireless device 6 may comprise a smart phone that is programmed to communicate with the controller 116 of powered latch mechanism 106. The controller 116 may be configured to require receipt of an authorized security code from wireless device 6 prior to unlatching the powered latch 106. Thus, if a user actuates the switch 113, controller 116 does not unlatch powered latch 106 unless an authorized security code has been received from a wireless device 6.


Referring again to FIG. 1, the vehicle door 10 includes a first (front) edge portion 12 that is rotatably mounted to a vehicle body structure 103 (see also FIG. 5) by hinges 104A, 104B, or the like. The door 10 also includes a second (rear) side edge portion 14 that is opposite the first side edge portion 12. As discussed in more detail below, the powered latch mechanism 106 of the vehicle door 10 includes a first electrically-powered actuator such as an electric motor 192 (FIG. 6) that can be actuated to unlatch the latch mechanism 106 to permit the vehicle door 10 to be opened. As shown in FIG. 1, the outer side 16 of the vehicle door 10 is free of an exterior door handle. Also, the outer side 16 of door 10 does not include a pocket or other feature for grasping door 10 when door 10 is in the closed position of FIG. 1.


The vehicle door 10 also includes powered door presenter mechanism 20. As discussed in more detail below in connection with FIGS. 3 and 4, the powered door presenter mechanism 20 includes a plunger 22 and a second electrically-powered actuator such as an electric motor 24 that can be actuated to shift the plunger 22 between a retracted position (FIG. 3) and an extended position (FIG. 4). The vehicle door 10 also includes a controller such as the latch controller 116 that is configured to actuate the first electrically-powered actuator (e.g. electric motor 192) to unlatch the powered latch mechanism 106. The controller 116 is also configured to actuate the second electrically-powered actuator (e.g. electric motor 24) to shift the plunger 22 from the retracted position (FIG. 3) to the extended position (FIG. 4) to at least partially open the vehicle door 10 to form a gap 26 (FIG. 2) between edge 14 of vehicle door 10 and an adjacent surface 28. The adjacent surface 28 may comprise a forward edge of a rear door 10A. Alternatively, the surface 28 may comprise a surface of the vehicle body structure 103. The controller 116 is also configured to shift the plunger from the extended position (FIG. 4) to the retracted position (FIG. 3) when the door 10 is open. Because the plunger 22 is retracted while the door 10 is in an open position, a user can close the door without interference from the plunger 22.


With reference to FIGS. 3 and 4, powered door presenter mechanism 20 includes a housing 32 and a mounting bracket or plate 34. The powered door presenter mechanism 20 is mounted to an inner side 29 of door structure 30 by threaded fasteners 36 that extend through openings 35 in bracket or plate 34. When installed, the powered door presenter mechanism 20 is disposed in an interior space 17 of door 10. Interior space 17 is defined between outer side 16 and inner side 18 of door 10. The electric motor 24 is operably connected to the plunger 22 by a gear drive 38 or other suitable arrangement. In the illustrated example, gear drive 38 includes a rotating gear 38A that engages a rack 38B on plunger 22. However, it will be understood that various gear drive arrangements may be utilized. The plunger 22 reciprocates between a retracted position FIG. 3 and an extended position FIG. 4. Electric motor 24 can be actuated to shift the plunger from the retracted position to the extended position, and the electric motor 24 can also be actuated to shift the plunger 22 from the extended position (FIG. 4) to the retracted position (FIG. 3). The electric motor 24 may be operably connected to a controller 116A-116D and backup power supply 152A-152D of a powered latch 106A-106D (FIG. 7). It will be understood that a solenoid or other suitable powered actuator may be utilized instead of electric motor 24. For example, plunger 22 may be biased to an open or closed position by a spring, and a solenoid may be actuated to overcome the bias and shift plunger 22. Accordingly, it will be understood that controller 16 may provide for powered actuation of plunger 22 in extended and retracted directions by controlling a powered one-way actuator in connection with a spring.


The powered door presenter mechanism 20 also includes one or more sensors 40 that provide a signal to the latch controller 116 concerning the position of plunger 22. The sensors 40 may comprise one or more Hall effect sensors and/or micro switches. The Hall effect sensors provide vehicle-specific electrical current versus travel (Hall count) profiles that are stored in the controller 116. This data may be used by controller 116 to determine (or learn) the full travel position of plunger 22 (FIG. 4).


The vehicle door 10 may also include a door strap detent mechanism 42 (FIG. 5). The door strap mechanism 42 provides one or more detents or checks to thereby retain the door 10 at one or more specific, predefined partially opened positions and/or a fully open position. In general, the door 10 tends to remain stationary at a check or detent position. However, if a user applies sufficient force to door 10, the door 10 can be moved in opened or closed directions away from the detent. The detent mechanism 42 may have a check or detent position that corresponds to the fully extended position of plunger 22 (FIG. 4). Thus, the detent mechanism 42 tends to retain door 10 in a first check position corresponding to the position shown in FIG. 4. Various types of door strap (detent) mechanisms are generally known in the art, such that a detailed description of detent mechanism 42 is not believed to be required.


As discussed in more detail below, after the electric motor 24 is initially actuated to partially open door 10 by shifting plunger 22 from the retracted position (FIG. 3) to the extended position (FIG. 4), the electric motor 24 is then actuated to retract plunger 22 back to the retracted position (FIG. 3). The check or detent provided by mechanism 42 tends to retain the door 10 in the first check position of (FIG. 4) even after the plunger is retracted (FIG. 3). An angular position sensor 44 (FIG. 5) may be operably connected to latch controller 116. The sensor 44 provides a signal indicating the angular position of door 10 relative to the vehicle body structure 103. Controller 116 may be configured to retract plunger 22 only if door 10 has been rotated open to or past the first check position of FIG. 4. This ensures that the plunger 22 is not retracted until after a user has opened the door 10 to or beyond the first check position of FIG. 4 to prevent pinching of the user's hand. It will be understood that the sensor 44 is optional, and latch controller 116 may be configured to retract plunger 22 immediately after extending plunger 22. Alternatively, controller 116 may be configured to retract plunger 22 after a predefined period of time (e.g. 3 seconds) after plunger 22 is initially shifted to the extended position of FIG. 4.


Latch controller 116 may utilize data from sensors 40 to determine if an object has been encountered. For example, if the controller 116 initially actuates the electric motor 24, and the plunger 22 begins to extend from the retracted position of FIG. 3, but the door encounters an object preventing movement of plunger 22 to the fully extended position (FIG. 4), controller 116 may be configured to retract plunger 22 even if the plunger 22 is not able to reach the fully extended position of FIG. 4. Latch controller 116 may be configured to utilize pulse width modulation (PWM) control to provide variable power to electric motor 24 to thereby control the force generated by electric motor 24 and/or the speed at which plunger 22 is extended and/or retracted. Controller 116 may be configured to shift plunger 22 at a predefined, constant target velocity by increasing or decreasing the electric power supply to the electric motor 24 as required to maintain the target velocity. If the door 10 encounters an object requiring increased power to maintain the speed of plunger 22, controller 116 may be configured to retract plunger 22 if the power requirements to maintain the target speed exceed a predefined level. Also, when the door 10 is in a fully closed position, higher force may be required to initiate movement of door 10 due to ice buildup or other physical connection/friction/adhesion between door 10 and door body 103. Controller 116 may provide increased electric power to electric motor 24 during initial movement from the retracted position of FIG. 3 to provide the required increased force to initially move door 10.


Plunger 22 may include an end surface 23 that contacts a surface 21 of vehicle body 103 to push the door 10 from the closed position (FIG. 3) to the first check position (FIG. 4). When the door 10 is in the first check position, a gap “G” is formed between inner side 18 of door 10 and vehicle body 103. The gap G is preferably large enough to allow a user 2 to insert a hand 4 of a user 2 into gap G as shown in FIG. 2. The gap “G” is preferably at least about 20 mm, and is more preferably at least about 50 mm. In general, the gap “G” may be in a range of about 20 mm to about 250 mm. Also, the travel of plunger 22 is approximately equal to the gap G. Because the interior space 17 of door 10 is limited, the length of plunger 22 and corresponding size of the gap G may be limited by space concerns.


As discussed above, the powered door presenter mechanism 20 may include a solenoid or other powered mechanism rather than an electric motor 24. Furthermore, it will be understood that plunger 22 could have other configurations, and the present invention is not limited to the specific linear plunger configuration shown and described above.


With further reference to FIGS. 5-7, door 10 includes a door structure 102 that may be movably mounted to a vehicle structure 103 in a known manner utilizing hinges 104A and 104B The powered latch 106 is operably connected to latch controller 116. The controller 116 may comprise an individual control module that is part of the powered latch 106, and the vehicle 1 may include a powered latch 106 at each of the doors of vehicle 1. Door 10 may also include an interior unlatch input feature such as an interior unlatch switch 112 that is operably connected to the controller 116, and an exterior unlatch switch 113 that is also operably connected to controller 116. Interior unlatch switch 112 is disposed on an interior side of door 10 where it is accessible from inside the vehicle, and exterior unlatch switch 113 is disposed on an exterior side of door 10 and is accessible from the outside of the vehicle 1 when door 10 is closed.


To exit the vehicle 1, a user 2 actuates the interior unlatch switch 112 or exterior unlatch switch 113 to generate an unlatch request to the controller 8. If the latch 106 is unlatched and/or certain predefined operating perimeters or conditions are present, controller 116 generates a signal causing powered latch 106 to unlatch upon actuation of interior unlatch switch 112. Door 10 may also include an unlock input feature such as an unlock switch 114 that is mounted to an inner side of the door 10. The unlock switch 114 is operably connected to the controller 116. Controller 116 may be configured to store a door or latch lock or unlock state that can be changed by actuation of unlock switch 114.


To enter vehicle 1, a user 2 transmits a security code to controller 116 utilizing wireless device 6, then actuates exterior unlatch switch 113. Operation of powered door presenter 20 to enter vehicle 1 is discussed in more detail below in connection with FIG. 8.


Controller 116 may be configured (e.g. programmed) to deny an unlatch request generated by actuation of the interior unlatch switch 112 or exterior unlatch switch 113 if the controller 116 determines that the powered latch 106 is in a locked state. Controller 116 is preferably a programmable controller that can be configured to unlatch powered latch 106 according to predefined operating logic by programming controller 116. However, controller 116 may comprise electrical circuits and components that are configured to provide the desired operating logic. As used herein, the term “controller” may refer to one or more processors, circuits, electronic devices, and other such components and systems that are arranged to provide the desired control.


With further reference to FIG. 6, powered latch 106 may include a movable retaining (latch) member such as claw 180 that pivots about a pivot 182 and a pawl 186 that is rotatably mounted for rotation about a pivot 188. Pawl 186 can move between a disengaged or unlatched position 186A and a latched or engaged configuration or position 186B. In use, when door 10 is open, claw 180 will typically be in an extended position 180A. As the door 10 is closed, surface 190 of claw 180 comes into contact with a striker 184 that is mounted to the vehicle structure. Contact between striker 184 and surface 190 of claw 180 causes the claw 180 to rotate about pivot 182 in the direction of the arrow “R1” until the claw 180 reaches the closed position 180B. When claw 180 is in the closed position 180B, and pawl 186 is in the engaged position 186B, pawl 186 prevents rotation of claw 180 to the open position 180A, thereby preventing opening of door 10. Claw 180 may be biased by a spring or the like (not shown) for rotation in a direction opposite the arrow R1 such that the claw 180 rotates to the open position 180A unless pawl 186 is in the engaged position 186B. Pawl 186 may be biased by a spring or the like (not shown) in the direction of the arrow R2 such that pawl 186 rotates to the engaged position 186B as claw 180 rotates to the closed position 180B as striker 184 engages claw 180 as door 10 is closed. Latch 106 can be unlatched by rotating pawl 186 in a direction opposite the arrow R2 to thereby permit rotation of claw 180 from the closed position 180B to the open position 180A.


A powered actuator such as an electric motor 192 may be operably connected to the pawl 186 to thereby rotate the pawl 186 to the disengaged or unlatched position 186A. Controller 116 can unlatch powered latch 106 to an unlatched configuration or state by causing powered actuator 192 to rotate pawl 186 from the latched or engaged position 186B to the unlatched configuration or position 186A. However, it will be understood that various types of powered latches may be utilized, and the powered latch 106 need not include the claw 180 and powered pawl 186 as shown in FIG. 6. For example, powered actuator 192 could be operably interconnected with the claw 180 utilizing a mechanical device other than pawl 186 to thereby shift the powered latch 106 between latched and unlatched states. In general, vehicle door 10 can be pulled open if powered latch 106 is in an unlatched state, but the powered latch 106 retains the vehicle door 10 in a closed position when the powered latch 106 is in a latched state or configuration.


With further reference to FIG. 7, a latch system 125 may include a driver's side front powered latch 106A, a passenger side front powered latch 106B, a driver's side rear powered latch 106C and a rear passenger side powered latch 106D. The powered latches 106A-106D are configured to selectively retain the corresponding driver and passenger front and rear doors of vehicle 1 in a closed position. Each of the powered latches 106A-106D may include a controller 116A-116D, respectively, that is connected to a medium speed data network 118 including network lines 118A-118D. Controllers 116A-116D are preferably programmable controllers, but may comprise electrical circuits that are configured to provide the desired operating logic. The data network 118 may comprise a Medium Speed Controller Area Network (“MS-CAN”) that operates according to known industry standards. Data network 118 provides data communication between the controllers 116A-116D and a digital logic controller (“DLC”) gateway 120. The DLC gateway 120 is operably connected to a first data network 122, and a second data network 124. First data network 122 may comprise a first High Speed Controller Area Network (“HS1-CAN”), and the second data network 124 may comprise a second High Speed Controller Area Network (“HS2-CAN”). The data networks 122 and 124 may operate according to known industry standards. The first data network 122 is connected to an Instrument Panel Cluster (“IPC”) 126, a Restraints Control Module (“RCM”) 128, and a Powertrain Control Module (“PCM”) 130. The RCM 128 utilizes data from acceleration sensors to determine if a crash event has occurred. The RCM 128 may be configured to deploy passenger restraints and/or turn off a vehicle's fuel supply in the vent a crash is detected. RCM 128 may be configured to generate an Emergency Notification System (“ENS”) signal if a crash occurs. The ENS signal may be transmitted over one or both of the data networks 122 and 124 (preferably both). The RCM is also preferably connected (“hard wired’) directly to each powered latch 106A-106D by wires (not shown) such that powered latches 106A-106D receive an ENS signal even if data networks 122 and 124 are not operational. The first high speed data network 122 may also be connected to a display screen 132 that may be positioned in a vehicle interior to provide visual displays to vehicle occupants. The second high speed data network 124 is operably connected to antilock brakes (“ABS”) module 134 that includes sensors that measure a speed of the vehicle.


System 125 also includes a Body Control module (“BCM”) 140 that is connected to the first high speed data network 122. The body control module 140 is also operably connected to the powered latches 106A-106D by data lines 136A-136D. Controllers 116A-116D may also be directly connected (“hardwired”) to control module 140 by electrical conductors such as wires 156A-156D, respectively. Wires 156A-156D may provide a redundant data connection between controllers 116A-116D and controller 140, or the wires 156A-156D may comprise the only data connection between controllers 116A-116D and controller 140. Control module 140 may also be operably interconnected to sensors (not shown) that signal the control module 140 if the vehicle doors are ajar. Control module 140 is also connected to a main vehicle electrical power supply such as a battery 148. Each of the powered latches 106A-106D may be connected to main vehicle power supply 148 by connector's 150A-150D. The powered latches 106A-106D may also include back up power supplies 152 that can be utilized to actuate the powered actuator 192 in the event the power supply from main vehicle power supply (“VPWR”) 148 is interrupted or lost. The backup power supplies 152A-152D may comprise capacitors, batteries, or other electrical energy storage devices. In general, the backup power supplies 152A-152D store enough electrical energy to provide for temporary operation of controllers 116A-116D, and to actuate the powered actuators 192 a plurality of times to permit unlatching of the vehicle doors in the event the main power supply/battery 148 fails or is disconnected.


Each of the powered latches 106A-106D is also operably connected to a two pole (for example, both poles normally opened or one pole normally opened and one pole normally closed) interior unlatch switch 112A-112D, respectively, that provide user inputs (unlatch requests). The powered latches 106A-106D are also operably connected to an exterior unlatch switches 154A-154D, respectively. Controllers 116A-116D are also operably connected to unlock switches 114 (FIG. 4). Controllers 116A-116D may be configured to store the Lock Status (“Locked” or “Unlocked”) and to utilize the Lock Status for control of powered latches 106A-106D.


With further reference to FIG. 8, latch controller 116 (or main vehicle controller 140) may be configured to operate according to a process 48 to permit vehicle entry. After start 50, controller 116 determines if an unlock request (e.g. a wireless security code form wireless device 6) has been received at step 52. If no unlock request has been received, controller 116 does nothing as shown at step 54. If an unlock request is received at step 52, controller 116 unlocks the powered latch 56 as shown at step 56. It will be understood that controller 116 may have stored “lock” and “unlock” states, such that the unlock step 56 may comprise changing an electrical (memory) state or “flag” in controller 116. Also, it will be understood that the latch controller 116 may be configured to require receipt of specific authorization/identification (e.g. a unique security code transmitted wirelessly by wireless device 6) prior to unlocking the powered latch 106.


If an unlatch request is received at 58, the process continues to step 62 and the powered latch 106 is unlatched (e.g. electric motor 192 (FIG. 6) is actuated)). If an unlatch request is not received at step 58, the controller 58 does not take further action. Following step 62, at step 64 the controller 116 actuates the powered door presenter mechanism by actuating electric motor 24, and the controller 116 monitors the electrical current and position of plunger 22. The process then continues to step 66, and controller 116 adjusts the pulse with modulation (PWM) as required. Controller 116 may be configured to maintain plunger 22 at a target speed, if possible. However, it will be understood that controller 116 may be configured to control plunger 22 utilizing PWM (or other suitable means) according to other predefined criteria.


As shown at step 68, if the plunger stops before reaching the fully extended position, the controller 116 retracts the plunger as shown at step 70. If the plunger 22 reaches the fully extended position (step 72), controller 116 then retracts plunger 22.


It is to be understood that variations and modifications can be made on the aforementioned structure without departing from the concepts of the present invention, and further it is to be understood that such concepts are intended to be covered by the following claims unless these claims by their language expressly state otherwise.

Claims
  • 1. A vehicle comprising: a body;a handleless door movably mounted to the body and having a powered latch and an electrically-powered actuator that extends and retracts a plunger transversely from an inner side of the door;a controller that is configured to: 1) unlatch the powered latch, 2) actuate the electrically-powered actuator whereby the plunger contacts the body and pushes the door open, followed by 3) actuating the electrically-powered actuator to retract the plunger.
  • 2. The vehicle of claim 1, wherein: the door includes a forward edge and rearward edge that is opposite the forward edge;the door is rotatably mounted to the body by a hinge adjacent the forward edge; andthe electrically powered actuator and the plunger are located directly adjacent the rearward edge of the door.
  • 3. The vehicle of claim 1, wherein: the door includes an outer side edge that is spaced apart from the body about 20 mm-250 mm when the plunger is extended to define a gap whereby a user can insert a portion of a hand into the gap to pull the door open.
  • 4. The vehicle of claim 1, wherein: the controller is configured to actuate the electrically-powered actuator to provide increased force if necessary to move the door.
  • 5. The vehicle of claim 4, wherein: the plunger is movable between a retracted position and a fully extended position; andthe controller is configured to actuate the electrically-powered actuator and retract the plunger before the plunger reaches the fully extended position if a load on the plunger exceeds a predefined maximum.
  • 6. The vehicle of claim 1, wherein: the plunger must be extended to at least partially open the door to enable a user to grasp the rearward edge of the door.
  • 7. A method of opening a door of a vehicle, the method comprising: providing a vehicle including a body, a handleless door movably mounted to the body and having a powered latch and an electrically-powered actuator that extends and retracts a plunger transversely from an inner side of the door, and a controller that is configured to: 1) unlatch the powered latch, 2) actuate the electrically-powered actuator whereby the plunger contacts the body and pushes the door open, followed by 3) actuating the electrically-powered actuator to retract the plunger;causing the powered door latch to unlatch;causing the electrically-powered actuator to actuate and extend the plunger transversely from an inner side of the door such that the plunger pushes on the body of the vehicle and partially opens the door to form a gap between an edge of the door and the body of the vehicle;inserting a portion of a hand into the gap and pulling on the door to move the door further open;causing the electrically-powered actuator on the door to actuate and retract the plunger while the door is open.
  • 8. The method of claim 7, including: unlocking the powered door latch.
  • 9. The method of claim 7, wherein: the door includes a forward edge that is pivotably connected to the vehicle body;the door includes a rearward edge that is opposite the forward edge; andthe gap is formed between the rearward edge and the body of the vehicle.
  • 10. The method of claim 7, wherein: the plunger extends and retracts linearly.
  • 11. A vehicle comprising: a body and a handleless door pivotably mounted thereto;a powered latch and an electrically-powered actuator;a controller configured to unlatch the powered latch and actuate the electrically-powered actuator to extend a plunger transversely from an inner side of the door towards an interior of the body to contact the body and push the door open, then actuate the electrically-powered actuator to retract the plunger.
  • 12. The vehicle of claim 11, wherein: the door includes a forward edge and rearward edge that is opposite the forward edge;the door is mounted to the body by a hinge adjacent the forward edge; andthe electrically powered actuator and the plunger are located directly adjacent the rearward edge of the door.
  • 13. The vehicle of claim 11, wherein: the door includes an outer side edge that is spaced apart from the body about 20 mm-250 mm when the plunger is extended to define a gap whereby a user can insert a portion of a hand into the gap to pull the door open.
  • 14. The vehicle of claim 11, wherein: the controller is configured to actuate the electrically-powered actuator to provide increased force if necessary to move the door.
  • 15. The vehicle of claim 14, wherein: the plunger is movable between a retracted position and a fully extended position; andthe controller is configured to actuate the electrically-powered actuator and retract the plunger before the plunger reaches the fully extended position if a load on the plunger exceeds a predefined maximum.
  • 16. The vehicle of claim 11, wherein: the plunger must be extended to at least partially open the door to enable a user to grasp the rearward edge of the door.
CROSS-REFERENCED TO RELATED APPLICATIONS

This application is a Continuation of U.S. patent application Ser. No. 15/228,101, filed Aug. 4, 2016, and entitled “POWERED DRIVEN DOOR PRESENTER FOR VEHICLE DOORS”, now U.S. Pat. No. 10,087,671, issued on Oct. 2, 2018, the entire disclosure of which is hereby incorporated by reference.

US Referenced Citations (399)
Number Name Date Kind
2229909 Wread Jan 1941 A
2553023 Walters May 1951 A
3479767 Gardner et al. Nov 1969 A
3605459 Van Dalen Sep 1971 A
3751718 Hanchett Aug 1973 A
3771823 Schnarr Nov 1973 A
3854310 Paull Dec 1974 A
3858922 Yamanaka Jan 1975 A
4193619 Jeril Mar 1980 A
4206491 Ligman et al. Jun 1980 A
4425597 Schramm Jan 1984 A
4457148 Johansson et al. Jul 1984 A
4640050 Yamagishi et al. Feb 1987 A
4672348 Duve Jun 1987 A
4674230 Takeo et al. Jun 1987 A
4674781 Reece et al. Jun 1987 A
4702117 Tsutsumi et al. Oct 1987 A
4848031 Yamagishi et al. Jun 1989 A
4858971 Haag Aug 1989 A
4889373 Ward et al. Dec 1989 A
4929007 Bartczak et al. May 1990 A
5018057 Biggs et al. May 1991 A
5056343 Kleefeldt et al. Oct 1991 A
5058258 Harvey Oct 1991 A
5074073 Zwebner Dec 1991 A
5092637 Miller Mar 1992 A
5173991 Carswell Dec 1992 A
5239779 Deland et al. Aug 1993 A
5263762 Long et al. Nov 1993 A
5297010 Camarota et al. Mar 1994 A
5332273 Komachi Jul 1994 A
5334969 Abe et al. Aug 1994 A
5494322 Menke Feb 1996 A
5497641 Linde et al. Mar 1996 A
5535608 Brin Jul 1996 A
5547208 Chappell et al. Aug 1996 A
5551187 Brouwer et al. Sep 1996 A
5581230 Barrett Dec 1996 A
5583405 Sai et al. Dec 1996 A
5613716 Cafferty Mar 1997 A
5618068 Mitsui et al. Apr 1997 A
5632120 Shigematsu et al. May 1997 A
5632515 Dowling May 1997 A
5644869 Buchanan, Jr. Jul 1997 A
5653484 Brackmann et al. Aug 1997 A
5662369 Tsuge Sep 1997 A
5684470 Deland et al. Nov 1997 A
5744874 Yoshida et al. Apr 1998 A
5755059 Schap May 1998 A
5783994 Koopman, Jr. et al. Jul 1998 A
5802894 Jahrsetz et al. Sep 1998 A
5808555 Bartel Sep 1998 A
5852944 Collard, Jr. et al. Dec 1998 A
5859479 David Jan 1999 A
5895089 Singh et al. Apr 1999 A
5896026 Higgins Apr 1999 A
5896768 Cranick et al. Apr 1999 A
5898536 Won Apr 1999 A
5901991 Hugel et al. May 1999 A
5921612 Mizuki et al. Jul 1999 A
5927794 Mobius Jul 1999 A
5964487 Shamblin Oct 1999 A
5979754 Martin et al. Nov 1999 A
5992194 Baukholt et al. Nov 1999 A
6000257 Thomas Dec 1999 A
6027148 Shoemaker Feb 2000 A
6038895 Menke et al. Mar 2000 A
6042159 Spitzley et al. Mar 2000 A
6043735 Barrett Mar 2000 A
6050117 Weyerstall Apr 2000 A
6056076 Bartel et al. May 2000 A
6065316 Sato et al. May 2000 A
6072403 Iwasaki et al. Jun 2000 A
6075294 Van den Boom et al. Jun 2000 A
6089626 Shoemaker Jul 2000 A
6091162 Williams, Jr. et al. Jul 2000 A
6099048 Salmon et al. Aug 2000 A
6125583 Murray et al. Oct 2000 A
6130614 Miller Oct 2000 A
6145918 Wilbanks, II Nov 2000 A
6157090 Vogel Dec 2000 A
6181024 Geil Jan 2001 B1
6198995 Settles et al. Mar 2001 B1
6241294 Young et al. Jun 2001 B1
6247343 Weiss et al. Jun 2001 B1
6256932 Jyawook et al. Jul 2001 B1
6271745 Anazi et al. Aug 2001 B1
6305737 Corder et al. Oct 2001 B1
6341448 Murray Jan 2002 B1
6357803 Lorek Mar 2002 B1
6361091 Weschler Mar 2002 B1
6405485 Itami et al. Jun 2002 B1
6406073 Watanabe Jun 2002 B1
6441512 Jakel et al. Aug 2002 B1
6460905 Suss Oct 2002 B2
6470719 Franz et al. Oct 2002 B1
6480098 Flick Nov 2002 B2
6481056 Jesse Nov 2002 B1
6515377 Uberlein et al. Feb 2003 B1
6523376 Baukholt et al. Feb 2003 B2
6550826 Fukushima et al. Apr 2003 B2
6554328 Cetnar et al. Apr 2003 B2
6556900 Brynielsson Apr 2003 B1
6602077 Kasper et al. Aug 2003 B2
6606492 Losey Aug 2003 B1
6629711 Gleason et al. Oct 2003 B1
6639161 Meagher et al. Oct 2003 B2
6657537 Hauler Dec 2003 B1
6659515 Raymond et al. Dec 2003 B2
6701671 Fukumoto et al. Mar 2004 B1
6712409 Monig Mar 2004 B2
6715806 Arlt et al. Apr 2004 B2
6734578 Konno et al. May 2004 B2
6740834 Sueyoshi et al. May 2004 B2
6768413 Kemmann et al. Jul 2004 B1
6779372 Arlt et al. Aug 2004 B2
6783167 Bingle et al. Aug 2004 B2
6786070 Dimig et al. Sep 2004 B1
6794837 Whinnery et al. Sep 2004 B1
6825752 Nahata et al. Nov 2004 B2
6829357 Alrabady et al. Dec 2004 B1
6843085 Dimig Jan 2005 B2
6854870 Huizenga Feb 2005 B2
6879058 Lorenz et al. Apr 2005 B2
6883836 Breay et al. Apr 2005 B2
6883839 Belmond et al. Apr 2005 B2
6910302 Crawford Jun 2005 B2
6914346 Girard Jul 2005 B2
6923479 Aiyama et al. Aug 2005 B2
6933655 Morrison et al. Aug 2005 B2
6946978 Schofield Sep 2005 B2
6979046 Moriyama Dec 2005 B2
7005959 Amagasa Feb 2006 B2
7038414 Daniels et al. May 2006 B2
7055997 Baek Jun 2006 B2
7062945 Saitoh et al. Jun 2006 B2
7070018 Kachouh Jul 2006 B2
7070213 Willats et al. Jul 2006 B2
7090285 Markevich et al. Aug 2006 B2
7091823 Ieda et al. Aug 2006 B2
7091836 Kachouh et al. Aug 2006 B2
7097226 Bingle et al. Aug 2006 B2
7106171 Burgess Sep 2006 B1
7108301 Louvel Sep 2006 B2
7126453 Sandau et al. Oct 2006 B2
7145436 Ichikawa et al. Dec 2006 B2
7161152 Dipoala Jan 2007 B2
7170253 Spurr et al. Jan 2007 B2
7173346 Aiyama et al. Feb 2007 B2
7176810 Inoue Feb 2007 B2
7180400 Amagasa Feb 2007 B2
7192076 Ottino Mar 2007 B2
7204530 Lee Apr 2007 B2
7205777 Schultz et al. Apr 2007 B2
7221255 Johnson et al. May 2007 B2
7224259 Bemond et al. May 2007 B2
7248955 Hein et al. Jul 2007 B2
7263416 Sakurai et al. Aug 2007 B2
7270029 Papanikolaou et al. Sep 2007 B1
7325843 Coleman et al. Feb 2008 B2
7342373 Newman et al. Mar 2008 B2
7360803 Parent et al. Apr 2008 B2
7363788 Dimig et al. Apr 2008 B2
7375299 Pudney May 2008 B1
7399010 Hunt et al. Jul 2008 B2
7446645 Steegmann Nov 2008 B2
7576631 Bingle et al. Aug 2009 B1
7642669 Spurr Jan 2010 B2
7686378 Gisler et al. Mar 2010 B2
7688179 Kurpinski et al. Mar 2010 B2
7705722 Shoemaker et al. Apr 2010 B2
7747286 Conforti Jun 2010 B2
7780207 Gotou et al. Aug 2010 B2
7791218 Mekky et al. Sep 2010 B2
7926385 Papanikolaou et al. Apr 2011 B2
7931314 Nitawaki et al. Apr 2011 B2
7937893 Pribisic May 2011 B2
8028375 Nakaura et al. Oct 2011 B2
8093987 Kurpinski et al. Jan 2012 B2
8126450 Howarter et al. Feb 2012 B2
8141296 Bern Mar 2012 B2
8141916 Tomaszewski et al. Mar 2012 B2
8169317 Lemerand et al. May 2012 B2
8193462 Zanini et al. Jun 2012 B2
8224313 Howarter et al. Jul 2012 B2
8272165 Tomioke Sep 2012 B2
8376416 Arabia, Jr. et al. Feb 2013 B2
8398128 Arabia et al. Mar 2013 B2
8405515 Ishihara et al. Mar 2013 B2
8405527 Chung et al. Mar 2013 B2
8419114 Fannon Apr 2013 B2
8451087 Krishnan et al. May 2013 B2
8454062 Rohlfing et al. Jun 2013 B2
8474889 Reifenberg et al. Jul 2013 B2
8532873 Bambenek Sep 2013 B1
8534101 Mette et al. Sep 2013 B2
8544901 Krishnan et al. Oct 2013 B2
8573657 Papanikolaou et al. Nov 2013 B2
8584402 Yamaguchi Nov 2013 B2
8601903 Klein et al. Dec 2013 B1
8616595 Wellborn, Sr. et al. Dec 2013 B2
8648689 Hathaway et al. Feb 2014 B2
8690204 Lang et al. Apr 2014 B2
8746755 Papanikolaou et al. Jun 2014 B2
8826596 Tensing Sep 2014 B2
8833811 Ishikawa Sep 2014 B2
8903605 Bambenek Dec 2014 B2
8915524 Charnesky Dec 2014 B2
8963701 Rodriguez Feb 2015 B2
8965287 Lam Feb 2015 B2
9003707 Reddmann Apr 2015 B2
9076274 Kamiya Jul 2015 B2
9159219 Magner et al. Oct 2015 B2
9184777 Esselink et al. Nov 2015 B2
9187012 Sachs et al. Nov 2015 B2
9189900 Penilla et al. Nov 2015 B1
9260882 Krishnan et al. Feb 2016 B2
9284757 Kempel Mar 2016 B2
9322204 Suzuki Apr 2016 B2
9353566 Miu et al. May 2016 B2
9382741 Konchan Jul 2016 B2
9405120 Graf Aug 2016 B2
9409579 Eichin et al. Aug 2016 B2
9416565 Papanikolaou et al. Aug 2016 B2
9475369 Sugiura Oct 2016 B2
9481325 Lange Nov 2016 B1
9493975 Li Nov 2016 B1
9518408 Krishnan Dec 2016 B1
9522590 Fujimoto et al. Dec 2016 B2
9546502 Lange Jan 2017 B2
9551166 Patel et al. Jan 2017 B2
9725069 Krishnan Aug 2017 B2
9777528 Elie et al. Oct 2017 B2
9797178 Elie et al. Oct 2017 B2
9797181 Wheeler et al. Oct 2017 B2
9834964 Van Wiemeersch et al. Dec 2017 B2
9845071 Krishnan Dec 2017 B1
9903142 Van Wiemeersch et al. Feb 2018 B2
9909344 Krishnan et al. Mar 2018 B2
9957737 Patel et al. May 2018 B2
20010005078 Fukushima et al. Jun 2001 A1
20010030871 Anderson Oct 2001 A1
20020000726 Zintler Jan 2002 A1
20020111844 Vanstory et al. Aug 2002 A1
20020121967 Bowen et al. Sep 2002 A1
20020186144 Meunier Dec 2002 A1
20030009855 Budzynski Jan 2003 A1
20030025337 Suzuki et al. Feb 2003 A1
20030038544 Spurr Feb 2003 A1
20030101781 Budzynski et al. Jun 2003 A1
20030107473 Pang et al. Jun 2003 A1
20030111863 Weyerstall et al. Jun 2003 A1
20030139155 Sakai Jul 2003 A1
20030172695 Buschmann Sep 2003 A1
20030182863 Mejean et al. Oct 2003 A1
20030184098 Aiyama Oct 2003 A1
20030216817 Pudney Nov 2003 A1
20040061462 Bent et al. Apr 2004 A1
20040093155 Simonds et al. May 2004 A1
20040124708 Giehler et al. Jul 2004 A1
20040195845 Chevalier Oct 2004 A1
20040217601 Garnault et al. Nov 2004 A1
20050057047 Kachouh Mar 2005 A1
20050068712 Schulz et al. Mar 2005 A1
20050216133 MacDougall et al. Sep 2005 A1
20050218913 Inaba Oct 2005 A1
20060056663 Call Mar 2006 A1
20060100002 Luebke et al. May 2006 A1
20060186987 Wilkins Aug 2006 A1
20070001467 Muller et al. Jan 2007 A1
20070090654 Eaton Apr 2007 A1
20070115191 Hashiguchi et al. May 2007 A1
20070120645 Nakashima May 2007 A1
20070126243 Papanikolaou et al. Jun 2007 A1
20070132553 Nakashima Jun 2007 A1
20070170727 Kohlstrand et al. Jul 2007 A1
20080021619 Steegmann et al. Jan 2008 A1
20080060393 Johansson et al. Mar 2008 A1
20080068129 Ieda et al. Mar 2008 A1
20080129446 Vader Jun 2008 A1
20080143139 Bauer et al. Jun 2008 A1
20080202912 Boddie et al. Aug 2008 A1
20080203737 Tomaszewski et al. Aug 2008 A1
20080211623 Scheurich Sep 2008 A1
20080217956 Gschweng et al. Sep 2008 A1
20080224482 Cumbo et al. Sep 2008 A1
20080230006 Kirchoff et al. Sep 2008 A1
20080250718 Papanikolaou et al. Oct 2008 A1
20080296927 Gisler et al. Dec 2008 A1
20080303291 Spurr Dec 2008 A1
20080307711 Kern et al. Dec 2008 A1
20090033104 Konchan et al. Feb 2009 A1
20090033477 Illium et al. Feb 2009 A1
20090145181 Pecoul et al. Jun 2009 A1
20090160211 Krishnan et al. Jun 2009 A1
20090177336 McClellan et al. Jul 2009 A1
20090240400 Lachapelle et al. Sep 2009 A1
20090257241 Meinke et al. Oct 2009 A1
20100007463 Dingman et al. Jan 2010 A1
20100052337 Arabia, Jr. et al. Mar 2010 A1
20100060505 Witkowski Mar 2010 A1
20100097186 Wielebski Apr 2010 A1
20100175945 Helms Jul 2010 A1
20100235057 Papanikolaou et al. Sep 2010 A1
20100235058 Papanikolaou et al. Sep 2010 A1
20100235059 Krishnan et al. Sep 2010 A1
20100237635 Ieda et al. Sep 2010 A1
20100253535 Thomas Oct 2010 A1
20100265034 Cap et al. Oct 2010 A1
20100315267 Chung et al. Dec 2010 A1
20110041409 Newman et al. Feb 2011 A1
20110060480 Mottla et al. Mar 2011 A1
20110148575 Sobecki et al. Jun 2011 A1
20110154740 Matsumoto et al. Jun 2011 A1
20110180350 Thacker Jul 2011 A1
20110203181 Magner et al. Aug 2011 A1
20110203336 Mette et al. Aug 2011 A1
20110227351 Grosedemouge Sep 2011 A1
20110248862 Budampati Oct 2011 A1
20110252845 Webb et al. Oct 2011 A1
20110254292 Ishii Oct 2011 A1
20110313937 Moore, Jr. et al. Dec 2011 A1
20120119524 Bingle et al. May 2012 A1
20120154292 Zhao et al. Jun 2012 A1
20120180394 Shinohara Jul 2012 A1
20120205925 Muller et al. Aug 2012 A1
20120228886 Muller et al. Sep 2012 A1
20120252402 Jung Oct 2012 A1
20130049403 Fannon et al. Feb 2013 A1
20130069761 Tieman Mar 2013 A1
20130079984 Aerts et al. Mar 2013 A1
20130104459 Patel et al. May 2013 A1
20130127180 Heberer et al. May 2013 A1
20130138303 McKee et al. May 2013 A1
20130207794 Patel Aug 2013 A1
20130282226 Pollmann Oct 2013 A1
20130295913 Matthews, III et al. Nov 2013 A1
20130311046 Heberer et al. Nov 2013 A1
20130321065 Salter et al. Dec 2013 A1
20130325521 Jameel Dec 2013 A1
20140000165 Patel et al. Jan 2014 A1
20140007404 Krishnan et al. Jan 2014 A1
20140015637 Dassanakake et al. Jan 2014 A1
20140053370 Tseng Feb 2014 A1
20140088825 Lange et al. Mar 2014 A1
20140129113 Van Wiemeersch et al. May 2014 A1
20140150581 Scheuring et al. Jun 2014 A1
20140156111 Ehrman Jun 2014 A1
20140188999 Leonard et al. Jul 2014 A1
20140200774 Lange et al. Jul 2014 A1
20140227980 Esselink et al. Aug 2014 A1
20140242971 Aladenize et al. Aug 2014 A1
20140245666 Ishida et al. Sep 2014 A1
20140256304 Frye et al. Sep 2014 A1
20140278599 Reh Sep 2014 A1
20140293753 Pearson Oct 2014 A1
20140338409 Kraus et al. Nov 2014 A1
20140347163 Banter et al. Nov 2014 A1
20150001926 Kageyama et al. Jan 2015 A1
20150048927 Simmons Feb 2015 A1
20150059250 Miu et al. Mar 2015 A1
20150084739 Lemoult et al. Mar 2015 A1
20150149042 Cooper et al. May 2015 A1
20150161832 Esselink et al. Jun 2015 A1
20150197205 Xiong Jul 2015 A1
20150240548 Bendel et al. Aug 2015 A1
20150283886 Nania Oct 2015 A1
20150294518 Peplin Oct 2015 A1
20150330112 Van Wiemeersch et al. Nov 2015 A1
20150330113 Van Wiemeersch et al. Nov 2015 A1
20150330114 Linden Nov 2015 A1
20150330117 Van Wiemeersch Nov 2015 A1
20150330133 Konchan et al. Nov 2015 A1
20150360545 Nanla Dec 2015 A1
20150371031 Veno et al. Dec 2015 A1
20160060909 Krishnan et al. Mar 2016 A1
20160130843 Bingle May 2016 A1
20160138306 Krishnan et al. May 2016 A1
20160153216 Funahashi et al. Jun 2016 A1
20160273255 Suzuki et al. Sep 2016 A1
20160326779 Papanikolaou et al. Nov 2016 A1
20170014039 Pahlevan et al. Jan 2017 A1
20170022742 Seki et al. Jan 2017 A1
20170030737 Elie Feb 2017 A1
20170058588 Wheeler et al. Mar 2017 A1
20170074006 Patel et al. Mar 2017 A1
20170247016 Krishnan Aug 2017 A1
20170247927 Elie Aug 2017 A1
20170270490 Penilla et al. Sep 2017 A1
20170306662 Och et al. Oct 2017 A1
20170349146 Krishnan Dec 2017 A1
20180038147 Linden Feb 2018 A1
20180051493 Krishnan et al. Feb 2018 A1
20180051498 Van Wiemeersch et al. Feb 2018 A1
20180058128 Khan Mar 2018 A1
20180065598 Krishnan Mar 2018 A1
20180080270 Khan Mar 2018 A1
20180128022 Van Wiemeersh et al. May 2018 A1
20190203508 Harajli Jul 2019 A1
Foreign Referenced Citations (66)
Number Date Country
1232936 Dec 2005 CN
201198681 Feb 2009 CN
201280857 Jul 2009 CN
101527061 Sep 2009 CN
201567872 Sep 2010 CN
101932466 Dec 2010 CN
201915717 Aug 2011 CN
202200933 Apr 2012 CN
202686247 Jan 2013 CN
103206117 Jul 2013 CN
103264667 Aug 2013 CN
203511548 Apr 2014 CN
204326814 May 2015 CN
4403655 Aug 1995 DE
19620059 Nov 1997 DE
19642698 Apr 1998 DE
19642698 Nov 2000 DE
10212794 Jun 2003 DE
20121915 Nov 2003 DE
10309821 Sep 2004 DE
102005041551 Mar 2007 DE
102006029774 Jan 2008 DE
102006040211 Mar 2008 DE
102006041928 Mar 2008 DE
102010052582 May 2012 DE
102011051165 Dec 2012 DE
102015101164 Jul 2015 DE
102014107809 Dec 2015 DE
0372791 Jun 1990 EP
0694664 Jan 1996 EP
1162332 Dec 2001 EP
1284334 Feb 2003 EP
1288403 Mar 2003 EP
1284334 Sep 2003 EP
1460204 Sep 2004 EP
1465119 Oct 2004 EP
1338731 Feb 2005 EP
1944436 Jul 2008 EP
2053744 Apr 2009 EP
2314803 Apr 2011 EP
2698838 Jun 1994 FR
2783547 Mar 2000 FR
2841285 Dec 2003 FR
2860261 Apr 2005 FR
2948402 Jul 2009 FR
2955604 Jul 2011 FR
2402840 Dec 2004 GB
2496754 May 2013 GB
62255256 Nov 1987 JP
05059855 Mar 1993 JP
406167156 Jun 1994 JP
406185250 Jul 1994 JP
2000064685 Feb 2000 JP
2000314258 Nov 2000 JP
2007100342 Apr 2007 JP
2007138500 Jun 2007 JP
20030025738 Mar 2003 KR
20120108580 Oct 2012 KR
0123695 Apr 2001 WO
03095776 Nov 2003 WO
2013111615 Aug 2013 WO
2013146918 Oct 2013 WO
2014146186 Sep 2014 WO
2015064001 May 2015 WO
2015145868 Oct 2015 WO
2017160787 Sep 2017 WO
Non-Patent Literature Citations (29)
Entry
Kisteler Instruments, “Force Sensors Ensure Car Door Latch is Within Specification,” Article, Jan. 1, 2005, 3 pages.
General Motors Corporation, 2006 Chevrolet Corvette Owner Manual, © 2005 General Motors Corporation, 4 pages.
General Motors LLC, 2013 Chevrolet Corvette Owner Manual, 2012, 17 pages.
General Motors, “Getting to Know Your 2014 Corvette,” Quick Reference Guide, 2013, 16 pages.
InterRegs Ltd., Federal Motor Vehicle Safety Standard, “Door Locks and Door Retention Components,” 2012, FR. vol. 36 No. 232—Feb. 12, 1971, 23 pages.
Ross Downing, “How to Enter & Exit a Corvette With a Dead Battery,” YouTube video http://www.youtube.com/watch?v=DLDqmGQU6L0, Jun. 6, 2011, 1 page.
Jeff Glucker, “Friends videotape man ‘trapped’ inside C6 Corette with dead battery,” YouTube via Corvett Online video http://www.autoblog.com/2011/05/14/friends-videotape-man-trapped-inside-c6-corvette-with-dead-bat/, May 14, 2011, 1 page.
Don Roy, “ZR1 Owner Calls 911 After Locking Self in Car,” website http://www.corvetteonline.com/news/zr1-owner-calls-911-after-locking-self-in-car/, Apr. 13, 2011, 2 pages.
Zach Bowman, “Corvette with dead battery traps would-be thief,” website http://www.autoblog.com/2011/10/25/corvette-with-dead-battery-traps-would-be-thief/, Oct. 25, 2011, 2 pages.
U.S. Appl. No. 14/468,634, filed Aug. 26, 2014, 15 pages.
U.S. Appl. No. 13/608,303, filed Sep. 10, 2012, 15 pages.
Bryan Laviolette, “GM's New App Turns Smartphones into Virtual Keys,” Article, Jul. 22, 2010, 2 pages.
Hyundai Bluelink, “Send Directions to your car,” Link to App, 2015, 3 pages.
U.S. Appl. No. 14/276,415, filed May 13, 2014, 18 pages.
Office Action dated Mar. 10, 2017, U.S. Appl. No. 15/174,206, filed Jun. 6, 2016, 17 pages.
Zipcar.com, “Car Sharing from Zipcar: How Does car Sharing Work?” Feb. 9, 2016, 6 pages.
Department of Transportation, “Federal Motor Vehicle Safety Standards; Door Locks and Door Retention Components and Side Impact Protection, ”http://www.nhtsa.gov/cars/rules/rulings/DoorLocks/DoorLocks_NPRM.html#VI_C, 23 pages, Aug. 28, 2010.
“Push Button to open your car door” Online video clip. YouTube, Mar. 10, 2010. 1 page.
Car of the Week: 1947 Lincoln convertible by: bearnest May 29, 2012 http://www.oldcarsweekly.com/car-of-the-week/car-of-the-week-1947-lincoln-convertible. 7 pages.
U.S. Appl. No. 14/276,415, Office Action dated Mar. 28, 2018, 19 pages.
U.S. Appl. No. 12/402,744, Office Action dated Oct. 23, 2013, 7 pages.
U.S. Appl. No. 12/402,744, Advisory Action dated Jan. 31, 2014, 2 pages.
U.S. Appl. No. 14/280,035, filed May 16, 2014, entitled “Powered Latch System for Vehicle Doors and Control System Therefor.”
U.S. Appl. No. 14/281,998, filed May 20, 2014, entitled “Vehicle Door Handle and Powered Latch System.”
U.S. Appl. No. 14/282,224, filed May 20, 2014, entitled “Powered Vehicle Door Latch and Exterior Handle With Sensor.”
George Kennedy, “Keyfree app replaces conventional keys with your smart phone,” website, Jan. 5, 2015, 2 pages.
Hyundai Motor India Limited, “Hyundai Care,” website, Dec. 8, 2015, 3 pages.
Keyfree Technologies Inc., “Keyfree,” website, Jan. 10, 2014, 2 pages.
PRWEB, “Keyfree Technologies Inc. Launches the First Digital Car Key,” Jan. 9, 2014, 3 pages.
Related Publications (1)
Number Date Country
20180363354 A1 Dec 2018 US
Continuations (1)
Number Date Country
Parent 15228101 Aug 2016 US
Child 16113137 US