Powered drivers, intraosseous devices and methods to access bone marrow

Abstract
Apparatus and methods are provided to penetrate a bone and associated bone marrow using a powered driver. The powered driver may include a housing having a gear assembly, a motor and a power supply disposed therein. A penetrator assembly may be releasably engaged with one end of a drive shaft extending from the housing. The powered driver may include a light operable to illuminate an insertion site for the penetrator assembly. An indicator may be provided to show status of an associated power supply. An indicator may also be provided to show status of penetrating bone and/or associated bone marrow using a penetrator assembly. The apparatus may include an enable switch to prevent undesired operation of the powered driver.
Description
TECHNICAL FIELD

The present disclosure is related in general to medical devices operable to access bone marrow and specifically to apparatus and methods for penetrating a bone and associated bone marrow with a powered driver and inserting an intraosseous device into the bone marrow.


BACKGROUND OF THE DISCLOSURE

Every year, millions of patients are treated for life-threatening emergencies in the United States. Such emergencies include shock, trauma, cardiac arrest, drug overdoses, diabetic ketoacidosis, arrhythmias, burns, and status epilepticus just to name a few. For example, according to the American Heart Association, more than 1,500,000 patients suffer from heart attacks (myocardial infarctions) every year, with over 500,000 of them dying from its devastating complications.


Obtaining satisfactorily vascular access may be a critical problem in approximately five (5%) percent to ten (10%) percent of patients treated in either prehospital or hospital settings. In the U.S. approximately six million patients annually may experience problems with traditional intravenous access. An essential element for treating medical emergencies is rapid establishment of vascular access to administer drugs and fluids directly into the circulatory system. Whether in an ambulance by paramedics, or in an emergency room by emergency specialists, the goal is the same—administer life-saving drugs and fluids. To a large degree, the ability to successfully treat such critical emergencies is dependent on skill and luck of an operator in accomplishing vascular access.


While it is relatively easy to start an IV on many patients, doctors, nurses and paramedics often experience great difficulty establishing IV access in some patients. These patients are probed repeatedly with sharp needles in an attempt to solve this problem and may require an invasive procedure to finally establish an intravenous route. A further complicating factor in achieving IV access occurs “in the field” (e.g., at the scene of an accident or during ambulance transport) where it is difficult to see the target and/or excessive motion makes accessing the venous system very difficult.


In the case of some patients (e.g., those with chronic disease or the elderly), the availability of easily-accessible veins may be depleted. Other patients may have no available IV sites due to anatomical scarcity of peripheral veins, obesity, extreme dehydration, and/or previous IV drug use. For these patients, finding a suitable site for administering lifesaving drugs becomes a monumental and frustrating task. While morbidity and mortality statistics are not generally available, it is known that many patients with life-threatening emergencies have died of ensuing complications because access to the vascular system with life-saving IV therapy was delayed or simply not possible. For such patients, an alternative approach is required.


Powered drivers associated with intraosseous (IO) devices typically include a housing with various types of motors and/or gear assemblies disposed therein. A rotatable shaft may be disposed within the housing and connected with a gear assembly. Various types of fittings, connections, connectors and/or connector receptacles may be provided at one end of the rotatable shaft extending from the housing to releasably engage an IO device with the powered driver.


Examples of powered drivers are shown in pending patent application Ser. No. 10/449,503 filed May 30, 2003 entitled “Apparatus and Method to Provide Emergency Access To Bone Marrow,” Ser. No. 10/449,476 filed May 30, 2003 entitled “Apparatus and Method to Access Bone Marrow,” and Ser. No. 11/042,912 filed Jan. 25, 2005 entitled “Manual Intraosseous Device.”


Vascular system access may be essential for treatment of many serious diseases, chronic conditions and acute emergency situations. Yet, many patients experience extreme difficulty obtaining effective treatment because of inability to obtain or maintain intravenous (IV) access. An intraosseous (IO) space provides a direct conduit to a patent's vascular system and systemic circulation. Therefore, IO access is generally an effective route to administer a wide variety of drugs, other medications and fluids equivalent to IV access. Rapid IO access offers great promise for almost any serious emergency that requires vascular access to administer life saving drugs, other medications and/or fluids when traditional IV access is difficult or impossible.


Bone marrow typically includes blood, blood forming cells, and connective tissue disposed in an intraosseous space or cavity surrounded by compact bone. Long bones such as the tibia typically have an elongated central cavity filled with yellow bone marrow and adipose or connective tissue. Such cavities may also be referred to as a “medullary cavity”, “bone marrow cavity” and/or “intraosseous space.”


Compact bone disposed nearer the anterior or dorsal surface shall be referred to as “anterior compact bone” or “anterior bone cortex.” Compact bone disposed farther from the dorsal or anterior surface may be referred to as “posterior compact bone” or “posterior bone cortex.”


The upper tibia proximate a patient's knee or the humeral head proximate a patient's shoulder may be used as insertion sites for an IO device to establish access with the patient's vascular system. Sternal access may also be used as an insertion site. Availability of multiple intraosseous insertion sites and associated target areas in adjacent bone marrow have proven to be especially important in applications such as emergency treatment of battlefield casualties or other mass casualty situations. Teachings of the present disclosure may be used at a wide variety of insertion sites and target areas. Teachings of the present disclosure are not limited to power drivers and/or IO devices which may be inserted at the proximal tibia, distal tibia, humerus, or sternum.


IO access may be used as a “bridge” for temporary fluid and/or drug therapy during emergency conditions until conventional IV sites can be found and used. Conventional IV sites often become available because fluids and/or medication provided via IO access may stabilize a patient and expand veins and other portions of a patient's vascular system. IO devices and associated procedures incorporating teachings of the present disclosure may become standard care for administering medications and fluids in situations when IV access is difficult or not possible.


Intraosseous access may be used as a “routine” procedure with chronic conditions which substantially reduce or eliminate availability of conventional IV sites. Examples of such chronic conditions may include, but are not limited to, dialysis patients, patients in intensive care units and epilepsy patients. Intraosseous devices and associated apparatus incorporating teachings of the present disclosure may be quickly and safely used to provide IO access to a patient's vascular system in difficult cases such as status epilepticus to give medical personnel an opportunity to administer crucial medications and/or fluids. Further examples of such acute and chronic conditions are listed near the end of this written description.


SUMMARY OF THE DISCLOSURE

In accordance with teachings of the present disclosure, apparatus and methods are provided for gaining rapid access to a patient's vascular system. One embodiment may include a powered driver operable to insert an intraosseous device into a patient's bone marrow at a selected target site. The powered driver may include a variable speed mechanism such as a low voltage potentiometer or any other electrical device satisfactory to allow varying the speed of an associated motor.


One embodiment of the present disclosure may provide an apparatus operable to insert an intraosseous device into a bone and associated bone marrow. The apparatus may include a housing, a drive shaft, a motor, a power supply and associated electrical circuit, and a light. The drive shaft may extend from an opening in the housing and may be operable to releasably engage the intraosseous device. The motor may be disposed within the housing and rotatably engaged with the drive shaft. The power supply and associated electrical circuit may be operable to power the motor. The light may extend from the housing and be connected to the power supply and the light may be operable to illuminate an insertion site for the intraosseous device.


Another embodiment of the present disclosure may provide a powered driver operable to insert an intraosseous device into a bone and associated bone marrow. The powered driver may include a housing, a drive shaft extending from the housing, a motor, a power supply, electrical circuits, and a switch connected to the electrical circuits. The drive shaft may be operable to releasably engage the intraosseous device. The motor may be disposed within the housing and rotatably engaged with the drive shaft. The power supply and associated electrical circuit may be operable to power the motor. The switch may be operable to activate the motor to rotate the drive shaft.


Another embodiment of the present disclosure may provide an apparatus operable to insert an intraosseous device into a bone and associated bone marrow and to assist with other medical procedures. The apparatus may include a powered driver, a drive shaft, a motor, a power supply and electrical circuits, a switch, and a suction pump. The powered driver may have a housing with one end of the drive shaft extending therefrom. The one end of the drive shaft may be operable to releasably engage the intraosseous device. The motor may be disposed within the housing and rotatably engaged with the drive shaft. The power supply and electrical circuits may be operable to power the motor. The switch may be operable to activate the motor to rotate the drill shaft. The suction pump may have a connector operable to be releasably engaged with the one end of the drive shaft whereby the powered driver may operate the pump.





BRIEF DESCRIPTION OF THE DRAWINGS

A more complete and thorough understanding of the present embodiments and advantages thereof may be acquired by referring to the following description taken in conjunction with the accompanying drawings, in which like reference numbers indicate like features, and wherein:



FIG. 1A is a schematic drawing in section showing one embodiment of a rechargeable powered driver incorporating teachings of the present disclosure;



FIG. 1B is a schematic drawing showing an isometric view of the rechargeable powered driver of FIG. 1A;



FIG. 2A is a schematic drawing showing one example of an electrical power circuit incorporating teachings of the present disclosure;



FIG. 2B is a schematic drawing showing an example of one component of a variable speed controller satisfactory for use with a powered driver in accordance with teachings of the present disclosure;



FIG. 2C is an isometric drawing showing an example of another component of a variable speed controller which may be used with a powered driver in accordance with teachings of the present disclosure;



FIG. 2D is a schematic drawing showing an example of an electrical power circuit having an enable switch or safety switch incorporating teachings of the present disclosure;



FIG. 3A is a schematic drawing showing a powered driver disposed in a charging cradle incorporating teachings of the present disclosure;



FIG. 3B is a schematic drawing showing an isometric view of a powered driver having a battery charge indicator incorporating teachings of the present disclosure;



FIG. 3C is a schematic drawing with portions broken away showing another example of a charge indicator for a powered driver incorporating teachings of the present disclosure;



FIG. 3D is a schematic drawing with portions broken away showing still another example of a power supply status indicator for a powered driver incorporating teachings of the present disclosure;



FIG. 4A is a schematic drawing showing an isometric view of a powered driver having a light in accordance with teachings of the present disclosure;



FIG. 4B is a schematic drawing showing an isometric view of another example of a light disposed on a powered driver in accordance with teachings of the present disclosure;



FIG. 4C is a schematic drawing showing another example of a rechargeable powered driver incorporating teachings of the present disclosure;



FIG. 5A is a schematic drawing showing an isometric view of a powered driver having a safety switch incorporating teachings of the present disclosure;



FIG. 5B is a schematic drawing showing an isometric view of another powered driver having an enable switch incorporating teachings of the present disclosure;



FIG. 5C is a schematic drawing showing an isometric view of still another powered driver having a safety switch incorporating teachings of the present disclosure;



FIG. 6A is a schematic drawing in section with portions broken away showing one example of a protective covering for a trigger assembly or switch assembly of a powered driver incorporating teachings of the present disclosure;



FIG. 6B is a schematic drawing showing another example of a protective cover for a trigger assembly or switch assembly of a powered driver incorporating teachings of the present disclosure;



FIG. 6C is an isometric drawing showing a cross-section of a powered driver incorporating teachings of the present disclosure;



FIG. 7A is a schematic drawing showing a wall mounted cradle for a powered driver incorporating teachings of the present disclosure;



FIG. 7B is a schematic drawing showing another isometric view of a cradle and powered driver of FIG. 7B;



FIG. 8A is a schematic drawing showing one example of an intraosseous needle set which may be inserted into a patient's vascular system using a powered driver;



FIG. 8B is a schematic drawing showing an isometric view with portions broken away of a connector receptacle which may be releasably engaged with a powered driver incorporating teachings of the present disclosure;



FIG. 9A is a schematic drawing showing an isometric view of one embodiment of a hub which may be installed by a powered driver in accordance with teachings of the present disclosure;



FIG. 9B is a schematic drawing showing an isometric view of one embodiment of a connector which may be installed by a powered driver in accordance with teachings of the present disclosure; and



FIG. 10 is a schematic drawing showing an isometric view with portions broken away of a pump which may be operated by a powered driver in accordance with teachings of the present disclosure.





DETAILED DESCRIPTION OF THE DISCLOSURE

Preferred embodiments of the disclosure and its advantages are best understood by reference to FIGS. 1A-10 wherein like numbers refer to same and like parts.


Apparatus and methods incorporating teachings of the present disclosure may be used to provide intraosseous access to a patient's vascular system in the sternum, the proximal humerus (the shoulder area), the proximal tibia (below the knee) and the distal tibia (above the inside of the ankle). The distal tibia may provide easier vascular access to morbidly obese patients. The distal tibia is usually a thinner area of the body. Using the distal tibia as an insertion site may allow emergency medical service personnel to pump medications and fluids into the body of obese patients when regular conventional IV access is difficult. EMS personnel may often not be able to start IVs in obese patients because their size may obscure many of the veins used for conventional IV access. Adipose tissue (fat) around normal IO access sites may be so thick that EMS personnel can't reach adjacent the bone with standard IO needles. Therefore, the distal tibia may provide an IO access site for the overweight population.


One aspect of the present disclosure may include providing a powered driver and respective IO needle sets for safe and controlled vascular access to provide medication and fluids to bone marrow, to remove biopsies of bone and/or bone marrow and to aspirate bone marrow.


Apparatus and methods incorporating teachings of the present disclosure may be used with patients of all ages and weights. For example, one IO needle set may be appropriate for patients within the weight range of 3 kilograms to 39 kilograms. A second IO needle set may be satisfactory for use with patients weighing 40 kilograms or more.


For still other applications, teeth formed on one end of a cannula or catheter may be bent radially outward to reduce the amount of time and the amount of force required to penetrate bone and associated bone marrow using the cannula or catheter. For some applications a powered driver and aspiration needle set formed in accordance with teachings of the present disclosure may provide access to a patient's bone marrow using the same amount of torque. The length of time for penetrating a relatively hard bone may be increased as compared with the length of time required to penetrate a relatively softer bone.


The circuit may limit current supplied to the motor to protect associated batteries and to protect the motor for high current flow. High current flow may correspond with high torque which indicates improper use or operation of the powered driver. High torque may also indicate that the powered driver is not driving into bone. Current flow through the motor may be directly related to torque produced by the drive shaft. For some applications the circuit may indicate when current flow through the motor is typical for penetrating the hard outer layer of a bone (compact bone issue) with an IO device. The circuit may also indicate when current flow through the motor decreases in response to the IO device penetrating associated bone marrow.


For some embodiments the powered driver may include a trigger assembly operable to activate a low speed switch, a high speed switch and/or turn an associated motor off.


For some embodiments the powered driver may include a drive shaft having one end with a generally hexagonal cross section operable to be releasably engaged with intraosseous devices including, but not limited to, biopsy needles and bone marrow aspiration needles.


For some embodiments the powered driver may include a gear assembly rotatably attached to a motor. The gear assembly may have a speed reducing ratio between 60:1 and 80:1. For some applications the gear assembly may reduce speed of rotation of an attached motor at a ratio of approximately 66:1 or 77:1.


Apparatus and methods incorporating teachings of the present disclosure may include using a first IO needle set having a fifteen (15) gage cannula with a length of approximately fifteen (15) millimeters to establish vascular access for patients weighing between approximately three (3) kilograms and thirty nine (39) kilograms. A second IO needle set having a fifteen (15) gage cannula with an approximate length of twenty-five (25) millimeters may be used to establish vascular access for patients weighing forty (40) kilograms and greater.


For some applications intraosseous needles and needle sets incorporating teachings of the present disclosure may be formed from 304-stainless steel. Standard Luer lock catheter connections may be provided on each IO needle. IO needles and needle sets incorporating teachings of the present disclosure may be easily removed from an insertion site without the use of special tooling or equipment. The reduced size and weight of drivers and IO devices incorporating teachings of the present disclosure accommodate use in emergency crash carts and emergency medical vehicles.


The term “driver” as used in this application may include any type of powered driver satisfactory for inserting an intraosseous (IO) device including, but not limited to, a penetrator assembly, catheter, IO needle, IO needle set, biopsy needle or aspiration needle into a selected portion of a patient's vascular system. Various techniques may be satisfactorily used to releasably engage or attach an IO device with a driver incorporating teachings of the present disclosure. A wide variety of connectors and associated connector receptacles, fittings and/or other types of connections with various dimensions and configurations may be satisfactorily used to releasably engage an IO device with a driver. A battery powered driver incorporating teachings of the present disclosure may be used to insert an intraosseous device into a selected target area in ten seconds or less.


The term “intraosseous (IO) device” may be used in this application to include any hollow needle, hollow drive bit, penetrator assembly, bone penetrator, catheter, cannula, trocar, inner penetrator, outer penetrator, IO needle or IO needle set operable to provide access to an intraosseous space or interior portions of a bone.


For some applications an IO needle or IO needle set may include a connector with a trocar or stylet extending from a first end of the connector. A second end of the connector may be operable to be releasably engaged with a powered driver incorporating teachings of the present disclosure. An IO needle or IO needle set may also include a hub with a hollow cannula or catheter extending from a first end of the hub. A second end of the hub may include an opening sized to allow inserting the trocar through the opening and the hollow cannula. The second end of the hub may also be operable to be releasably engaged with the first end of the connector. As previously noted, the second end of the connector may be releasably engaged with a powered driver. A wide variety of connectors and hubs may be used with an IO device incorporating teaching of the present disclosure. The present disclosure is not limited to connector 180 or hub 200 as shown in FIGS. 8A and 8B.


Various features of the present disclosure may be described with respect to powered drivers 30 and 30a-30f. Various features of the present disclosure may also be described with respect to intraosseous devices such as shown in FIGS. 8A and 8B. However, the present disclosure is not limited to use with intraosseous device 160 or powered drivers 30 and 30a-30f.


Powered driver 30 as shown in FIGS. 1A, 1B and 3A may be satisfactorily used to insert an intraosseous device at a desired insertion site adjacent to a bone and associated bone marrow (not expressly shown). For embodiments such as shown in FIGS. 1A, 1B and 3A powered driver 30 may include one or more features of the present disclosure including, but not limited to, a light operable to illuminate an insertion site, charging contacts and associated charging circuitry, a power supply status indicator, trigger guard, variable speed controller, safety switch and/or timing circuit. At least one or more of the preceding features and/or additional features of the present disclosure may also be shown with respect to powered drivers 30-30f and/or 330a-330k.


Various components associated with powered driver 30 may be disposed within housing 32. For example a power source such as rechargeable battery pack 34 may be disposed within handle 36. Battery pack 34 may have various configurations and may include multiple batteries disposed within sealed packaging material. For other applications, a non-rechargeable battery pack may also be disposed within handle 36.


Handle 36 may be generally described as an elongated, hollow container sized to receive battery pack or power supply 34. Cap 38 may be disposed on one end of handle 36. Cap 38 may be removed to allow inserting and removing battery pack 34 therefrom. Handle 36 may also include finger grips 64 having generally ergonomic configurations.


For embodiments such as shown in FIGS. 1A, 1B and 3A cap 38 may include a pair of charging contacts 40a and 40b. A portion of each contact 40a and 40b may extend from cap 38 for engagement with an appropriate charging receptacle. See FIG. 3A. For some applications cap 38 and adjacent portions of handle 36 may have heavy duty screw on or thread connections (not expressly shown). For some applications cap 38 may be formed from relatively strong, heavy duty polymeric material.


Motor 44 and gear assembly 46 may also be disposed within portions of housing 32 adjacent to handle 36. For embodiments represented by powered drivers 30-30e and 330a-330k, motor 44 and gear assembly 46 may be generally aligned with each other. Motor 44 may be connected with one end of gear assembly 46. Drive shaft 52 may be engaged with and extend from another end of gear assembly 46 opposite from motor 44.


For some applications both motor 44 and gear assembly 46 may have generally cylindrical configurations. Exterior portion 45 of motor 44 may correspond with the largest nominal outside diameter associated with motor 44. Exterior portion 47 of gear assembly 46 may correspond with the largest nominal outside diameter associated with gear assembly 46. For embodiments of the present disclosure represented by powered drivers 30-30e and 330a-330k, exterior portion 47 of gear assembly 46 may represent a nominal outside diameter portion larger than any other outside diameter portion associated with motor 44. In other embodiments of the present disclosure represented by powered driver 330i, exterior portion 47 of gear assembly 46 may be smaller than outside diameter portions associated with impact device 44a.


Portions of housing 32 may have generally similar cylindrical configurations corresponding with exterior portions of motor 44 and gear assembly 46. For example, segment 32a of housing 32 may have a generally cylindrical, hollow configuration with an inside diameter compatible with exterior portion 45 of motor 44. Housing segment 32b may have a generally cylindrical, hollow configuration with an inside diameter compatible with exterior portion 47 of gear assembly 46. Since portions of gear assembly 46 have an outside diameter that is larger than the outside diameter of motor 44, housing segment 32b may have a larger outside diameter than the outside diameter of housing segment 32a.


Motors and gear assemblies satisfactory for use with a powered driver incorporating teachings of the present disclosure may be obtained from various vendors. Such motor and gear assemblies are typically ordered as “sets” with one end of each motor securely attached to an adjacent end of an associated gear assembly. The gear assemblies may sometimes be referred to as “reduction gears” or “planetary gears”.


A drive shaft having desired dimensions and configuration may extend from the gear assembly opposite from the motor. The drive shaft may be provided as part of each motor and gear assembly set. The dimensions and/or configuration of an associated housing may be modified in accordance with teachings of the present disclosure to accommodate various types of motors, gear assemblies and/or drive shafts. For example, powered drivers used with aspiration needles and/or biopsy needles may include gear assemblies with larger dimensions required to accommodate larger speed reduction ratios, for example between 60:1 and 80:1, resulting in slower drive shaft RPM. Powered drivers used to provide intraosseous access during emergency medical procedures may operate at a higher speed and may include gear assemblies having a smaller speed reduction ratio, for example between 10:1 and 30:1, resulting in higher drive shaft RPM. For some applications, the difference in size for gear assemblies may result in increasing the inside diameter of an associated housing by approximately two to three millimeters to accommodate larger gear assemblies associated with powered drivers used to insert biopsy needles and/or aspiration needles.


Distal end or first end 48 of housing 32 may include opening 50 with portions of drive shaft 52 extending therefrom. For some applications the portion of drive shaft 52 extending from housing 32 may have a generally pentagonal shaped cross section with tapered surfaces 54 disposed thereon. Tapered surfaces 54 may be disposed at an angle of approximately three (3°) degrees with respect to a longitudinal axis or rotational axis (not expressly shown) associated with drive shaft 52. Relatively small magnet 56 disposed on the extreme end of drive shaft 52 opposite from housing 32. Fittings and/or connectors with various dimensions and/or configurations other than drive shaft 52 and/or magnet 56 may also be satisfactorily used with a powered driver incorporating teachings of the present disclosure.


Intraosseous devices having corresponding tapered openings or connector receptacles may be releasably engaged with portions of drive shaft 52 extending from housing 32. For example, portions of drive shaft 52 extending from distal end 48 may be releasably engaged with tapered opening 186 in connector 180 as shown in FIGS. 8A and 8B or tapered opening 156 in connector receptacle 152 as shown in FIGS. 9 and 10.


For embodiments such as shown in FIGS. 1A, 1B and 3A, powered driver 30 may also include light 60 disposed adjacent to trigger assembly 62. Electrical circuits and associated wiring contacts may also be disposed within housing 32 to supply electrical power to light 60. Trigger assembly 62 may be used to activate electrical circuits to provide electricity from rechargeable battery 34 to motor 44 and/or light 60. A block diagram showing one example of such electrical circuits is shown in FIG. 2A.


A block diagram showing one example of electrical circuits and other components which may be satisfactory used with a powered driver incorporating teachings of the present disclosure is shown in FIG. 2A. Various features of the present disclosure may be described with respect to electrical system 400 as shown in FIG. 2A. Electrical system 400 may include various components such as power supply or battery pack 34, charging contacts 40a and 40b, motor 44, light 60 and/or enable switch 62. Electrical system 400 may include a wide variety of electrical circuits and electrical components including, but not limited to, power supply status indicator 70 and electrical charging circuit 410, voltage regulator 430 and variable speed controller 460. As previously noted, power supply or battery pack 34 may include one or more rechargeable batteries. Various types of nickel metal hydride (NiMH) batteries may be used (particularly lithium batteries). Battery pack 34 may supply fourteen (14) to eighteen (18) volts of direct current (DC) power. However, a wide variety of chargeable and non-rechargeable batteries may be satisfactorily used with powered drivers incorporating teachings of the present disclosure.


A wide variety of electrical circuits and/or electronic indicators may be used with power supply status indicator 70. Additional information concerning such electrical circuits and displays may be described with respect to various power supply status indicators as shown in FIGS. 3B, 3C and 3D.


A wide variety of charging circuits, voltage regulators and variable speed controllers may be satisfactorily used with a powered driver incorporating teachings of the present disclosure. Various examples of such charging circuits, voltage regulators and/or variable speed controllers are shown in FIGS. 2B and 2C. Various types of commercial available charging circuits, voltage regulators and/or variable speed controllers may be satisfactorily used with a powered driver incorporating teachings of the present disclosure. Various examples of commercially available microcontrollers may be satisfactory for use with variable speed controller 460. Variable resistor 600a as shown in FIG. 2B and variable resistor 600b as shown in FIG. 2C represents examples of mechanical devices having slidable contacts which may be used to vary current supplied to motor 44. A trigger assembly incorporating teachings of the present disclosure may be satisfactory used to move one or more of the electrical contacts 602a or 602b.


Switch 62 may be provided to prevent inadvertent or undesired activation of motor 44. Switch 62 may prevent discharge of battery 34 when an associated powered device is carried in a backpack and/or mobile storage container. An associated button 72a may be disposed on exterior portions of a housing to activate the variable speed controller 460. Button 72a may be located at various positions on the exterior of a housing associated with a powered driver incorporating teachings of the present disclosure as shown in FIGS. 5A-5C. A wide variety of indicators including, but not limited to, light emitting diodes (LED), liquid crystal displays (LCD) and small more conventional light bulbs may be satisfactorily used with a powered driver according to teachings of the present disclosure.



FIG. 3A shows one example of a cradle which may be used to recharge a powered driver in accordance with teachings of the present disclosure. Cradles and/or holders incorporating teachings of the present disclosure may be fabricated from a wide variety of thermoplastic and/or polymeric materials including, but not limited to, polycarbonates. Such materials may be filled with glass fibers or any other fibers satisfactory for use in forming a cradle or holder operable to hold and/or recharge a powered driver in accordance with teachings of the present disclosure. Nylon filled with glass may be used for some applications.


Materials used to form cradle 280 may be relatively low cost but durable. Such materials may be relatively stiff to secure a powered driver therein and may also flex without breaking to allow inserting and removing a powered driver at least five hundred (500) times.


Cradle 280 may have a length and width selected to be compatible with exterior portions of housing 32 and corresponding dimensions of powered driver 30. For some applications first end 281 and second end 282 may have generally rounded configurations. A notch (not expressly shown) may also be formed in first end 281 to accommodate portions of drive shaft 52. Various types of holders, clamps or quick release mechanisms may be included as part of cradle 280. For embodiments such as shown in FIG. 3A, cradle 280 may include a pair of arms 284 projecting from respective edges of cradle 280. Only one arm 284 is shown in FIG. 3A.


Arms 284 may be relatively strong with sufficient flexibility to allow inserting and removing portions of powered driver 30 from engagement with cradle 280. The height of arms 284 relative to adjacent longitudinal edges of cradle 280 may be based at least in part on the corresponding dimensions of handle 36 and other portions of housing 32. The spacing or gap formed between arms 284 may be selected to accommodate the width of handle 36. Respective rib 286 may be formed on the end of each arm 284. The configuration of ribs 286 may be selected to be compatible with a snug but releasable snap fit with adjacent portions of handle 36.


For some applications walls or partitions 290 may be formed adjacent to respective arms 294. Only one wall 290 is shown in FIG. 3A. Partitions or walls 290 may be spaced from each other a sufficient distance to accommodate associated portions of housing 32 and may be sized to prevent accidental activation of trigger assembly 62.


End 282 of cradle 280 may be modified to include electrical contact (not expressly shown) operable to engage recharging contacts 40a and 40b. Electric power cable 292 may also extend from end 282. Electrical power cable 292 may be inserted into an appropriate electrical outlet for use in recharging powered driver 30. A plurality of lights 296, 298 and 300 may be provided on exterior portions of cradle 300 to indicate the status of rechargeable battery 34. For example light 296 may indicate red when rechargeable battery 34 is discharged below a desired level. Light 298 may be flashing yellow to indicate that rechargeable battery 34 is being recharged and/or discharged. Light 300 may be steady green to indicate when rechargeable battery 34 has been fully recharged. Lights 296, 298 and 300 may also alternately blink or have a steady state condition.


Powered drive 30a as shown in FIG. 3B may include an indicator operable to indicate the status of a power supply disposed within handle 36. For some embodiments status indicator 70a may be disposed at proximal end or second end 49a of powered driver 30a. A digital display indicating the number of insertions available from a power supply disposed within housing 32a may be provided by indicator 70 at proximal end 49a of housing 32a. The power supply may be any type of battery or other suitable source of power.


An embodiment of the present disclosure is shown in FIG. 3C which includes status indicator 70b disposed on second end or proximal end 49b of powered driver 30b. Status indicator 70b may include digital indication 72 showing the number of insertions remaining in an associated power source. In addition variable indicator scale 74 may be provided to show the status of an associated power source between fully charged and recharge required. For example, variable indicator scale 74 may include a voltmeter, an amp meter, and/or any other component operable to measure the status of an associated power supply. As another example, variable indicator scale 74 may be calibrated to display a percentage of full charge and/or a number of insertions remaining.


A further embodiment of the present disclosure is shown in FIG. 3D. For this embodiment lights 296, 298 and 300 may be disposed on proximal end or second end 49c of powered driver 30c. Lights 296, 298 and 300 may function as previously describe with respect to cradle 280.



FIGS. 7A and 7B show another embodiment of the present disclosure including powered driver 330j disposed within cradle 280a. Cradle 280a may include arms 284a as described in relation to FIG. 3b. Arms 284a may be relatively strong with sufficient flexibility to allow inserting and removing portions of powered driver 330j from engagement with cradle 280a. The height of arms 284a relative to adjacent longitudinal edges of cradle 280a may be based at least in part on the corresponding dimensions of handle 336 and other portions of housing 332. The spacing or gap formed between arms 284 may be selected to accommodate the width of handle 336.


Powered drivers 30d and 30e as shown in FIGS. 4A and 4B show alternative locations for a light disposed on a powered driver in accordance with teachings of the present disclosure. Powered driver 30d may include substantially the same features as powered driver 30 except light 60d may be disposed on housing segment 32b opposite from trigger assembly 62. For embodiments such as shown in FIG. 4B light 60e may be disposed on distal end or first end 48e of powered driver 30e. Light 60e may extend approximately three hundred sixty degrees (360°) around the perimeter of associated drive shaft 54.


A further embodiment of a rechargeable powered driver incorporating teachings of the present disclosure is shown in FIG. 4C. For embodiments represented by powered driver 30f, cap 38f may be disposed on one end of handle 36. Cap 38 may include opening 40 sized to receive charging connection 130 attached to power cable 132. A wide variety of recharging connectors may be used to provide power to cable 132.



FIGS. 6A and 6B show examples of a protective covering 63 for trigger assembly 62 or switch assembly 62 of powered driver incorporating teachings of the present disclosure. Housing 32 may be sealed to prevent blood, other bodily fluids, and/or other contaminants from reaching interior portions of housing 32 and components disposed therein (e.g., battery 34, motor 44, and/or gear assembly 46). FIGS. 6A and 6B show protective covering 63a and 63b configured to seal with housing 32. Protective covering 63a and 63b may be formed with an elastomeric material chosen for resistance to wear, electrical current, impermeability, and/or any other characteristic sought as long as it allows operation of switch assembly 62 by the user.



FIG. 6C shows powered driver 330i incorporating an impact device 44a associated with gearbox 46 and power sensor circuit 600c. Impact device 44a may be configured to operate in a similar manner to an impact wrench by storing energy in a rotating mass then delivering it suddenly to gearbox 46. In some embodiments, impact device 44a will require less total power from power supply 34.


Power sensor circuit 600c may detect current changes between impact device 44a and power supply 34. In some applications, current changes between impact device 44a and power supply 34 may indicate bone penetration is complete. Power sensor circuit 600c may be operable to automatically reduce or cut power from power supply 34 to impact device 44a once the associated intraosseous device has penetrated the cortex of the bone.


An intraosseous device (IO), sometimes referred to as a penetrator assembly or IO needle set, may include an outer penetrator such as a cannula, needle or hollow drive bit which may be of various sizes. Needles may be small (for pediatric patients), medium (for adults) and large (for over-sized adults). Penetrator, cannulas or needles may be provided in various configurations depending on the clinical purpose for needle insertion. For example, there may be one configuration for administering drugs and fluids and an alternate configuration for sampling bone marrow or for other diagnostic purposes although one needle configuration may be suitable for both purposes. Needle configuration may vary depending on the site chosen for insertion of a needle.


A wide variety of trocars, spindles and/or shafts may be disposed within a catheter or cannula during insertion at a selected insertion site. Such trocars, spindles and shafts may also be characterized as inner penetrators. A catheter, cannula, hollow needle or hollow drive bit may sometimes be characterized as an outer penetrator.


For some applications a layer or coating (not expressly shown) of an anticoagulant such as, but not limited to, heparin may be placed on interior and/or exterior portions of a catheter or cannula to prevent thrombotic occlusion of the catheter or cannula. Anticoagulants may reduce platelet adhesion to interior surfaces of the catheter or cannula and may reduce clotting time of blood flowing into and through the catheter or cannula. Placing a layer of an anticoagulant on exterior portions of a catheter or cannula adjacent to an associated tip and/or side ports may be helpful to prevent clotting.


Penetrator assembly 160 as shown in FIGS. 8A and 8B may include connector 180, and associated hub 200, outer penetrator 210 and inner penetrator 220. Penetrator assembly 160 may include an outer penetrator such as a cannula, hollow tube or hollow drive bit and an inner penetrator such as a stylet or trocar. Various types of stylets and/or trocars may be disposed within an outer penetrator. For some applications outer penetrator or cannula 210 may be described as a generally elongated tube sized to receive inner penetrator or stylet 220 therein. Portions of inner penetrator 220 may be disposed within longitudinal passageway 184 extending through outer penetrator 210. The outside diameter of inner penetrator 220 and the inside diameter of longitudinal passageway 184 may be selected such that inner penetrator 220 may be slidably disposed within outer penetrator 210.


Metallic disc 170 may be disposed within opening 186 for use in releasably attaching connector 180 with magnet 56 disposed on the end of drive shaft 52. End 223 of inner penetrator 220 is preferably spaced from metallic disc 170 with insulating or electrically nonconductive material disposed therebetween.


Tip 211 of outer penetrator 210 and/or tip 222 of inner penetrator 220 may be operable to penetrate bone and associated bone marrow. The configuration of tips 211 and/or 222 may be selected to penetrate a bone or other body cavities with minimal trauma. First end or tip 222 of inner penetrator 220 may be trapezoid shaped and may include one or more cutting surfaces. In one embodiment outer penetrator 210 and inner penetrator 220 may be ground together as one unit during an associated manufacturing process. Providing a matching fit allows respective tips 211 and 222 to act as a single driving unit which facilitates insertion and minimizes damage as portions of penetrator assembly 160 are inserted into a bone and associated bone marrow. Outer penetrator 210 and/or inner penetrator 220 may be formed from stainless steel, titanium or other materials of suitable strength and durability to penetrate bone.


Hub 200 may be used to stabilize penetrator assembly 160 during insertion of an associated penetrator into a patient's skin, soft tissue and adjacent bone at a selected insertion site. First end 201 of hub 200 may be operable for releasable engagement or attachment with associated connector 180. Second end 202 of hub 200 may have a size and configuration compatible with an associated insertion site for outer penetrator 210. The combination of hub 200 with outer penetrator 210 may sometimes be referred to as a “penetrator set” or intraosseous needle.


Connector 180 and attached inner penetrator 220 may be releasably engaged with each other by Luer type fittings, threaded connections or other suitable fittings formed on first end 201 of hub 200. Outer penetrator 210 extends from second end 202 of hub 200.


For some applications connector 180 may be described as a generally cylindrical tube defined in part by first end 181 and second end 182. The exterior of connector 180 may include an enlarged tapered portion adjacent to end 181. A plurality of longitudinal ridges 190 may be formed on the exterior of connector 180 to allow an operator to grasp associated penetrator assembly 160 during attachment with a drive shaft. See FIG. 1A. Longitudinal ridges 190 also allow connector 180 to be grasped for disengagement from hub 200 when outer penetrator 210 has been inserted into a bone and associated bone marrow.


Second end 182 of connector 180 may include opening 185 sized to receive first end 201 of hub 200 therein. Threads 188 may be formed in opening 185 adjacent to second end 182 of connector 180. Threaded fitting 188 may be used in releasably attaching connector 180 with threaded fitting 208 adjacent to first end 201 of hub 200.


First end 201 of hub 200 may include a threaded connector 208 or other suitable fittings formed on the exterior thereof. First end 201 may have a generally cylindrical pin type configuration compatible with releasably engaging second end or box end 182 of connector 180.


For some applications end 202 of hub 200 may have the general configuration of a flange. Angular slot or groove 204 sized to receive one end of protective cover or needle cap 234 may be formed in end 202. Slot or groove 204 may be used to releasable engage a needle cover (not expressly shown) with penetrator assembly 160.


For some applications a penetrator assembly may include only a single, hollow penetrator. For other applications a penetrator assembly may include an outer penetrator such as a cannula, hollow needle or hollow drive bit and an inner penetrator such as a stylet, trocar or other removable device disposed within the outer penetrator. Penetrator 210 is one example of a single, hollow penetrator.


The size of a penetrator may vary depending upon the intended application for the associated penetrator assembly. Penetrators may be relatively small for pediatric patients, medium size for adults and large for oversize adults. By way of example, a penetrator may range in length from five (5) mm to thirty (30) mm. The diameter of a penetrator may range from eighteen (18) gauge to ten (10) gauge. The length and diameter of the penetrator used in a particular application may depend on the size of a bone to which the apparatus may be applied. Penetrators may be provided in a wide variety of configurations depending upon intended clinical purposes for insertion of the associated penetrator. For example, there may be one configuration for administering drugs and/or fluids to a patient's bone marrow and an alternative configuration for sampling bone marrow and/or blood from a patient. Other configurations may be appropriate for bone and/or tissue biopsy.


For some applications connector 180 may be described as having a generally cylindrical configuration defined in part by first end 181 and second end 182. SEE FIG. 2B. Exterior portions of connector 180 may include an enlarged tapered portion adjacent to end 181. A plurality of longitudinal ridges 190 may be formed on the exterior of connector 180 to allow an operator to grasp associated penetrator assembly 160 during attachment with a drive shaft. Longitudinal ridges 190 also allow connector 180 to be grasped for disengagement from hub 200 when outer penetrator 210 has been inserted into a bone and associated bone marrow.


First end 181 of connector of 180 may include opening 186 sized to receive portions drive shaft 52 therein. A plurality of webs 136 may extend radially outward from connector receptacle 186. Webs 136 cooperate with each other to form a plurality of openings 138 adjacent to first end 181. Opening 186 and openings 138 cooperate with each other to form portions of a connector receptacle operable to receive respective portions of connector 30 therein. FIGS. 9A and 9B show isometric views of embodiments of connector 180a and hub 200a.


A wide variety of accessory tools and devices are frequently carried by emergency medical service personnel and/or first responders. Pump assembly 130 as shown in FIG. 10 represents an example of an accessory tool which may be operated by a powered driver incorporating teachings of the present disclosure. Pump assembly 130 may include housing 134 with connector receptacle 152 extending therefrom. Various components of pump assembly 130 (not expressly shown) may be disposed within housing 134 and rotatably attached with connector receptacle 152. Inlet tubing 131 may be provided to communicate fluids with interior portions of pump housing 134. Outlet tubing 132 may be provided to direct fluids exiting from pump assembly 130. Such fluids may be various types of liquids associated with medical procedures. Such fluids may include small particulate matter. Pump assembly 130 may sometimes function as a vacuum or suction pump for such procedures.


First end 154 of connector receptacle 152 may include opening 156 similar to opening 186 as described with respect to connector 180. End 252 extending from power driver 230a may be disposed within opening 156 to rotate connector receptacle 152 and attached components of pump assembly 130a. As a result, powered driver 230a may be used to pump fluids from inlet 131 through pump assembly 130a and outwardly from outlet 132.


Examples of acute and chronic conditions which may be treated using powered drivers, intraosseous devices, and procedures incorporating teachings of the present disclosure include, but are not limited to, the following:

    • Anaphylaxis (epinephrine, steroids, antihistamines, fluids, and life support)
    • Arrhythmia (anti-arrhythmics, electrolyte balance, life support);
    • Burns (fluid replacement, antibiotics, morphine for pain control);
    • Cardiac arrest (epinephrine, atropine, amiodarone, calcium, xylocaine, magnesium);
    • Congestive heart failure (life support, diuretics, morphine, nitroglycerin);
    • Dehydration (emergency port for life support, antibiotics, blood, electrolytes);
    • Diabetic Ketoacidosis (life support, electrolyte control, fluid replacement);
    • Dialysis (emergency port for life support, antibiotics, blood, electrolytes);
    • Drug overdose (naloxone, life support, electrolyte correction);
    • Emphysema (life support, beta adrenergics, steroids);
    • Hemophiliacs (life support, blood, fibrin products, analgesics);
    • Osteomyelitis (antibiotics directly into the site of infection, analgesics);
    • Pediatric applications (shock, dehydration, nutrition, electrolyte correction);
    • Renal Failure (both acute and chronic kidney failure, inability to purify blood);
    • Seizures (anti-seizure medications, life support, fluid balance);
    • Shock (life support fluids, pressor agents, antibiotics, steroids);
    • Sickle cell crisis (fluid, morphine for pain, blood, antibiotics); and
    • Trauma (emergency port for life support fluids, antibiotics, blood, electrolytes).


Although the present disclosure and its advantages have been described in detail, it should be understood that various changes, substitutions and alternations can be made herein without departing from the spirit and scope of the disclosure as defined by the following claims.

Claims
  • 1. A powered driver operable to insert an intraosseous device into a bone and associated bone marrow comprising: a housing having one end of a rotatable drive shaft extending therefrom;the one end of the drive shaft operable to releasably and slidably engage the intraosseous device such that the intraosseous device is rotatably fixed relative to the drive shaft;a motor disposed within the housing and rotatably engaged with the drive shaft;a power supply and electrical circuits operable to power the motor;a switch connected to the electrical circuits, the switch operable to activate the motor to rotate the drive shaft;a gear assembly rotatably attached to the motor;the drive shaft extending from the gear assembly opposite from the motor; andthe gear assembly operable to reduce rotation of the motor,where the gear assembly is operable to reduce the rotation of the motor by a ratio between approximately sixty to one and eighty to one.
  • 2. The powered driver of claim 1 further comprising an impact mechanism operable to allow the motor and an associated gearbox to function as an impact wrench whereby the impact mechanism may reduce the amount of power taken from batteries during insertion of an intraosseous device.
  • 3. The powered driver of claim 1 further comprising a power circuit sensor operable to detect current changes indicating bone penetration by the intraosseous device.
  • 4. The powered driver of claim 3 further comprising the power circuit sensor operable to automatically stop the driver once the intraosseous device has penetrated a cortex of the bone.
  • 5. The powered driver of claim 1 further comprising a portion of the housing operable to be placed in a wall mounted charging system to provide a constant charge to the power supply.
  • 6. The powered driver of claim 1 further comprising: a plurality of indicator lights including a red light operable to indicate low power levels in the power source;a yellow light operable to indicate satisfactory insertion torque and/or pressure; anda green light operable to indicate satisfactory power available in the power source.
  • 7. The powered driver of claim 1 further comprising a red indicator light operable to indicate excessive torque and/or pressure on the drive shaft.
  • 8. The powered driver of claim 1 further comprising a digital volt meter operable to indicate percentage of power available in the power source and number of insertions available without requiring recharging or replacement of the power source.
  • 9. The powered driver of claim 1 further comprising a digital amp meter operable to indicate percentage of power available in the power source and number of insertions available without requiring recharging or replacement of the power source.
  • 10. The powered driver of claim 1 where the switch and the electrical circuits are operable to rotate the drive shaft at a first low speed and a second higher speed.
  • 11. The powered driver of claim 1 where the switch and the electrical circuits are operable to vary the speed of rotation of the drive shaft.
  • 12. A powered driver operable to insert an intraosseous device into a bone and associated bone marrow comprising: a housing having one end of a rotatable drive shaft extending therefrom;the one end of the drive shaft operable to releasably and slidably engage the intraosseous device such that the intraosseous device is rotatably fixed relative to the drive shaft;a motor disposed within the housing and rotatably engaged with the drive shaft;a power supply and electrical circuits operable to power the motor;a switch connected to the electrical circuits, the switch operable to activate the motor to rotate the drive shaft; anda fiber optic cable extending from a light emitting diode to a halo light disposed on one end of the housing.
  • 13. An apparatus operable to insert an intraosseous device into a bone and associated bone marrow and to assist with other medical procedures comprising: a powered driver having a housing with one end of a rotatable drive shaft extending therefrom;the one end of the drive shaft operable to releasably and slidably engage the intraosseous device such that the intraosseous device is rotatably fixed relative to the drive shaft;a motor disposed within the housing and rotatably engaged with the drive shaft;a power supply and electrical circuits operable to power the motor;a switch connected to the electrical circuits;the switch operable to activate the motor to rotate the drive shaft; anda suction pump having a connector operable to be releasably engaged with the one end of the drive shaft whereby the powered driver may operate the pump via rotation of the drive shaft.
  • 14. A powered driver operable to insert an intraosseous device into a bone and associated bone marrow comprising: a housing having one end of a rotatable drive shaft extending therefrom;the one end of the drive shaft operable to releasably and slidably engage the intraosseous device such that the intraosseous device is rotatably fixed relative to the drive shaft;a motor disposed within the housing and rotatably engaged with the drive shaft;a power supply and electrical circuits operable to power the motor;a switch connected to the electrical circuits, the switch operable to activate the motor to rotate the drive shaft; andan impact mechanism operable to allow the motor and an associated gearbox to function as an impact wrench whereby the impact mechanism may reduce the amount of power taken from batteries during insertion of an intraosseous device.
  • 15. The powered driver of claim 14 further comprising a power circuit sensor operable to detect current changes indicating bone penetration by the intraosseous device.
  • 16. The powered driver of claim 15 further comprising the power circuit sensor operable to automatically stop the driver once the intraosseous device has penetrated a cortex of the bone.
  • 17. The powered driver of claim 14 further comprising a portion of the housing operable to be placed in a wall mounted charging system to provide a constant charge to the power supply.
  • 18. The powered driver of claim 14 further comprising: a plurality of indicator lights including a red light operable to indicate low power levels in the power source;a yellow light operable to indicate satisfactory insertion torque and/or pressure; anda green light operable to indicate satisfactory power available in the power source.
  • 19. The powered driver of claim 14 further comprising a red indicator light operable to indicate excessive torque and/or pressure on the drive shaft.
  • 20. The powered driver of claim 14 where the switch and the electrical circuits are operable to rotate the drive shaft at a first low speed and a second higher speed.
RELATED APPLICATIONS

This Application claims the benefit of U.S. Provisional Patent Application Ser. No. 60/910,122 entitled “Powered Drivers, Intraosseous Device and Methods to Access Bone Marrow” filed Apr. 4, 2007. This application is a continuation-in-part of U.S. patent application Ser. No. 10/449,476 entitled “Apparatus and Method to Access to Bone Marrow” filed May 30, 2003. This application is a continuation-in-part of U.S. patent application Ser. No. 11/253,467 entitled “Apparatus and Method to Access Bone Marrow” filed Oct. 19, 2005. This application is a continuation-in-part of U.S. patent application Ser. No. 11/253,959 entitled “Method and Apparatus to Access Bone Marrow” filed Oct. 19, 2005.

US Referenced Citations (358)
Number Name Date Kind
1539637 Bronner May 1925 A
2317648 Siqveland Apr 1943 A
2419045 Whittaker Apr 1947 A
2773501 Young Dec 1956 A
3022596 Cannon et al. Feb 1962 A
3104448 Morrow et al. Sep 1963 A
3120845 Horner Feb 1964 A
3173417 Horner Mar 1965 A
3175554 Stewart Mar 1965 A
3507276 Burgess et al. Apr 1970 A
3543966 Ryan et al. Dec 1970 A
3734207 Fishbein May 1973 A
3815605 Schmidt et al. Jun 1974 A
3835860 Garretson et al. Sep 1974 A
3893445 Hofsess Jul 1975 A
3935909 Mabuchi et al. Feb 1976 A
3991765 Cohen Nov 1976 A
3999110 Ramstrom et al. Dec 1976 A
4021920 Kirschner et al. May 1977 A
4099518 Baylis et al. Jul 1978 A
4124026 Berner et al. Nov 1978 A
4142517 Stavropoulos Mar 1979 A
4170993 Alvarez Oct 1979 A
4185619 Reiss Jan 1980 A
4194505 Schmitz Mar 1980 A
4258722 Sessions et al. Mar 1981 A
4262676 Jamshidi Apr 1981 A
4306570 Matthews Dec 1981 A
4333459 Becker Jun 1982 A
4381777 Garnier May 1983 A
4441563 Walton, II Apr 1984 A
4469109 Mehl Sep 1984 A
4484577 Sackner et al. Nov 1984 A
4543966 Islam et al. Oct 1985 A
4553539 Morris Nov 1985 A
4605011 Naslund Aug 1986 A
4620539 Andrews et al. Nov 1986 A
4646731 Brower Mar 1987 A
4654492 Koerner et al. Mar 1987 A
4655226 Lee Apr 1987 A
4659329 Annis Apr 1987 A
4692073 Martindell Sep 1987 A
4711636 Bierman Dec 1987 A
4713061 Tarello et al. Dec 1987 A
4716901 Jackson et al. Jan 1988 A
4723945 Theiling Feb 1988 A
4758225 Cox et al. Jul 1988 A
4762118 Lia et al. Aug 1988 A
4772261 Von Hoff et al. Sep 1988 A
4787893 Villette Nov 1988 A
4793363 Ausherman et al. Dec 1988 A
4867158 Sugg Sep 1989 A
4919146 Rhinehart et al. Apr 1990 A
4921013 Spalink et al. May 1990 A
4935010 Cox et al. Jun 1990 A
4940459 Noce Jul 1990 A
4944677 Alexandre Jul 1990 A
4969870 Kramer et al. Nov 1990 A
4986279 O'Neill Jan 1991 A
5002546 Romano Mar 1991 A
5025797 Baran Jun 1991 A
5036860 Leigh et al. Aug 1991 A
5057085 Kopans Oct 1991 A
5074311 Hasson Dec 1991 A
5116324 Brierley et al. May 1992 A
5120312 Wigness et al. Jun 1992 A
5122114 Miller et al. Jun 1992 A
5133359 Kedem Jul 1992 A
5137518 Mersch Aug 1992 A
5139500 Schwartz Aug 1992 A
RE34056 Lindgren et al. Sep 1992 E
5172701 Leigh et al. Dec 1992 A
5172702 Leigh et al. Dec 1992 A
5176643 Kramer et al. Jan 1993 A
5195985 Hall Mar 1993 A
5203056 Funk et al. Apr 1993 A
5207697 Carusillo May 1993 A
5217478 Rexroth Jun 1993 A
5249583 Mallaby Oct 1993 A
5257632 Turkel et al. Nov 1993 A
5269785 Bonutti Dec 1993 A
5279306 Mehl Jan 1994 A
5312364 Jacobs May 1994 A
5324300 Elias et al. Jun 1994 A
5332398 Miller et al. Jul 1994 A
5333790 Christopher Aug 1994 A
5341823 Manosalva et al. Aug 1994 A
5348022 Leigh et al. Sep 1994 A
5357974 Baldridge Oct 1994 A
5361853 Takamura et al. Nov 1994 A
5368046 Scarfone et al. Nov 1994 A
5372583 Roberts et al. Dec 1994 A
5383859 Sewell, Jr. Jan 1995 A
5385553 Hart et al. Jan 1995 A
5400798 Baran Mar 1995 A
5405348 Anspach et al. Apr 1995 A
5423824 Akerfeldt et al. Jun 1995 A
5431655 Melker et al. Jul 1995 A
5451210 Kramer et al. Sep 1995 A
5484442 Melker et al. Jan 1996 A
D369858 Baker et al. May 1996 S
5526821 Jamshidi Jun 1996 A
5529580 Kusunoki et al. Jun 1996 A
5549565 Ryan et al. Aug 1996 A
5554154 Rosenberg Sep 1996 A
5556399 Huebner et al. Sep 1996 A
5558737 Brown et al. Sep 1996 A
5571133 Yoon Nov 1996 A
5586847 Mattern, Jr. et al. Dec 1996 A
5591188 Waisman Jan 1997 A
5595186 Rubinstein et al. Jan 1997 A
5601559 Melker et al. Feb 1997 A
5632747 Scarborough et al. May 1997 A
5651419 Holzer et al. Jul 1997 A
5713368 Leigh Feb 1998 A
5724873 Hillinger Mar 1998 A
5733262 Paul Mar 1998 A
5752923 Terwilliger May 1998 A
5762639 Gibbs Jun 1998 A
5766221 Benderev et al. Jun 1998 A
5769086 Ritchart et al. Jun 1998 A
5779708 Wu Jul 1998 A
5800389 Burney et al. Sep 1998 A
5801454 Leininger Sep 1998 A
5807277 Swaim Sep 1998 A
5809653 Everts Sep 1998 A
5810826 Akerfeldt et al. Sep 1998 A
5817052 Johnson et al. Oct 1998 A
5823970 Terwilliger Oct 1998 A
D403405 Terwilliger Dec 1998 S
5858005 Kriesel Jan 1999 A
5868711 Kramer et al. Feb 1999 A
5868750 Schultz Feb 1999 A
5873510 Hirai et al. Feb 1999 A
5885226 Rubinstein et al. Mar 1999 A
5891085 Lilley et al. Apr 1999 A
5911701 Miller et al. Jun 1999 A
5911708 Teirstein Jun 1999 A
5916229 Evans Jun 1999 A
5919172 Golba, Jr. Jul 1999 A
5924864 Loge et al. Jul 1999 A
5927976 Wu Jul 1999 A
5928238 Scarborough et al. Jul 1999 A
5928241 Menut Jul 1999 A
5941706 Ura Aug 1999 A
5941851 Coffey et al. Aug 1999 A
5960797 Kramer et al. Oct 1999 A
5980545 Pacala et al. Nov 1999 A
5984020 Meyer et al. Nov 1999 A
5993417 Yerfino et al. Nov 1999 A
5993454 Longo Nov 1999 A
6007496 Brannon Dec 1999 A
6017348 Hart et al. Jan 2000 A
6018094 Fox Jan 2000 A
6022324 Skinner Feb 2000 A
6027458 Janssens Feb 2000 A
6033369 Goldenberg Mar 2000 A
6033411 Preissman Mar 2000 A
6059806 Hoegerle May 2000 A
6063037 Mittermeier et al. May 2000 A
6071284 Fox Jun 2000 A
6080115 Rubinstein Jun 2000 A
6083176 Terwilliger Jul 2000 A
6086543 Anderson et al. Jul 2000 A
6086544 Hibner et al. Jul 2000 A
6092355 Ishmael Jul 2000 A
6096042 Herbert Aug 2000 A
6102915 Bresler et al. Aug 2000 A
6106484 Terwilliger Aug 2000 A
6110128 Andelin et al. Aug 2000 A
6110129 Terwilliger Aug 2000 A
6110174 Nichter Aug 2000 A
6120462 Hibner et al. Sep 2000 A
6126670 Walker et al. Oct 2000 A
6135769 Kwan Oct 2000 A
6159163 Strauss et al. Dec 2000 A
6162203 Haaga Dec 2000 A
6183442 Athanasiou et al. Feb 2001 B1
6210376 Grayson Apr 2001 B1
6217561 Gibbs Apr 2001 B1
6221029 Mathis et al. Apr 2001 B1
6228049 Schroeder et al. May 2001 B1
6228088 Miller et al. May 2001 B1
6238355 Daum May 2001 B1
6247928 Meller et al. Jun 2001 B1
6248110 Reiley et al. Jun 2001 B1
6257351 Ark et al. Jul 2001 B1
6273715 Meller et al. Aug 2001 B1
6273862 Privitera et al. Aug 2001 B1
6283925 Terwilliger Sep 2001 B1
6283970 Lubinus Sep 2001 B1
6287114 Meller et al. Sep 2001 B1
6302852 Fleming, III et al. Oct 2001 B1
6309358 Okubo Oct 2001 B1
6312394 Fleming, III Nov 2001 B1
6315737 Skinner Nov 2001 B1
6325806 Fox Dec 2001 B1
6328701 Terwilliger Dec 2001 B1
6328744 Harari et al. Dec 2001 B1
6358252 Shapira Mar 2002 B1
6402701 Kaplan et al. Jun 2002 B1
6419490 Kitchings Weathers, Jr. Jul 2002 B1
6425888 Embleton et al. Jul 2002 B1
6428487 Burdorff et al. Aug 2002 B1
6443910 Krueger et al. Sep 2002 B1
6468248 Gibbs Oct 2002 B1
6478751 Krueger et al. Nov 2002 B1
6488636 Bryan et al. Dec 2002 B2
6523698 Dennehey et al. Feb 2003 B1
6527736 Attinger et al. Mar 2003 B1
6527778 Athanasiou et al. Mar 2003 B2
6540694 Van Bladel et al. Apr 2003 B1
6547511 Adams Apr 2003 B1
6547561 Meller et al. Apr 2003 B2
6554779 Viola et al. Apr 2003 B2
6555212 Boiocchi et al. Apr 2003 B2
6582399 Smith et al. Jun 2003 B1
6585622 Shum et al. Jul 2003 B1
6595911 LoVuolo Jul 2003 B2
6595979 Epstein et al. Jul 2003 B1
6613054 Scribner et al. Sep 2003 B2
6616632 Sharp et al. Sep 2003 B2
6620111 Stehens et al. Sep 2003 B2
6626848 Neuenfeldt Sep 2003 B2
6626887 Wu Sep 2003 B1
6638235 Miller et al. Oct 2003 B2
6656133 Voegele et al. Dec 2003 B2
6689072 Kaplan et al. Feb 2004 B2
6702760 Krause et al. Mar 2004 B2
6702761 Damadian et al. Mar 2004 B1
6706016 Cory et al. Mar 2004 B2
6716192 Orosz, Jr. Apr 2004 B1
6716215 David et al. Apr 2004 B1
6716216 Boucher et al. Apr 2004 B1
6730043 Krueger et al. May 2004 B2
6730044 Stephens et al. May 2004 B2
6749576 Bauer Jun 2004 B2
6752768 Burdorff et al. Jun 2004 B2
6752816 Culp et al. Jun 2004 B2
6758824 Miller et al. Jul 2004 B1
6761726 Findlay et al. Jul 2004 B1
6796957 Carpenter et al. Sep 2004 B2
6846314 Shapira Jan 2005 B2
6849051 Sramek et al. Feb 2005 B2
6855148 Foley et al. Feb 2005 B2
6860860 Viola Mar 2005 B2
6875183 Cervi Apr 2005 B2
6875219 Arramon et al. Apr 2005 B2
6884245 Spranza Apr 2005 B2
6887209 Kadziauskas et al. May 2005 B2
6890308 Islam May 2005 B2
6905486 Gibbs Jun 2005 B2
6930461 Rutkowski Aug 2005 B2
6942669 Kurc Sep 2005 B2
6969373 Schwartz et al. Nov 2005 B2
7008381 Janssens Mar 2006 B2
7008383 Damadian et al. Mar 2006 B1
7008394 Geise et al. Mar 2006 B2
7025732 Thompson et al. Apr 2006 B2
7063672 Schramm Jun 2006 B2
7137985 Jahng Nov 2006 B2
7207949 Miles et al. Apr 2007 B2
7226450 Athanasiou et al. Jun 2007 B2
7229401 Kindlein Jun 2007 B2
7565935 Phillips Jul 2009 B1
20010005778 Ouchi Jun 2001 A1
20010014439 Meller et al. Aug 2001 A1
20010047183 Privitera et al. Nov 2001 A1
20010053888 Athanasiou et al. Dec 2001 A1
20020042581 Cervi Apr 2002 A1
20020050364 Suzuki et al. May 2002 A1
20020055713 Gibbs May 2002 A1
20020120212 Ritchart et al. Aug 2002 A1
20020138021 Pflueger Sep 2002 A1
20020158102 Patton et al. Oct 2002 A1
20030028146 Aves Feb 2003 A1
20030032939 Gibbs Feb 2003 A1
20030036747 Ie et al. Feb 2003 A1
20030050574 Krueger Mar 2003 A1
20030114858 Athanasiou et al. Jun 2003 A1
20030125639 Fisher et al. Jul 2003 A1
20030153842 Lamoureux et al. Aug 2003 A1
20030191414 Reiley et al. Oct 2003 A1
20030195436 Van Bladel et al. Oct 2003 A1
20030195524 Barner Oct 2003 A1
20030199787 Schwindt Oct 2003 A1
20030216667 Viola Nov 2003 A1
20030225344 Miller Dec 2003 A1
20030225364 Kraft et al. Dec 2003 A1
20030225411 Miller Dec 2003 A1
20040019297 Angel Jan 2004 A1
20040019299 Ritchart et al. Jan 2004 A1
20040034280 Privitera et al. Feb 2004 A1
20040049128 Miller et al. Mar 2004 A1
20040064136 Papineau et al. Apr 2004 A1
20040073139 Hirsch et al. Apr 2004 A1
20040092946 Bagga et al. May 2004 A1
20040153003 Cicenas et al. Aug 2004 A1
20040158172 Hancock Aug 2004 A1
20040158173 Voegele et al. Aug 2004 A1
20040162505 Kaplan et al. Aug 2004 A1
20040191897 Muschler Sep 2004 A1
20040210161 Burdorff et al. Oct 2004 A1
20040215102 Ikehara et al. Oct 2004 A1
20040220497 Findlay et al. Nov 2004 A1
20050027210 Miller Feb 2005 A1
20050040060 Andersen et al. Feb 2005 A1
20050075581 Schwindt Apr 2005 A1
20050085838 Thompson et al. Apr 2005 A1
20050101880 Cicenas et al. May 2005 A1
20050113716 Mueller, Jr. et al. May 2005 A1
20050116673 Carl Jun 2005 A1
20050124915 Eggers et al. Jun 2005 A1
20050131345 Miller Jun 2005 A1
20050148940 Miller Jul 2005 A1
20050165328 Heske et al. Jul 2005 A1
20050165403 Miller Jul 2005 A1
20050165404 Miller Jul 2005 A1
20050171504 Miller Aug 2005 A1
20050182394 Spero et al. Aug 2005 A1
20050200087 Vasudeva et al. Sep 2005 A1
20050203439 Heske et al. Sep 2005 A1
20050209530 Pflueger Sep 2005 A1
20050215921 Hibner et al. Sep 2005 A1
20050228309 Fisher et al. Oct 2005 A1
20050261693 Miller et al. Nov 2005 A1
20060011506 Riley Jan 2006 A1
20060015066 Turieo et al. Jan 2006 A1
20060036212 Miller Feb 2006 A1
20060052790 Miller Mar 2006 A1
20060074345 Hibner Apr 2006 A1
20060079774 Anderson Apr 2006 A1
20060089565 Schramm Apr 2006 A1
20060122535 Daum Jun 2006 A1
20060129082 Rozga Jun 2006 A1
20060144548 Beckman et al. Jul 2006 A1
20060149163 Hibner et al. Jul 2006 A1
20060151188 Bodine et al. Jul 2006 A1
20060167377 Ritchart et al. Jul 2006 A1
20060167378 Miller Jul 2006 A1
20060167379 Miller Jul 2006 A1
20060184063 Miller Aug 2006 A1
20060189940 Kirsch Aug 2006 A1
20070016100 Miller Jan 2007 A1
20070049945 Miller Mar 2007 A1
20070149920 Michels et al. Jun 2007 A1
20070213735 Sandat et al. Sep 2007 A1
20070270775 Miller et al. Nov 2007 A1
20080015467 Miller Jan 2008 A1
20080015468 Miller Jan 2008 A1
20080045857 Miller Feb 2008 A1
20080045860 Miller et al. Feb 2008 A1
20080045861 Miller et al. Feb 2008 A1
20080045965 Miller et al. Feb 2008 A1
20080087448 Happ Apr 2008 A1
20080140014 Miller et al. Jun 2008 A1
20080215056 Miller et al. Sep 2008 A1
20080221580 Miller et al. Sep 2008 A1
Foreign Referenced Citations (25)
Number Date Country
2138842 Jun 1996 CA
2 454 600 Jan 2004 CA
10057931 Nov 2000 DE
517000 Dec 1992 EP
0807412 Nov 1997 EP
1099450 May 2001 EP
1314452 May 2003 EP
853349 Mar 1940 FR
2457105 May 1979 FR
2516386 Nov 1981 FR
2130890 Jun 1984 GB
1052433 Feb 1989 JP
9307819 Apr 1993 WO
9631164 Oct 1996 WO
9806337 Feb 1998 WO
9918866 Apr 1999 WO
9952444 Oct 1999 WO
0056220 Sep 2000 WO
0178590 Oct 2001 WO
0241792 May 2002 WO
0241792 May 2002 WO
02096497 Dec 2002 WO
2005110259 Nov 2005 WO
2005112800 Dec 2005 WO
2008081438 Jul 2008 WO
Non-Patent Literature Citations (73)
Entry
International PCT Search Report PCT/US03/17167, 8 pages, Mailed Sep. 16, 2003.
International PCT Search Report PCT/US03/17203, 8 pages, Mailed Sep. 16, 2003.
International PCT Search Report PCT/US2004/037753, 6 pages, Mailed Apr. 19, 2005.
Communication relating to the results of the partial International Search Report for PCT/US2005/002484, 6 pages, Mailed May 19, 2005.
International PCT Search Report and Written Opinion PCT/US2004/037753, 16 pages, Mailed Jul. 8, 2005.
International PCT Search Report and Written Opinion PCT/US2005/002484, 15 pages, Mailed Jul. 22, 2005.
Cummins, Richard O., et al, “ACLS-Principles and Practice”, ACLS—The Reference Textbook, American Heart Association, pp. 214-218, 2003.
Riley et al., “A Pathologist's Perspective on Bone Marrow Aspiration Biopsy: I. Performing a Bone Marrow Examination,” Journal of Clinical Laboratory Analysis 18, pp. 70-90, 2004.
International Preliminary Report on Patentability PCT/US2005/002484, 9 pages, Mailed Aug. 3, 2006.
Official Action for European Application No. 03756317.8 (4 pages), Dec. 28, 2006.
International Search Report and Written Opinion for International Application No. PCT/US2006/025201 (18 pages), Jan. 29, 2007.
Pediatrics, Official Journal of the American Academy of Pediatrics, Pediatrics, 2005 American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care of Pediatric and Neonatal Patients:Pediatric Advanced Life Support, Downloaded from www.pediatrics.org, Feb. 21, 2007.
Liakat A. Parapia, Trepanning or trephines: a history of bone marrow biopsy, British Journal of Haematology, pp. 14-19 2007, Date 2007.
Australian Exam Report on Patent Application No. 2003240970, 2 pages, Oct. 15, 2007.
Pediatric Emergency, Intraosseous Infusion for Administration of Fluids and Drugs, www.cookgroup.com, 1 pg, 2000.
Michael Trotty, “Technology (A Special Report)—The Wall Street Journal 2008 Technology Innovation Awards—This years winners include: an IV alternative, a better way to make solar panels, a cheap, fuel efficient car and a better way to see in the dark”, The Wall Street Journal, Factiva, 5 pages, 2008.
Buckley et al., CT-guided bone biopsy: Initial experience with commercially available hand held Black and Decker drill, European Journal of Radiology 61, pp. 176-180, 2007.
Hakan et al., CT-guided Bone BiopsyPerformed by Means of Coaxial Bopsy System with an Eccentric Drill, Radiology, pp. 549-552, Aug. 1993.
European Search Report 08158699.2-1265, 4 pages, Aug. 2008.
International Search Report and Written Opinion, PCT/US2007/078204, 14 pages, Mailing Date May 15, 2008.
International Search Report and Written Opinion, PCT/US08/52943, 8 pages, Mailing Date Sep. 26, 2008.
European Office Action Communication, Application No. 08158699.2-1265/1967142, 10 pages, Nov. 4, 2008.
Gunal et al., Compartment Syndrome After Intraosseous Infusion: An Expiremental Study in Dogs, Journal of Pediatric Surgery, vol. 31, No. 11, pp. 1491-1493, Nov. 1996.
International Search Report, PCT/US2007/072217, 20 pages, Mailing Date Mar. 31, 2008.
International Search Report, PCT/US2007/072209, 18 pages, Mailing Date Apr. 25, 2008.
International Search Report, PCT/US2006/025201, 12 pages, Mailing Date Feb. 7, 2008.
Communication Pursuant to Article 94(3) EPC, Application No. 05 712 091.7-1265, 4 pages, Apr. 8, 2008.
Notification of the First Chinese Office Action, Application No. 200580003261.8, 3 pages, Mar. 21, 2008.
International Search Report and Written Opinion, PCT/US08/500346, 12 pages, Mailing Date May 22, 2008.
PCT Invitation to Pay Additional Fees, PCT/US2007/072209, 9 pages, Mailing Dec. 3, 2007.
“Proven reliability for quality bone marrow samples”, Special Procedures, Cardinal Health, 6 pages, 2003.
F.A.S.T. 1 Intraosseous Infusion System with Depth-Control Mechanism Brochure, 6 pages, 2000.
BioAccess.com, Single Use Small Bone Power Tool—How It Works, 1 pg, Printed Jun. 9, 2008.
International Search Report and Written Opinion, PCT/US2007/078203, 15 pages, Mailing Date May 13, 2008.
International Search Report and Written Opinion, PCT/US2007/072202, 17 pages, Mailing Date Mar. 25, 2008.
International Search Report and Written Opinion, PCT/US2007/078207, 13 pages, Mailing Date Apr. 7, 2008.
International Search Report and Written Opinion, PCT/US2007/078205, 13 pages, Mailing date Sep. 11, 2007.
European Office Action EP03731475.4, 4 pages, Oct. 11, 2007.
U.S. Appl. No. 11/427,501 Non Final Office Action, 14 pages, Mailed Aug. 7, 2008.
Chinese Office Action, Application No. 2005800003261, (with English translation), (9 pgs), Jan. 16, 2009.
International Preliminary Report on Patentability, PCT/US/2007/078203, 13 pages, Mar. 26, 2009.
International Preliminary Report on Patentability, PCT/US/2007/078207, 10 pages, Mar. 26, 2009.
International Preliminary Report on Patentability, PCT/US/2007/078205, 10 pages, Mar. 26, 2009.
International Preliminary Report on Patentability, PCT/US/2007/078204, 11 pages, Apr. 2, 2009.
Vidacare Corporation Comments to Intraosseous Vascular Access Position Paper, Infusion Nurses Society, 6 pages, May 4, 2009.
International Preliminary Report on Patentability, PCT/US/2007/072209, 10 pages, May 14, 2009.
Japanese Office Action, Application No. 2004-508,670, (with English summary), (13 pgs), Apr. 21, 2009.
PCT Preliminary Report on Patentability, PCT/US/2008/050346, (8 pgs), Jul. 23, 2009.
Japanese Office Action, Application No. 2004-508,669, (with English summary), (9 pgs), Aug. 3, 2009.
Chinese Office Action, Application No. 200780000590.6, (with English translation), (13 pgs), Aug. 21, 2009.
European Office Action and Search Report, Application No. 09150973.7, (8 pgs), Oct. 23, 2009.
Chinese Office Action with English translation; Application No. 200910006631.3; pp. 12, Mar. 11, 2010.
European Extended Search Report, Application No. EP10153350.3, 5 pages, Mar. 11, 2010.
European Extended Search Report, Application No. EP08021732.6, 7 pages, Nov. 13, 2009.
European Office Action; Application No. 09 155 111.9-2310; pp. 3, Nov. 25, 2009.
Chinese Office Action with English translation; Application No. 200910006631.3; pp. 13, Mar. 11, 2010.
Taiwan Office Action , Application No. 94102179 (with English translation); 12 pages, May 13, 2010.
Chinese Office Action with English translation; Application No. 200780001198.3; pp. 13, Apr. 27, 2010.
Office Action issued in Chinese Application No. 200910006631.3, dated Mar. 22, 2011.
Non-Final Office Action, U.S. Appl. No. 10/449,476, 8 pages, Oct. 29, 2008.
Åström, K.G., “Automatic Biopsy Instruments Used Through a Coaxial Bone Biopsy System with an Eccentric Drill Tip,” Acta Radiologica, 1995; 36:237-242, May 1995.
Åström, K. Gunnar O., “CT-guided Transsternal Core Biopsy of Anterior Mediastinal Masses,” Radiology 1996; 199:564-567, May 1996.
International Preliminary Report on Patentability, PCT/US2007/072202, 10 pages, Mailed Jan. 15, 2009.
International Preliminary Report on Patentability, PCT/US2007/072217, 11 pages, Mailed Feb. 12, 2009.
State Intellectual Property Office of the People's Republic of China, First Office Action issued for Chinese Patent Application No. 200880000182.5, dated Sep. 10, 2010.
State Intellectual Property Office of the People's Republic of China, Second Office Action issued for Chinese Patent Application No. 200880000182.5, dated Mar. 12, 2012.
State Intellectual Property Office of the People'S Republic of China, Third Office Action issued for Chinese Patent Application No. 200880000182.5, dated Mar. Dec. 13, 2012.
State Intellectual Property Office of the People'S Republic of China, Rejection Decision issued for Chinese Patent Application No. 200880000182.5, dated Jun. 27, 2013.
State Intellectual Property Office of the People'S Republic of China, Reexamination Decision Issued for Chinese Patent Application No. 200880000182.5, dated Nov. 20, 2013.
European Patent Office, Communication from Examining Division for European Patent Application No. 08799753.2, dated May 18, 2015.
European Patent Office, Communication from Examining Division for European Patent Application No. 08799753.2, dated Sep. 29, 2014.
European Patent Office, Communication from Examining Division for European Patent Application No. 08799753.2, dated Apr. 10, 2014.
European Patent Office, European Search Report for European Patent Application No. 08799753.2, dated May 23, 2013.
Related Publications (1)
Number Date Country
20080215056 A1 Sep 2008 US
Provisional Applications (2)
Number Date Country
60910122 Apr 2007 US
60384756 May 2002 US
Continuation in Parts (3)
Number Date Country
Parent 11253959 Oct 2005 US
Child 12061944 US
Parent 11253467 Oct 2005 US
Child 11253959 US
Parent 10449476 May 2003 US
Child 11253467 US