Various vehicle door latching and opening mechanisms have been developed. For example, passive entry passive start (PEPS) systems typically include a wireless “fob” that transmits a security code to a vehicle. When a user carrying an authorized fob approaches a vehicle, the user can then insert a hand into an opening adjacent the handle. A sensor detects the user's hand and unlocks the vehicle door. The user then grasps the handle and moves the handle outwardly to unlatch and open the door. In this type of an arrangement, the handle is mechanically connected to a pawl in the door latch mechanism such that movement of the handle mechanically shifts the pawl to a release position to allow a claw or catch of the latch to move and disengage a striker to permit the vehicle door to be opened.
Powered door latch mechanisms have also been developed. Powered door latch mechanisms may include a powered actuator that shifts a pawl to permit movement of the claw to disengage a striker. Thus, in a powered door latch, movement of a door handle is not required because the powered actuator shifts the pawl to a released position to permit the door to be opened. Powered latches may include a lock mechanism or lock state requiring receipt of an authorized code and/or other inputs to unlock the powered latch prior to unlatching the powered latch. Known vehicle doors with powered latches include an exterior handle on the door whereby a user can grasp the handle to manually open the door after the door is unlatched.
One aspect of the present disclosure is an apparatus including a vehicle door that does not have an exterior handle. The vehicle door includes a first side edge portion that is configured to be pivotably mounted to a vehicle body structure, and a second side edge portion opposite the first side edge portion. The vehicle door handle includes a powered latch mechanism having a first electrically-powered actuator that can be actuated to unlatch the latch mechanism to permit the vehicle door to be opened. The vehicle door also includes an outer side that is free of an exterior door handle. The vehicle door also includes a powered door presenter mechanism that includes a plunger and a second electrically-powered actuator that can be actuated to shift the plunger between retracted and extended positions. The plunger engages the vehicle body and pushes the door to a partially open position to define a gap between the second side edge portion and a vehicle body whereby a user can insert a portion of a hand and pull the door to a fully open position. The apparatus further includes a controller that may be mounted in the door. Alternatively, the controller may be mounted in the main vehicle. The controller is configured to actuate the first electrically-powered actuator to unlatch the latch mechanism. The controller is also configured to actuate the second electrically-powered actuator a first time to shift the plunger from the retracted position to the extended position to partially open the vehicle door. The controller is also configured to actuate the second electrically-powered actuator a second time to shift the plunger from the extended position to the retracted position while the door is open. After the plunger is retracted, the door can be closed without interference from the plunger.
Another aspect of the present disclosure is a vehicle including a body and a door that is movably mounted to the body. The door has a powered latch and an electrically-powered actuator that extends and retracts a plunger from an inner side of the door. The vehicle also includes a controller that unlatches the powered latch and actuates the electrically-powered actuator such that the plunger contacts the body and pushes the door open, followed by actuating the electrically-powered actuator to retract the plunger.
Another aspect of the present disclosure is a method of opening a vehicle door from outside the vehicle without grasping an exterior handle of the vehicle. The method includes causing a powered door latch to unlock and to unlatch. The method further includes causing an electrically-powered actuator on the door to actuate and extend a plunger from an inner side of the door such that the plunger pushes on a body of the vehicle and at least partially opens the door to form a gap between an edge of the door and a body of the vehicle. A user then inserts a portion of a hand into the gap and pulls on the door to move the door further open. The method further includes causing the electrically-powered actuator on the door to actuate and retract the plunger while the door is open.
These and other aspects, objects, and features of the present invention will be understood and appreciated by those skilled in the art upon studying the following specification, claims, and appended drawings.
In the drawings:
For purposes of description herein, the terms “upper,” “lower,” “right,” “left,” “rear,” “front,” “vertical,” “horizontal,” and derivatives thereof shall relate to the disclosure as oriented in
With reference to
Referring again to
The vehicle door 10 also includes powered door presenter mechanism 20. As discussed in more detail below in connection with
With reference to
The powered door presenter mechanism 20 also includes one or more sensors 40 that provide a signal to the latch controller 116 concerning the position of plunger 22. The sensors 40 may comprise one or more Hall effect sensors and/or micro switches. The Hall effect sensors provide vehicle-specific electrical current versus travel (Hall count) profiles that are stored in the controller 116. This data may be used by controller 116 to determine (or learn) the full travel position of plunger 22 (
The vehicle door 10 may also include a door strap detent mechanism 42 (
As discussed in more detail below, after the electric motor 24 is initially actuated to partially open door 10 by shifting plunger 22 from the retracted position (
Latch controller 116 may utilize data from sensors 40 to determine if an object has been encountered. For example, if the controller 116 initially actuates the electric motor 24, and the plunger 22 begins to extend from the retracted position of
Plunger 22 may include an end surface 23 that contacts a surface 21 of vehicle body 103 to push the door 10 from the closed position (
As discussed above, the powered door presenter mechanism 20 may include a solenoid or other powered mechanism rather than an electric motor 24. Furthermore, it will be understood that plunger 22 could have other configurations, and the present invention is not limited to the specific linear plunger configuration shown and described above.
With further reference to
To exit the vehicle 1, a user 2 actuates the interior unlatch switch 112 or exterior unlatch switch 113 to generate an unlatch request to the controller 8. If the latch 106 is unlatched and/or certain predefined operating perimeters or conditions are present, controller 116 generates a signal causing powered latch 106 to unlatch upon actuation of interior unlatch switch 112. Door 10 may also include an unlock input feature such as an unlock switch 114 that is mounted to an inner side of the door 10. The unlock switch 114 is operably connected to the controller 116. Controller 116 may be configured to store a door or latch lock or unlock state that can be changed by actuation of unlock switch 114.
To enter vehicle 1, a user 2 transmits a security code to controller 116 utilizing wireless device 6, then actuates exterior unlatch switch 113. Operation of powered door presenter 20 to enter vehicle 1 is discussed in more detail below in connection with
Controller 116 may be configured (e.g. programmed) to deny an unlatch request generated by actuation of the interior unlatch switch 112 or exterior unlatch switch 113 if the controller 116 determines that the powered latch 106 is in a locked state. Controller 116 is preferably a programmable controller that can be configured to unlatch powered latch 106 according to predefined operating logic by programming controller 116. However, controller 116 may comprise electrical circuits and components that are configured to provide the desired operating logic. As used herein, the term “controller” may refer to one or more processors, circuits, electronic devices, and other such components and systems that are arranged to provide the desired control.
With further reference to
A powered actuator such as an electric motor 192 may be operably connected to the pawl 186 to thereby rotate the pawl 186 to the disengaged or unlatched position 186A. Controller 116 can unlatch powered latch 106 to an unlatched configuration or state by causing powered actuator 192 to rotate pawl 186 from the latched or engaged position 186B to the unlatched configuration or position 186A. However, it will be understood that various types of powered latches may be utilized, and the powered latch 106 need not include the claw 180 and powered pawl 186 as shown in
With further reference to
System 125 also includes a Body Control module (“BCM”) 140 that is connected to the first high speed data network 122. The body control module 140 is also operably connected to the powered latches 106A-106D by data lines 136A-136D. Controllers 116A-116D may also be directly connected (“hardwired”) to control module 140 by electrical conductors such as wires 156A-156D, respectively. Wires 156A-156D may provide a redundant data connection between controllers 116A-116D and controller 140, or the wires 156A-156D may comprise the only data connection between controllers 116A-116D and controller 140. Control module 140 may also be operably interconnected to sensors (not shown) that signal the control module 140 if the vehicle doors are ajar. Control module 140 is also connected to a main vehicle electrical power supply such as a battery 148. Each of the powered latches 106A-106D may be connected to main vehicle power supply 148 by connector's 150A-150D. The powered latches 106A-106D may also include back up power supplies 152 that can be utilized to actuate the powered actuator 192 in the event the power supply from main vehicle power supply (“VPWR”) 148 is interrupted or lost. The backup power supplies 152A-152D may comprise capacitors, batteries, or other electrical energy storage devices. In general, the backup power supplies 152A-152D store enough electrical energy to provide for temporary operation of controllers 116A-116D, and to actuate the powered actuators 192 a plurality of times to permit unlatching of the vehicle doors in the event the main power supply/battery 148 fails or is disconnected.
Each of the powered latches 106A-106D is also operably connected to a two pole (for example, both poles normally opened or one pole normally opened and one pole normally closed) interior unlatch switch 112A-112D, respectively, that provide user inputs (unlatch requests). The powered latches 106A-106D are also operably connected to an exterior unlatch switches 154A-154D, respectively. Controllers 116A-116D are also operably connected to unlock switches 114 (
With further reference to
If an unlatch request is received at 58, the process continues to step 62 and the powered latch 106 is unlatched (e.g. electric motor 192 (
As shown at step 68, if the plunger stops before reaching the fully extended position, the controller 116 retracts the plunger as shown at step 70. If the plunger 22 reaches the fully extended position (step 72), controller 116 then retracts plunger 22.
It is to be understood that variations and modifications can be made on the aforementioned structure without departing from the concepts of the present invention, and further it is to be understood that such concepts are intended to be covered by the following claims unless these claims by their language expressly state otherwise.
This application is a Continuation of U.S. patent application Ser. No. 15/228,101, filed Aug. 4, 2016, and entitled “POWERED DRIVEN DOOR PRESENTER FOR VEHICLE DOORS”, now U.S. Pat. No. 10,087,671, issued on Oct. 2, 2018, the entire disclosure of which is hereby incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
2229909 | Wread | Jan 1941 | A |
2553023 | Walters | May 1951 | A |
3479767 | Gardner et al. | Nov 1969 | A |
3605459 | Van Dalen | Sep 1971 | A |
3751718 | Hanchett | Aug 1973 | A |
3771823 | Schnarr | Nov 1973 | A |
3854310 | Paull | Dec 1974 | A |
3858922 | Yamanaka | Jan 1975 | A |
4193619 | Jeril | Mar 1980 | A |
4206491 | Ligman et al. | Jun 1980 | A |
4425597 | Schramm | Jan 1984 | A |
4457148 | Johansson et al. | Jul 1984 | A |
4640050 | Yamagishi et al. | Feb 1987 | A |
4672348 | Duve | Jun 1987 | A |
4674230 | Takeo et al. | Jun 1987 | A |
4674781 | Reece et al. | Jun 1987 | A |
4702117 | Tsutsumi et al. | Oct 1987 | A |
4848031 | Yamagishi et al. | Jun 1989 | A |
4858971 | Haag | Aug 1989 | A |
4889373 | Ward et al. | Dec 1989 | A |
4929007 | Bartczak et al. | May 1990 | A |
5018057 | Biggs et al. | May 1991 | A |
5056343 | Kleefeldt et al. | Oct 1991 | A |
5058258 | Harvey | Oct 1991 | A |
5074073 | Zwebner | Dec 1991 | A |
5092637 | Miller | Mar 1992 | A |
5173991 | Carswell | Dec 1992 | A |
5239779 | Deland et al. | Aug 1993 | A |
5263762 | Long et al. | Nov 1993 | A |
5297010 | Camarota et al. | Mar 1994 | A |
5332273 | Komachi | Jul 1994 | A |
5334969 | Abe et al. | Aug 1994 | A |
5494322 | Menke | Feb 1996 | A |
5497641 | Linde et al. | Mar 1996 | A |
5535608 | Brin | Jul 1996 | A |
5547208 | Chappell et al. | Aug 1996 | A |
5551187 | Brouwer et al. | Sep 1996 | A |
5581230 | Barrett | Dec 1996 | A |
5583405 | Sai et al. | Dec 1996 | A |
5613716 | Cafferty | Mar 1997 | A |
5618068 | Mitsui et al. | Apr 1997 | A |
5632120 | Shigematsu et al. | May 1997 | A |
5632515 | Dowling | May 1997 | A |
5644869 | Buchanan, Jr. | Jul 1997 | A |
5653484 | Brackmann et al. | Aug 1997 | A |
5662369 | Tsuge | Sep 1997 | A |
5684470 | Deland et al. | Nov 1997 | A |
5744874 | Yoshida et al. | Apr 1998 | A |
5755059 | Schap | May 1998 | A |
5783994 | Koopman, Jr. et al. | Jul 1998 | A |
5802894 | Jahrsetz et al. | Sep 1998 | A |
5808555 | Bartel | Sep 1998 | A |
5852944 | Collard, Jr. et al. | Dec 1998 | A |
5859479 | David | Jan 1999 | A |
5895089 | Singh et al. | Apr 1999 | A |
5896026 | Higgins | Apr 1999 | A |
5896768 | Cranick et al. | Apr 1999 | A |
5898536 | Won | Apr 1999 | A |
5901991 | Hugel et al. | May 1999 | A |
5921612 | Mizuki et al. | Jul 1999 | A |
5927794 | Mobius | Jul 1999 | A |
5964487 | Shamblin | Oct 1999 | A |
5979754 | Martin et al. | Nov 1999 | A |
5992194 | Baukholt et al. | Nov 1999 | A |
6000257 | Thomas | Dec 1999 | A |
6027148 | Shoemaker | Feb 2000 | A |
6038895 | Menke et al. | Mar 2000 | A |
6042159 | Spitzley et al. | Mar 2000 | A |
6043735 | Barrett | Mar 2000 | A |
6050117 | Weyerstall | Apr 2000 | A |
6056076 | Bartel et al. | May 2000 | A |
6065316 | Sato et al. | May 2000 | A |
6072403 | Iwasaki et al. | Jun 2000 | A |
6075294 | Van den Boom et al. | Jun 2000 | A |
6089626 | Shoemaker | Jul 2000 | A |
6091162 | Williams, Jr. et al. | Jul 2000 | A |
6099048 | Salmon et al. | Aug 2000 | A |
6125583 | Murray et al. | Oct 2000 | A |
6130614 | Miller | Oct 2000 | A |
6145918 | Wilbanks, II | Nov 2000 | A |
6157090 | Vogel | Dec 2000 | A |
6181024 | Geil | Jan 2001 | B1 |
6198995 | Settles et al. | Mar 2001 | B1 |
6241294 | Young et al. | Jun 2001 | B1 |
6247343 | Weiss et al. | Jun 2001 | B1 |
6256932 | Jyawook et al. | Jul 2001 | B1 |
6271745 | Anazi et al. | Aug 2001 | B1 |
6305737 | Corder et al. | Oct 2001 | B1 |
6341448 | Murray | Jan 2002 | B1 |
6357803 | Lorek | Mar 2002 | B1 |
6361091 | Weschler | Mar 2002 | B1 |
6405485 | Itami et al. | Jun 2002 | B1 |
6406073 | Watanabe | Jun 2002 | B1 |
6441512 | Jakel et al. | Aug 2002 | B1 |
6460905 | Suss | Oct 2002 | B2 |
6470719 | Franz et al. | Oct 2002 | B1 |
6480098 | Flick | Nov 2002 | B2 |
6481056 | Jesse | Nov 2002 | B1 |
6515377 | Uberlein et al. | Feb 2003 | B1 |
6523376 | Baukholt et al. | Feb 2003 | B2 |
6550826 | Fukushima et al. | Apr 2003 | B2 |
6554328 | Cetnar et al. | Apr 2003 | B2 |
6556900 | Brynielsson | Apr 2003 | B1 |
6602077 | Kasper et al. | Aug 2003 | B2 |
6606492 | Losey | Aug 2003 | B1 |
6629711 | Gleason et al. | Oct 2003 | B1 |
6639161 | Meagher et al. | Oct 2003 | B2 |
6657537 | Hauler | Dec 2003 | B1 |
6659515 | Raymond et al. | Dec 2003 | B2 |
6701671 | Fukumoto et al. | Mar 2004 | B1 |
6712409 | Monig | Mar 2004 | B2 |
6715806 | Arlt et al. | Apr 2004 | B2 |
6734578 | Konno et al. | May 2004 | B2 |
6740834 | Sueyoshi et al. | May 2004 | B2 |
6768413 | Kemmann et al. | Jul 2004 | B1 |
6779372 | Arlt et al. | Aug 2004 | B2 |
6783167 | Bingle et al. | Aug 2004 | B2 |
6786070 | Dimig et al. | Sep 2004 | B1 |
6794837 | Whinnery et al. | Sep 2004 | B1 |
6825752 | Nahata et al. | Nov 2004 | B2 |
6829357 | Alrabady et al. | Dec 2004 | B1 |
6843085 | Dimig | Jan 2005 | B2 |
6854870 | Huizenga | Feb 2005 | B2 |
6879058 | Lorenz et al. | Apr 2005 | B2 |
6883836 | Breay et al. | Apr 2005 | B2 |
6883839 | Belmond et al. | Apr 2005 | B2 |
6910302 | Crawford | Jun 2005 | B2 |
6914346 | Girard | Jul 2005 | B2 |
6923479 | Aiyama et al. | Aug 2005 | B2 |
6933655 | Morrison et al. | Aug 2005 | B2 |
6946978 | Schofield | Sep 2005 | B2 |
6979046 | Moriyama | Dec 2005 | B2 |
7005959 | Amagasa | Feb 2006 | B2 |
7038414 | Daniels et al. | May 2006 | B2 |
7055997 | Baek | Jun 2006 | B2 |
7062945 | Saitoh et al. | Jun 2006 | B2 |
7070018 | Kachouh | Jul 2006 | B2 |
7070213 | Willats et al. | Jul 2006 | B2 |
7090285 | Markevich et al. | Aug 2006 | B2 |
7091823 | Ieda et al. | Aug 2006 | B2 |
7091836 | Kachouh et al. | Aug 2006 | B2 |
7097226 | Bingle et al. | Aug 2006 | B2 |
7106171 | Burgess | Sep 2006 | B1 |
7108301 | Louvel | Sep 2006 | B2 |
7126453 | Sandau et al. | Oct 2006 | B2 |
7145436 | Ichikawa et al. | Dec 2006 | B2 |
7161152 | Dipoala | Jan 2007 | B2 |
7170253 | Spurr et al. | Jan 2007 | B2 |
7173346 | Aiyama et al. | Feb 2007 | B2 |
7176810 | Inoue | Feb 2007 | B2 |
7180400 | Amagasa | Feb 2007 | B2 |
7192076 | Ottino | Mar 2007 | B2 |
7204530 | Lee | Apr 2007 | B2 |
7205777 | Schultz et al. | Apr 2007 | B2 |
7221255 | Johnson et al. | May 2007 | B2 |
7224259 | Bemond et al. | May 2007 | B2 |
7248955 | Hein et al. | Jul 2007 | B2 |
7263416 | Sakurai et al. | Aug 2007 | B2 |
7270029 | Papanikolaou et al. | Sep 2007 | B1 |
7325843 | Coleman et al. | Feb 2008 | B2 |
7342373 | Newman et al. | Mar 2008 | B2 |
7360803 | Parent et al. | Apr 2008 | B2 |
7363788 | Dimig et al. | Apr 2008 | B2 |
7375299 | Pudney | May 2008 | B1 |
7399010 | Hunt et al. | Jul 2008 | B2 |
7446645 | Steegmann | Nov 2008 | B2 |
7576631 | Bingle et al. | Aug 2009 | B1 |
7642669 | Spurr | Jan 2010 | B2 |
7686378 | Gisler et al. | Mar 2010 | B2 |
7688179 | Kurpinski et al. | Mar 2010 | B2 |
7705722 | Shoemaker et al. | Apr 2010 | B2 |
7747286 | Conforti | Jun 2010 | B2 |
7780207 | Gotou et al. | Aug 2010 | B2 |
7791218 | Mekky et al. | Sep 2010 | B2 |
7926385 | Papanikolaou et al. | Apr 2011 | B2 |
7931314 | Nitawaki et al. | Apr 2011 | B2 |
7937893 | Pribisic | May 2011 | B2 |
8028375 | Nakaura et al. | Oct 2011 | B2 |
8093987 | Kurpinski et al. | Jan 2012 | B2 |
8126450 | Howarter et al. | Feb 2012 | B2 |
8141296 | Bern | Mar 2012 | B2 |
8141916 | Tomaszewski et al. | Mar 2012 | B2 |
8169317 | Lemerand et al. | May 2012 | B2 |
8193462 | Zanini et al. | Jun 2012 | B2 |
8224313 | Howarter et al. | Jul 2012 | B2 |
8272165 | Tomioke | Sep 2012 | B2 |
8376416 | Arabia, Jr. et al. | Feb 2013 | B2 |
8398128 | Arabia et al. | Mar 2013 | B2 |
8405515 | Ishihara et al. | Mar 2013 | B2 |
8405527 | Chung et al. | Mar 2013 | B2 |
8419114 | Fannon | Apr 2013 | B2 |
8451087 | Krishnan et al. | May 2013 | B2 |
8454062 | Rohlfing et al. | Jun 2013 | B2 |
8474889 | Reifenberg et al. | Jul 2013 | B2 |
8532873 | Bambenek | Sep 2013 | B1 |
8534101 | Mette et al. | Sep 2013 | B2 |
8544901 | Krishnan et al. | Oct 2013 | B2 |
8573657 | Papanikolaou et al. | Nov 2013 | B2 |
8584402 | Yamaguchi | Nov 2013 | B2 |
8601903 | Klein et al. | Dec 2013 | B1 |
8616595 | Wellborn, Sr. et al. | Dec 2013 | B2 |
8648689 | Hathaway et al. | Feb 2014 | B2 |
8690204 | Lang et al. | Apr 2014 | B2 |
8746755 | Papanikolaou et al. | Jun 2014 | B2 |
8826596 | Tensing | Sep 2014 | B2 |
8833811 | Ishikawa | Sep 2014 | B2 |
8903605 | Bambenek | Dec 2014 | B2 |
8915524 | Charnesky | Dec 2014 | B2 |
8963701 | Rodriguez | Feb 2015 | B2 |
8965287 | Lam | Feb 2015 | B2 |
9003707 | Reddmann | Apr 2015 | B2 |
9076274 | Kamiya | Jul 2015 | B2 |
9159219 | Magner et al. | Oct 2015 | B2 |
9184777 | Esselink et al. | Nov 2015 | B2 |
9187012 | Sachs et al. | Nov 2015 | B2 |
9189900 | Penilla et al. | Nov 2015 | B1 |
9260882 | Krishnan et al. | Feb 2016 | B2 |
9284757 | Kempel | Mar 2016 | B2 |
9322204 | Suzuki | Apr 2016 | B2 |
9353566 | Miu et al. | May 2016 | B2 |
9382741 | Konchan | Jul 2016 | B2 |
9405120 | Graf | Aug 2016 | B2 |
9409579 | Eichin et al. | Aug 2016 | B2 |
9416565 | Papanikolaou et al. | Aug 2016 | B2 |
9475369 | Sugiura | Oct 2016 | B2 |
9481325 | Lange | Nov 2016 | B1 |
9493975 | Li | Nov 2016 | B1 |
9518408 | Krishnan | Dec 2016 | B1 |
9522590 | Fujimoto et al. | Dec 2016 | B2 |
9546502 | Lange | Jan 2017 | B2 |
9551166 | Patel et al. | Jan 2017 | B2 |
9725069 | Krishnan | Aug 2017 | B2 |
9777528 | Elie et al. | Oct 2017 | B2 |
9797178 | Elie et al. | Oct 2017 | B2 |
9797181 | Wheeler et al. | Oct 2017 | B2 |
9834964 | Van Wiemeersch et al. | Dec 2017 | B2 |
9845071 | Krishnan | Dec 2017 | B1 |
9903142 | Van Wiemeersch et al. | Feb 2018 | B2 |
9909344 | Krishnan et al. | Mar 2018 | B2 |
9957737 | Patel et al. | May 2018 | B2 |
20010005078 | Fukushima et al. | Jun 2001 | A1 |
20010030871 | Anderson | Oct 2001 | A1 |
20020000726 | Zintler | Jan 2002 | A1 |
20020111844 | Vanstory et al. | Aug 2002 | A1 |
20020121967 | Bowen et al. | Sep 2002 | A1 |
20020186144 | Meunier | Dec 2002 | A1 |
20030009855 | Budzynski | Jan 2003 | A1 |
20030025337 | Suzuki et al. | Feb 2003 | A1 |
20030038544 | Spurr | Feb 2003 | A1 |
20030101781 | Budzynski et al. | Jun 2003 | A1 |
20030107473 | Pang et al. | Jun 2003 | A1 |
20030111863 | Weyerstall et al. | Jun 2003 | A1 |
20030139155 | Sakai | Jul 2003 | A1 |
20030172695 | Buschmann | Sep 2003 | A1 |
20030182863 | Mejean et al. | Oct 2003 | A1 |
20030184098 | Aiyama | Oct 2003 | A1 |
20030216817 | Pudney | Nov 2003 | A1 |
20040061462 | Bent et al. | Apr 2004 | A1 |
20040093155 | Simonds et al. | May 2004 | A1 |
20040124708 | Giehler et al. | Jul 2004 | A1 |
20040195845 | Chevalier | Oct 2004 | A1 |
20040217601 | Garnault et al. | Nov 2004 | A1 |
20050057047 | Kachouh | Mar 2005 | A1 |
20050068712 | Schulz et al. | Mar 2005 | A1 |
20050216133 | MacDougall et al. | Sep 2005 | A1 |
20050218913 | Inaba | Oct 2005 | A1 |
20060056663 | Call | Mar 2006 | A1 |
20060100002 | Luebke et al. | May 2006 | A1 |
20060186987 | Wilkins | Aug 2006 | A1 |
20070001467 | Muller et al. | Jan 2007 | A1 |
20070090654 | Eaton | Apr 2007 | A1 |
20070115191 | Hashiguchi et al. | May 2007 | A1 |
20070120645 | Nakashima | May 2007 | A1 |
20070126243 | Papanikolaou et al. | Jun 2007 | A1 |
20070132553 | Nakashima | Jun 2007 | A1 |
20070170727 | Kohlstrand et al. | Jul 2007 | A1 |
20080021619 | Steegmann et al. | Jan 2008 | A1 |
20080060393 | Johansson et al. | Mar 2008 | A1 |
20080068129 | Ieda et al. | Mar 2008 | A1 |
20080129446 | Vader | Jun 2008 | A1 |
20080143139 | Bauer et al. | Jun 2008 | A1 |
20080202912 | Boddie et al. | Aug 2008 | A1 |
20080203737 | Tomaszewski et al. | Aug 2008 | A1 |
20080211623 | Scheurich | Sep 2008 | A1 |
20080217956 | Gschweng et al. | Sep 2008 | A1 |
20080224482 | Cumbo et al. | Sep 2008 | A1 |
20080230006 | Kirchoff et al. | Sep 2008 | A1 |
20080250718 | Papanikolaou et al. | Oct 2008 | A1 |
20080296927 | Gisler et al. | Dec 2008 | A1 |
20080303291 | Spurr | Dec 2008 | A1 |
20080307711 | Kern et al. | Dec 2008 | A1 |
20090033104 | Konchan et al. | Feb 2009 | A1 |
20090033477 | Illium et al. | Feb 2009 | A1 |
20090145181 | Pecoul et al. | Jun 2009 | A1 |
20090160211 | Krishnan et al. | Jun 2009 | A1 |
20090177336 | McClellan et al. | Jul 2009 | A1 |
20090240400 | Lachapelle et al. | Sep 2009 | A1 |
20090257241 | Meinke et al. | Oct 2009 | A1 |
20100007463 | Dingman et al. | Jan 2010 | A1 |
20100052337 | Arabia, Jr. et al. | Mar 2010 | A1 |
20100060505 | Witkowski | Mar 2010 | A1 |
20100097186 | Wielebski | Apr 2010 | A1 |
20100175945 | Helms | Jul 2010 | A1 |
20100235057 | Papanikolaou et al. | Sep 2010 | A1 |
20100235058 | Papanikolaou et al. | Sep 2010 | A1 |
20100235059 | Krishnan et al. | Sep 2010 | A1 |
20100237635 | Ieda et al. | Sep 2010 | A1 |
20100253535 | Thomas | Oct 2010 | A1 |
20100265034 | Cap et al. | Oct 2010 | A1 |
20100315267 | Chung et al. | Dec 2010 | A1 |
20110041409 | Newman et al. | Feb 2011 | A1 |
20110060480 | Mottla et al. | Mar 2011 | A1 |
20110148575 | Sobecki et al. | Jun 2011 | A1 |
20110154740 | Matsumoto et al. | Jun 2011 | A1 |
20110180350 | Thacker | Jul 2011 | A1 |
20110203181 | Magner et al. | Aug 2011 | A1 |
20110203336 | Mette et al. | Aug 2011 | A1 |
20110227351 | Grosedemouge | Sep 2011 | A1 |
20110248862 | Budampati | Oct 2011 | A1 |
20110252845 | Webb et al. | Oct 2011 | A1 |
20110254292 | Ishii | Oct 2011 | A1 |
20110313937 | Moore, Jr. et al. | Dec 2011 | A1 |
20120119524 | Bingle et al. | May 2012 | A1 |
20120154292 | Zhao et al. | Jun 2012 | A1 |
20120180394 | Shinohara | Jul 2012 | A1 |
20120205925 | Muller et al. | Aug 2012 | A1 |
20120228886 | Muller et al. | Sep 2012 | A1 |
20120252402 | Jung | Oct 2012 | A1 |
20130049403 | Fannon et al. | Feb 2013 | A1 |
20130069761 | Tieman | Mar 2013 | A1 |
20130079984 | Aerts et al. | Mar 2013 | A1 |
20130104459 | Patel et al. | May 2013 | A1 |
20130127180 | Heberer et al. | May 2013 | A1 |
20130138303 | McKee et al. | May 2013 | A1 |
20130207794 | Patel | Aug 2013 | A1 |
20130282226 | Pollmann | Oct 2013 | A1 |
20130295913 | Matthews, III et al. | Nov 2013 | A1 |
20130311046 | Heberer et al. | Nov 2013 | A1 |
20130321065 | Salter et al. | Dec 2013 | A1 |
20130325521 | Jameel | Dec 2013 | A1 |
20140000165 | Patel et al. | Jan 2014 | A1 |
20140007404 | Krishnan et al. | Jan 2014 | A1 |
20140015637 | Dassanakake et al. | Jan 2014 | A1 |
20140053370 | Tseng | Feb 2014 | A1 |
20140088825 | Lange et al. | Mar 2014 | A1 |
20140129113 | Van Wiemeersch et al. | May 2014 | A1 |
20140150581 | Scheuring et al. | Jun 2014 | A1 |
20140156111 | Ehrman | Jun 2014 | A1 |
20140188999 | Leonard et al. | Jul 2014 | A1 |
20140200774 | Lange et al. | Jul 2014 | A1 |
20140227980 | Esselink et al. | Aug 2014 | A1 |
20140242971 | Aladenize et al. | Aug 2014 | A1 |
20140245666 | Ishida et al. | Sep 2014 | A1 |
20140256304 | Frye et al. | Sep 2014 | A1 |
20140278599 | Reh | Sep 2014 | A1 |
20140293753 | Pearson | Oct 2014 | A1 |
20140338409 | Kraus et al. | Nov 2014 | A1 |
20140347163 | Banter et al. | Nov 2014 | A1 |
20150001926 | Kageyama et al. | Jan 2015 | A1 |
20150048927 | Simmons | Feb 2015 | A1 |
20150059250 | Miu et al. | Mar 2015 | A1 |
20150084739 | Lemoult et al. | Mar 2015 | A1 |
20150149042 | Cooper et al. | May 2015 | A1 |
20150161832 | Esselink et al. | Jun 2015 | A1 |
20150197205 | Xiong | Jul 2015 | A1 |
20150240548 | Bendel et al. | Aug 2015 | A1 |
20150283886 | Nania | Oct 2015 | A1 |
20150294518 | Peplin | Oct 2015 | A1 |
20150330112 | Van Wiemeersch et al. | Nov 2015 | A1 |
20150330113 | Van Wiemeersch et al. | Nov 2015 | A1 |
20150330114 | Linden | Nov 2015 | A1 |
20150330117 | Van Wiemeersch | Nov 2015 | A1 |
20150330133 | Konchan et al. | Nov 2015 | A1 |
20150360545 | Nanla | Dec 2015 | A1 |
20150371031 | Veno et al. | Dec 2015 | A1 |
20160060909 | Krishnan et al. | Mar 2016 | A1 |
20160130843 | Bingle | May 2016 | A1 |
20160138306 | Krishnan et al. | May 2016 | A1 |
20160153216 | Funahashi et al. | Jun 2016 | A1 |
20160273255 | Suzuki et al. | Sep 2016 | A1 |
20160326779 | Papanikolaou et al. | Nov 2016 | A1 |
20170014039 | Pahlevan et al. | Jan 2017 | A1 |
20170022742 | Seki et al. | Jan 2017 | A1 |
20170030737 | Elie | Feb 2017 | A1 |
20170058588 | Wheeler et al. | Mar 2017 | A1 |
20170074006 | Patel et al. | Mar 2017 | A1 |
20170247016 | Krishnan | Aug 2017 | A1 |
20170247927 | Elie | Aug 2017 | A1 |
20170270490 | Penilla et al. | Sep 2017 | A1 |
20170306662 | Och et al. | Oct 2017 | A1 |
20170349146 | Krishnan | Dec 2017 | A1 |
20180038147 | Linden | Feb 2018 | A1 |
20180051493 | Krishnan et al. | Feb 2018 | A1 |
20180051498 | Van Wiemeersch et al. | Feb 2018 | A1 |
20180058128 | Khan | Mar 2018 | A1 |
20180065598 | Krishnan | Mar 2018 | A1 |
20180080270 | Khan | Mar 2018 | A1 |
20180128022 | Van Wiemeersh et al. | May 2018 | A1 |
20190203508 | Harajli | Jul 2019 | A1 |
Number | Date | Country |
---|---|---|
1232936 | Dec 2005 | CN |
201198681 | Feb 2009 | CN |
201280857 | Jul 2009 | CN |
101527061 | Sep 2009 | CN |
201567872 | Sep 2010 | CN |
101932466 | Dec 2010 | CN |
201915717 | Aug 2011 | CN |
202200933 | Apr 2012 | CN |
202686247 | Jan 2013 | CN |
103206117 | Jul 2013 | CN |
103264667 | Aug 2013 | CN |
203511548 | Apr 2014 | CN |
204326814 | May 2015 | CN |
4403655 | Aug 1995 | DE |
19620059 | Nov 1997 | DE |
19642698 | Apr 1998 | DE |
19642698 | Nov 2000 | DE |
10212794 | Jun 2003 | DE |
20121915 | Nov 2003 | DE |
10309821 | Sep 2004 | DE |
102005041551 | Mar 2007 | DE |
102006029774 | Jan 2008 | DE |
102006040211 | Mar 2008 | DE |
102006041928 | Mar 2008 | DE |
102010052582 | May 2012 | DE |
102011051165 | Dec 2012 | DE |
102015101164 | Jul 2015 | DE |
102014107809 | Dec 2015 | DE |
0372791 | Jun 1990 | EP |
0694664 | Jan 1996 | EP |
1162332 | Dec 2001 | EP |
1284334 | Feb 2003 | EP |
1288403 | Mar 2003 | EP |
1284334 | Sep 2003 | EP |
1460204 | Sep 2004 | EP |
1465119 | Oct 2004 | EP |
1338731 | Feb 2005 | EP |
1944436 | Jul 2008 | EP |
2053744 | Apr 2009 | EP |
2314803 | Apr 2011 | EP |
2698838 | Jun 1994 | FR |
2783547 | Mar 2000 | FR |
2841285 | Dec 2003 | FR |
2860261 | Apr 2005 | FR |
2948402 | Jul 2009 | FR |
2955604 | Jul 2011 | FR |
2402840 | Dec 2004 | GB |
2496754 | May 2013 | GB |
62255256 | Nov 1987 | JP |
05059855 | Mar 1993 | JP |
406167156 | Jun 1994 | JP |
406185250 | Jul 1994 | JP |
2000064685 | Feb 2000 | JP |
2000314258 | Nov 2000 | JP |
2007100342 | Apr 2007 | JP |
2007138500 | Jun 2007 | JP |
20030025738 | Mar 2003 | KR |
20120108580 | Oct 2012 | KR |
0123695 | Apr 2001 | WO |
03095776 | Nov 2003 | WO |
2013111615 | Aug 2013 | WO |
2013146918 | Oct 2013 | WO |
2014146186 | Sep 2014 | WO |
2015064001 | May 2015 | WO |
2015145868 | Oct 2015 | WO |
2017160787 | Sep 2017 | WO |
Entry |
---|
Kisteler Instruments, “Force Sensors Ensure Car Door Latch is Within Specification,” Article, Jan. 1, 2005, 3 pages. |
General Motors Corporation, 2006 Chevrolet Corvette Owner Manual, © 2005 General Motors Corporation, 4 pages. |
General Motors LLC, 2013 Chevrolet Corvette Owner Manual, 2012, 17 pages. |
General Motors, “Getting to Know Your 2014 Corvette,” Quick Reference Guide, 2013, 16 pages. |
InterRegs Ltd., Federal Motor Vehicle Safety Standard, “Door Locks and Door Retention Components,” 2012, FR. vol. 36 No. 232—Feb. 12, 1971, 23 pages. |
Ross Downing, “How to Enter & Exit a Corvette With a Dead Battery,” YouTube video http://www.youtube.com/watch?v=DLDqmGQU6L0, Jun. 6, 2011, 1 page. |
Jeff Glucker, “Friends videotape man ‘trapped’ inside C6 Corette with dead battery,” YouTube via Corvett Online video http://www.autoblog.com/2011/05/14/friends-videotape-man-trapped-inside-c6-corvette-with-dead-bat/, May 14, 2011, 1 page. |
Don Roy, “ZR1 Owner Calls 911 After Locking Self in Car,” website http://www.corvetteonline.com/news/zr1-owner-calls-911-after-locking-self-in-car/, Apr. 13, 2011, 2 pages. |
Zach Bowman, “Corvette with dead battery traps would-be thief,” website http://www.autoblog.com/2011/10/25/corvette-with-dead-battery-traps-would-be-thief/, Oct. 25, 2011, 2 pages. |
U.S. Appl. No. 14/468,634, filed Aug. 26, 2014, 15 pages. |
U.S. Appl. No. 13/608,303, filed Sep. 10, 2012, 15 pages. |
Bryan Laviolette, “GM's New App Turns Smartphones into Virtual Keys,” Article, Jul. 22, 2010, 2 pages. |
Hyundai Bluelink, “Send Directions to your car,” Link to App, 2015, 3 pages. |
U.S. Appl. No. 14/276,415, filed May 13, 2014, 18 pages. |
Office Action dated Mar. 10, 2017, U.S. Appl. No. 15/174,206, filed Jun. 6, 2016, 17 pages. |
Zipcar.com, “Car Sharing from Zipcar: How Does car Sharing Work?” Feb. 9, 2016, 6 pages. |
Department of Transportation, “Federal Motor Vehicle Safety Standards; Door Locks and Door Retention Components and Side Impact Protection, ”http://www.nhtsa.gov/cars/rules/rulings/DoorLocks/DoorLocks_NPRM.html#VI_C, 23 pages, Aug. 28, 2010. |
“Push Button to open your car door” Online video clip. YouTube, Mar. 10, 2010. 1 page. |
Car of the Week: 1947 Lincoln convertible by: bearnest May 29, 2012 http://www.oldcarsweekly.com/car-of-the-week/car-of-the-week-1947-lincoln-convertible. 7 pages. |
U.S. Appl. No. 14/276,415, Office Action dated Mar. 28, 2018, 19 pages. |
U.S. Appl. No. 12/402,744, Office Action dated Oct. 23, 2013, 7 pages. |
U.S. Appl. No. 12/402,744, Advisory Action dated Jan. 31, 2014, 2 pages. |
U.S. Appl. No. 14/280,035, filed May 16, 2014, entitled “Powered Latch System for Vehicle Doors and Control System Therefor.” |
U.S. Appl. No. 14/281,998, filed May 20, 2014, entitled “Vehicle Door Handle and Powered Latch System.” |
U.S. Appl. No. 14/282,224, filed May 20, 2014, entitled “Powered Vehicle Door Latch and Exterior Handle With Sensor.” |
George Kennedy, “Keyfree app replaces conventional keys with your smart phone,” website, Jan. 5, 2015, 2 pages. |
Hyundai Motor India Limited, “Hyundai Care,” website, Dec. 8, 2015, 3 pages. |
Keyfree Technologies Inc., “Keyfree,” website, Jan. 10, 2014, 2 pages. |
PRWEB, “Keyfree Technologies Inc. Launches the First Digital Car Key,” Jan. 9, 2014, 3 pages. |
Number | Date | Country | |
---|---|---|---|
20180363354 A1 | Dec 2018 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15228101 | Aug 2016 | US |
Child | 16113137 | US |