Powered linear surgical stapler

Information

  • Patent Grant
  • 10405857
  • Patent Number
    10,405,857
  • Date Filed
    Wednesday, April 9, 2014
    10 years ago
  • Date Issued
    Tuesday, September 10, 2019
    5 years ago
Abstract
A surgical instrument can comprise a first jaw, a second jaw comprising a fastener cartridge, and a closing system. The closing system can comprise a closure member configured to engage the first jaw and move the first jaw toward the second jaw. A pivot can pivotably couple the first jaw to the second jaw. The closure member can engage the first jaw at a location which is distal with respect to the pivot. The closure member and the first jaw can include a cam pin/cam slot arrangement which increases the leverage or mechanical advantage that the closure member applies to the first jaw as the first jaw is moved from an open position to a closed position. The surgical instrument can further comprise a first motor configured to operate the closing system and a second motor configured to operate a firing system configured to eject fasteners from the fastener cartridge.
Description
BACKGROUND

Various forms of the invention relate to surgical instruments and, in various embodiments, to surgical cutting and stapling instruments and staple cartridges therefor that are designed to cut and staple tissue.





BRIEF DESCRIPTION OF THE DRAWINGS

The various features and advantages of this invention and the manner of attaining them will become more apparent and the invention itself will be better understood by reference to the following description of embodiments of the invention taken in conjunction with the accompanying drawings, wherein:



FIG. 1 is a perspective view of a modular surgical system that includes a motor-driven surgical instrument and three interchangeable end effectors;



FIG. 2 is a side perspective view of the motor-driven surgical instrument with a portion of the handle housing removed for clarity;



FIG. 3 is a partial exploded assembly view of the surgical instrument of FIG. 2;



FIG. 4 is another partial exploded assembly view of the surgical instrument of FIGS. 2 and 3;



FIG. 5 is a side elevational view of the motor-driven surgical instrument with a portion of the handle housing removed;



FIG. 6 is a perspective view of a motor drive system and transmission assembly with the transmission assembly in the first drive position wherein actuation of the motor will result in the actuation of a first drive system of the surgical instrument of FIGS. 2-5;



FIG. 6A is a perspective view of an alternative transmission carriage with locking means;



FIG. 6B is a perspective view of a motor drive system and transmission assembly including the transmission carriage of FIG. 6A with the transmission assembly in the first drive position wherein actuation of the motor will result in the actuation of the first drive system and the second drive system is locked by the locking means;



FIG. 6C is a perspective view of the motor drive system and transmission assembly of FIG. 6B with the transmission assembly in the second drive position wherein actuation of the motor will result in the actuation of the second drive system and the first drive system is locked by the locking means;



FIG. 7 is another perspective view of the motor drive system and transmission assembly of FIG. 6 with the transmission assembly in the second drive position wherein actuation of the motor will result in the actuation of the second drive system;



FIG. 8 is a side elevational view of another motor-driven surgical instrument with a portion of the handle housing and other portions thereof omitted for clarity;



FIG. 9 is a perspective view of the motor, transmission assembly and first and second drive systems of the surgical instrument of FIG. 8 with the transmission assembly thereof in the first drive position;



FIG. 10 is a cross-sectional elevational view of the motor, transmission assembly and first and second drive systems of FIG. 9 with the transmission assembly in the first drive position;



FIG. 11 is another perspective view of the motor, transmission assembly and first and second drive systems of FIGS. 9 and 10 with the transmission assembly in the second drive position;



FIG. 12 is another cross-sectional elevational view of the motor, transmission assembly and first and second drive systems of FIGS. 9-11 with the transmission assembly in the second drive position;



FIG. 13 is a partial rear perspective view of a portion of another motor driven surgical instrument;



FIG. 14 is a side elevational view of the motor, transmission assembly and first and second drive systems of the surgical instrument of FIG. 13;



FIG. 15 is a cross-sectional view of the transmission assembly of the surgical instrument of FIGS. 13 and 14 in a first drive position;



FIG. 16 is another cross-sectional view of the transmission assembly of the surgical instrument of FIGS. 13-15 in a second drive position;



FIG. 17 is a perspective view of another motor driven surgical instrument arrangement with a portion of the housing removed for clarity;



FIG. 18 is a perspective view of a motor, transmission assembly and first and second drive systems of the surgical instrument of FIG. 17;



FIG. 19 is an exploded assembly view of the motor, transmission assembly and first and second drive systems of FIG. 18;



FIG. 20 is a cross-sectional view of portions of the motor, transmission assembly and first and second drive systems of FIGS. 18 and 19 with the transmission shaft assembly thereof in a first drive position;



FIG. 21 is another cross-sectional view of the portions of the motor, transmission assembly and first and second drive systems of FIG. 20 with the transmission shaft assembly thereof in a second drive position;



FIG. 22 is a perspective view of another motor, transmission assembly and first and second drive systems of one form of a surgical instrument of the present invention;



FIG. 23 is an exploded assembly view of the motor, transmission assembly and first and second drive systems of FIG. 22;



FIG. 24 is a cross-sectional view of the motor, transmission assembly and first and second drive systems of FIGS. 22 and 23 with the transmission assembly in first drive position;



FIG. 25 is another cross-sectional view of the motor, transmission assembly and first and second drive systems of FIGS. 22-24 with the transmission assembly in a second drive position;



FIG. 26 is another cross-sectional view of the motor and transmission assembly of FIGS. 22-25 with the transmission assembly in the first drive position;



FIG. 27 is another cross-sectional view of the motor and transmission assembly of FIGS. 22-26 with the transmission assembly in the second drive position;



FIG. 28 is a side elevational view of a portion of another motor driven surgical instrument with a portion of the housing omitted for clarity;



FIG. 29 is a perspective view of a portion of another motor driven surgical instrument with a portion of the housing omitted for clarity;



FIG. 30 is a front perspective view of a motor driven unit with first and second rotary drive systems;



FIG. 31 is a bottom perspective view of the motor driven unit of FIG. 30;



FIG. 32 is a perspective view of the motor driven unit of FIGS. 31 and 32 with the housing removed therefrom;



FIG. 33 is an exploded assembly view of a mechanical coupling system for operably coupling four rotary drive shafts together;



FIG. 34 is a front perspective view of a surgical end effector with a portion of the end effector housing removed for clarity;



FIG. 35 is another front perspective view of the surgical end effector of FIG. 34 with portions of the closure system and lower jaw omitted for clarity;



FIG. 36 is an exploded perspective assembly view of the surgical end effector of FIGS. 34 and 35;



FIG. 37 is a side elevational view of the surgical end effector of FIGS. 33-36 with a portion of the housing omitted for clarity;



FIG. 38 is a left side perspective view of another end effector arrangement with a portion of the end effector housing omitted for clarity;



FIG. 39 is an exploded assembly view of the end effector of FIG. 38;



FIG. 40 is a right side perspective view of the end effector arrangement of FIGS. 37 and 38 with another portion of the end effector housing omitted for clarity;



FIG. 41 is a cross-sectional view of the surgical end effector arrangement of FIGS. 38-40;



FIG. 42 is a cross-sectional perspective view of another surgical end effector;



FIG. 43 is a partial exploded assembly view of the surgical end effector of FIG. 42;



FIG. 44 is another partial perspective view of a portion of the surgical end effector of FIGS. 42 and 43;



FIG. 45 is another cross-sectional view of the surgical end effector of FIGS. 42-44;



FIG. 46 is a perspective view of an end effector arrangement with a drive disengagement assembly;



FIG. 47 is a partial perspective view of the surgical end effector of FIG. 46 with portions thereof omitted for clarity and with the proximal drive train portion of the closure system detached from the distal drive train portion of the closure system;



FIG. 48 is a partial perspective view of the surgical end effector of FIGS. 46 and 47 with portions thereof omitted for clarity and with the distal coupler member seated within the slot in the proximal coupler member and the drive coupler pin removed therefrom;



FIG. 49 is another partial perspective view of the surgical end effector of FIG. 48 showing portions of the end effector firing system;



FIG. 50 is a perspective view of another surgical end effector arrangement;



FIG. 50A is an enlarged view of a portion of the surgical end effector of FIG. 50;



FIG. 51 is a perspective view of a portion of the end effector of FIG. 50 with a portion of the housing omitted for clarity;



FIG. 52 is another perspective view of the end effector of FIGS. 50 and 51 with portions of the housing and closure system omitted for clarity;



FIG. 53 is another perspective view of the end effector of FIGS. 50-52 with portions of the closure system and a portion of the housing omitted for clarity;



FIG. 54 is a perspective view of another end effector that is equipped with a drive disengagement assembly;



FIG. 55 is a side elevational view of the end effector of FIG. 54;



FIG. 56 is a perspective view of a portion of the end effector of FIGS. 54 and 55 with a portion of the end effector housing omitted for clarity;



FIG. 57 is another perspective view of the end effector of FIGS. 54-56 with the tool head thereof in a closed position;



FIG. 58 is a another partial perspective view of the end effector of FIG. 57 with a portion of the end effector housing omitted for clarity;



FIG. 59 is another perspective view of the end effector of FIG. 58 with the drive coupler pin removed;



FIG. 60 is another perspective view of the end effector of FIG. 59 with the drive coupler pin removed and the closure drive beam assembly moved proximally to open the tool head;



FIG. 61 is a block diagram of a modular motor driven surgical instrument comprising a handle portion and a shaft portion;



FIG. 62 is a table depicting total time to complete a stroke and load current requirements for various operations of various device shafts;



FIG. 63, which is divided into FIGS. 63-A and 63-B, is a detail diagram of the electrical system in the handle portion of the modular motor driven surgical instrument;



FIG. 64 is block diagram of the electrical system of the handle and shaft portions of the modular motor driven surgical instrument;



FIG. 65 illustrates a mechanical switching motion control system to eliminate microprocessor control of motor functions;



FIG. 66 is a perspective view of a coupling arrangement comprising a coupler housing and a pair of sockets positioned within the coupler housing, according to various embodiments of the present disclosure;



FIG. 67 is a cross-sectional, perspective view of the coupling arrangement of FIG. 66, depicting a pair of drive members uncoupled to the pair of sockets and further depicting the coupling arrangement in an unlocked configuration, according to various embodiments of the present disclosure;



FIG. 68 is a cross-sectional, perspective view of the coupling arrangement of FIG. 66, depicting the pair of drive members coupled to the pair of sockets and further depicting the coupling arrangement in a locked configuration, according to various embodiments of the present disclosure;



FIG. 69 is a cross-sectional, perspective view of the coupling arrangement of FIG. 66, depicting the pair of drive members coupled to the pair of sockets and further depicting the coupling arrangement in an unlocked configuration, according to various embodiments of the present disclosure;



FIG. 70 is a perspective view of an insert of the coupling arrangement of FIG. 66, according to various embodiments of the present disclosure;



FIG. 71 is a perspective view of a socket of the coupling arrangement of FIG. 66, according to various embodiments of the present disclosure;



FIG. 72 is a perspective view of a latch of the coupling arrangement of FIG. 66, according to various embodiments of the present disclosure;



FIG. 73 is a cross-sectional, perspective view of a surgical end effector attachment for use with a surgical instrument handle, according to various embodiments of the present disclosure;



FIG. 74 is an exploded, perspective view of drive systems of the surgical end effector attachment of FIG. 73, according to various embodiments of the present disclosure;



FIG. 75 is a perspective view of a handle for a surgical instrument, wherein the handle comprises a drive system having a first output drive assembly and a second output drive assembly, according to various embodiments of the present disclosure;



FIG. 76 is a perspective view of the drive system of FIG. 75, according to various embodiments of the present disclosure;



FIG. 77 is a cross-sectional, elevation view of the handle of FIG. 75, depicting the drive system engaged with the first output drive assembly and disengaged from the second output drive assembly, according to various embodiments of the present disclosure;



FIG. 78 is a cross-sectional, elevation view of the drive system of FIG. 75, depicting the drive system engaged with the second output drive assembly and disengaged from the first output drive assembly, according to various embodiments of the present disclosure;



FIG. 79 is a partial cross-sectional perspective view of a surgical instrument including a rotatable drive shaft, a closure drive operable by said drive shaft, and a firing drive operable by said drive shaft, wherein the closure drive is illustrated in a partially open configuration and the firing drive is illustrated in an unfired configuration;



FIG. 80 is a perspective view of the rotatable drive shaft of FIG. 79;



FIG. 81 is a partial cross-sectional perspective view of the surgical instrument of FIG. 79 illustrated with the closure drive in an open configuration and the firing drive in an unfired configuration;



FIG. 82 is a partial cross-sectional perspective view of the surgical instrument of FIG. 79 illustrated with the closure drive in a closed configuration and the firing drive in an unfired configuration;



FIG. 83 is a partial cross-sectional perspective view of the surgical instrument of FIG. 79 illustrated with the closure drive in a closed configuration and the firing drive in a fired configuration;



FIG. 84 is a partial cross-sectional perspective view of the surgical instrument of FIG. 79 illustrated with the firing drive in a retracted configuration and the closure drive in the process of being re-opened;



FIG. 85 is a partial cross-sectional view of an end effector and a shaft of a surgical instrument illustrated in a closed, unfired configuration;



FIG. 86 is a perspective view of a transmission for operating the surgical instrument of FIG. 85 illustrated in a configuration which corresponds with the configuration of FIG. 85;



FIG. 87 is an exploded view of the transmission of FIG. 86;



FIG. 88 is a partial cross-sectional view of the end effector and the shaft of FIG. 85 illustrated in an open, unfired configuration;



FIG. 89 is a perspective view of the transmission of FIG. 86 illustrated in a configuration which corresponds with the configuration illustrated in FIG. 88;



FIG. 90 is a partial cross-sectional view of the end effector and the shaft of FIG. 85 illustrated in a closed, unfired configuration;



FIG. 91 is a perspective view of the transmission of FIG. 86 illustrated in a configuration which corresponds with the configuration illustrated in FIG. 90;



FIG. 92 is a partial cross-sectional view of the end effector and the shaft of FIG. 85 illustrated in a closed, fired configuration;



FIG. 93 is a perspective view of the transmission of FIG. 86 illustrated in a configuration which corresponds with the configuration illustrated in FIG. 92;



FIG. 94 is a perspective view of a surgical stapling instrument in accordance with at least one embodiment;



FIG. 95 is an exploded view of a handle of the surgical stapling instrument of FIG. 94;



FIG. 96 is an exploded view of an end effector of the surgical stapling instrument of FIG. 94;



FIG. 97 is a partial perspective view of a motor and gear assembly of the surgical stapling instrument of FIG. 94;



FIG. 98 is a cross-sectional elevational view of the surgical stapling instrument of FIG. 94;



FIG. 99 is a perspective view of a surgical stapling instrument in accordance with at least one embodiment illustrated in an open, unlatched condition;



FIG. 100 is a perspective view of the surgical stapling instrument of FIG. 99 illustrated in a closed, unlatched condition;



FIG. 101 is a perspective view of the surgical stapling instrument of FIG. 99 illustrated in a closed, latched condition;



FIG. 102 is a plan view of the surgical stapling instrument of FIG. 99;



FIG. 103 is a cross-sectional view of the surgical stapling instrument of FIG. 99;



FIG. 104 is a detail cross-sectional view of the surgical stapling instrument of FIG. 99;



FIG. 105 is an exploded view of a firing drive of the surgical stapling instrument of FIG. 99;



FIG. 106 is an exploded view of a closing drive of the surgical stapling instrument of FIG. 99;



FIG. 107 is a cross-sectional view of a surgical stapling instrument in accordance with at least one embodiment comprising a handle, a shaft, and an end effector;



FIG. 108 is a cross-sectional view of the handle of the surgical stapling instrument of FIG. 107 illustrated in an open configuration;



FIG. 109 is a cross-sectional view of the handle of the surgical stapling instrument of FIG. 107 illustrated in a closed configuration;



FIG. 110 is a perspective view of the handle of the surgical stapling instrument of FIG. 107 illustrated with some components removed;



FIG. 111 is a perspective view of a surgical stapling instrument in accordance with at least one embodiment comprising a handle and a shaft;



FIG. 112 is a perspective view of the surgical stapling instrument of FIG. 111 illustrating the handle detached from the shaft;



FIG. 113 is an exploded view of the surgical stapling instrument of FIG. 111;



FIG. 114 is a partial cross-sectional view of the handle of FIG. 111 illustrating a transmission operably engaged with a closure system of the surgical stapling instrument of FIG. 111;



FIG. 115 is a partial cross-sectional view of the handle of FIG. 111 illustrating the transmission of FIG. 114 operably engaged with a firing system of the surgical stapling instrument of FIG. 111;



FIG. 116 is an exploded view of the transmission of FIG. 114;



FIG. 117 is a perspective view of a surgical stapling instrument in accordance with at least one embodiment illustrated with some components removed and illustrated in an open configuration;



FIG. 118 is a perspective view of the surgical stapling instrument of FIG. 117 illustrated with some components removed and illustrated in a closed configuration;



FIG. 119 is a perspective view of another end effector arrangement and a staple pack embodiment therefor prior to installing the staple pack into the end effector;



FIG. 120 is another perspective view of the end effector and staple pack of FIG. 119 with the staple pack installed into the end effector; and



FIG. 121 is another perspective view of the end effector and staple pack of FIG. 120 with the keeper member of the staple pack removed therefrom.





Corresponding reference characters indicate corresponding parts throughout the several views. The exemplifications set out herein illustrate preferred embodiments of the invention, in one form, and such exemplifications are not to be construed as limiting the scope of the invention in any manner.


DETAILED DESCRIPTION

Applicant of the present application owns the following patent applications that were filed on Mar. 1, 2013 and which are each herein incorporated by reference in their respective entireties:

  • U.S. patent application Ser. No. 13/782,295, entitled ARTICULATABLE SURGICAL INSTRUMENTS WITH CONDUCTIVE PATHWAYS FOR SIGNAL COMMUNICATION;
  • U.S. patent application Ser. No. 13/782,323, entitled ROTARY POWERED ARTICULATION JOINTS FOR SURGICAL INSTRUMENTS;
  • U.S. patent application Ser. No. 13/782,338, entitled THUMBWHEEL SWITCH ARRANGEMENTS FOR SURGICAL INSTRUMENTS;
  • U.S. patent application Ser. No. 13/782,499, entitled ELECTROMECHANICAL SURGICAL DEVICE WITH SIGNAL RELAY ARRANGEMENT;
  • U.S. patent application Ser. No. 13/782,460, entitled MULTIPLE PROCESSOR MOTOR CONTROL FOR MODULAR SURGICAL INSTRUMENTS;
  • U.S. patent application Ser. No. 13/782,358, entitled JOYSTICK SWITCH ASSEMBLIES FOR SURGICAL INSTRUMENTS;
  • U.S. patent application Ser. No. 13/782,481, entitled SENSOR STRAIGHTENED END EFFECTOR DURING REMOVAL THROUGH TROCAR;
  • U.S. patent application Ser. No. 13/782,518, entitled CONTROL METHODS FOR SURGICAL INSTRUMENTS WITH REMOVABLE IMPLEMENT PORTIONS;
  • U.S. patent application Ser. No. 13/782,375, entitled ROTARY POWERED SURGICAL INSTRUMENTS WITH MULTIPLE DEGREES OF FREEDOM; and
  • U.S. patent application Ser. No. 13/782,536, entitled SURGICAL INSTRUMENT SOFT STOP are hereby incorporated by reference in their entireties.


Applicant of the present application also owns the following patent applications that were filed on Mar. 14, 2013 and which are each herein incorporated by reference in their respective entireties:

  • U.S. patent application Ser. No. 13/803,097, entitled ARTICULATABLE SURGICAL INSTRUMENT COMPRISING A FIRING DRIVE;
  • U.S. patent application Ser. No. 13/803,193, entitled CONTROL ARRANGEMENTS FOR A DRIVE MEMBER OF A SURGICAL INSTRUMENT;
  • U.S. patent application Ser. No. 13/803,053, entitled INTERCHANGEABLE SHAFT ASSEMBLIES FOR USE WITH A SURGICAL INSTRUMENT;
  • U.S. patent application Ser. No. 13/803,086, entitled ARTICULATABLE SURGICAL INSTRUMENT COMPRISING AN ARTICULATION LOCK;
  • U.S. patent application Ser. No. 13/803,210, entitled SENSOR ARRANGEMENTS FOR ABSOLUTE POSITIONING SYSTEM FOR SURGICAL INSTRUMENTS;
  • U.S. patent application Ser. No. 13/803,148, entitled MULTI-FUNCTION MOTOR FOR A SURGICAL INSTRUMENT;
  • U.S. patent application Ser. No. 13/803,066, entitled DRIVE SYSTEM LOCKOUT ARRANGEMENTS FOR MODULAR SURGICAL INSTRUMENTS;
  • U.S. patent application Ser. No. 13/803,117, entitled ARTICULATION CONTROL SYSTEM FOR ARTICULATABLE SURGICAL INSTRUMENTS;
  • U.S. patent application Ser. No. 13/803,130, entitled DRIVE TRAIN CONTROL ARRANGEMENTS FOR MODULAR SURGICAL INSTRUMENTS; and
  • U.S. patent application Ser. No. 13/803,159, entitled METHOD AND SYSTEM FOR OPERATING A SURGICAL INSTRUMENT.


Applicant of the present application also owns the following patent applications that were filed on Mar. 25, 2014 and are each herein incorporated by reference in their respective entireties:

  • U.S. patent application Ser. No. 14/226,106, entitled POWER MANAGEMENT CONTROL SYSTEMS FOR SURGICAL INSTRUMENTS;
  • U.S. patent application Ser. No. 14/226,099, entitled STERILIZATION VERIFICATION CIRCUIT;
  • U.S. patent application Ser. No. 14/226,094, entitled VERIFICATION OF NUMBER OF BATTERY EXCHANGES/PROCEDURE COUNT;
  • U.S. patent application Ser. No. 14/226,117, entitled POWER MANAGEMENT THROUGH SLEEP OPTIONS OF SEGMENTED CIRCUIT AND WAKE UP CONTROL;
  • U.S. patent application Ser. No. 14/226,075, entitled MODULAR POWERED SURGICAL INSTRUMENT WITH DETACHABLE SHAFT ASSEMBLIES;
  • U.S. patent application Ser. No. 14/226,093, entitled FEEDBACK ALGORITHMS FOR MANUAL BAILOUT SYSTEMS FOR SURGICAL INSTRUMENTS;
  • U.S. patent application Ser. No. 14/226,116, entitled SURGICAL INSTRUMENT UTILIZING SENSOR ADAPTATION;
  • U.S. patent application Ser. No. 14/226,071, entitled SURGICAL INSTRUMENT CONTROL CIRCUIT HAVING A SAFETY PROCESSOR;
  • U.S. patent application Ser. No. 14/226,097, entitled SURGICAL INSTRUMENT COMPRISING INTERACTIVE SYSTEMS;
  • U.S. patent application Ser. No. 14/226,126, entitled INTERFACE SYSTEMS FOR USE WITH SURGICAL INSTRUMENTS;
  • U.S. patent application Ser. No. 14/226,133, entitled MODULAR SURGICAL INSTRUMENT SYSTEM;
  • U.S. patent application Ser. No. 14/226,081, entitled SYSTEMS AND METHODS FOR CONTROLLING A SEGMENTED CIRCUIT;
  • U.S. patent application Ser. No. 14/226,076, entitled POWER MANAGEMENT THROUGH SEGMENTED CIRCUIT AND VARIABLE VOLTAGE PROTECTION;
  • U.S. patent application Ser. No. 14/226,111, entitled SURGICAL STAPLING INSTRUMENT SYSTEM; and
  • U.S. patent application Ser. No. 14/226,125, entitled SURGICAL INSTRUMENT COMPRISING A ROTATABLE SHAFT.


Applicant of the present application also owns the following patent applications that were filed on Apr. 9, 2014 and which are each herein incorporated by reference in their respective entireties:

  • U.S. patent application Ser. No. 14/248,590, entitled MOTOR DRIVEN SURGICAL INSTRUMENTS WITH LOCKABLE DUAL DRIVE SHAFTS, now U.S. Patent Application Publication No. 2014/0305987;
  • U.S. patent application Ser. No. 14/248,581, entitled SURGICAL INSTRUMENT COMPRISING A CLOSING DRIVE AND A FIRING DRIVE OPERATED FROM THE SAME ROTATABLE OUTPUT, now U.S. Pat. No. 9,649,110;
  • U.S. patent application Ser. No. 14/248,595, entitled SURGICAL INSTRUMENT SHAFT INCLUDING SWITCHES FOR CONTROLLING THE OPERATION OF THE SURGICAL INSTRUMENT, now U.S. Patent Application Publication No. 2014/0305988;
  • U.S. patent application Ser. No. 14/248,591, entitled TRANSMISSION ARRANGEMENT FOR A SURGICAL INSTRUMENT, now U.S. Patent Application Publication No. 2014/0305991;
  • U.S. patent application Ser. No. 14/248,584, entitled MODULAR MOTOR DRIVEN SURGICAL INSTRUMENTS WITH ALIGNMENT FEATURES FOR ALIGNING ROTARY DRIVE SHAFTS WITH SURGICAL END EFFECTOR SHAFTS, now U.S. Patent Application Publication No. 2014/0305994;
  • U.S. patent application Ser. No. 14/248,587, entitled POWERED SURGICAL STAPLER, now U.S. Patent Application Publication No. 2014/0309665;
  • U.S. patent application Ser. No. 14/248,586, entitled DRIVE SYSTEM DECOUPLING ARRANGEMENT FOR A SURGICAL INSTRUMENT, now U.S. Patent Application Publication No. 2014/0305990; and
  • U.S. patent application Ser. No. 14/248,607, entitled MODULAR MOTOR DRIVEN SURGICAL INSTRUMENTS WITH STATUS INDICATION ARRANGEMENTS, now U.S. Patent Application Publication No. 2014/0305992.


Certain exemplary embodiments will now be described to provide an overall understanding of the principles of the structure, function, manufacture, and use of the devices and methods disclosed herein. One or more examples of these embodiments are illustrated in the accompanying drawings. Those of ordinary skill in the art will understand that the devices and methods specifically described herein and illustrated in the accompanying drawings are non-limiting exemplary embodiments and that the scope of the various embodiments of the present invention is defined solely by the claims. The features illustrated or described in connection with one exemplary embodiment may be combined with the features of other embodiments. Such modifications and variations are intended to be included within the scope of the present invention.


Reference throughout the specification to “various embodiments,” “some embodiments,” “one embodiment,” or “an embodiment”, or the like, means that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment. Thus, appearances of the phrases “in various embodiments,” “in some embodiments,” “in one embodiment”, or “in an embodiment”, or the like, in places throughout the specification are not necessarily all referring to the same embodiment. Furthermore, the particular features, structures, or characteristics may be combined in any suitable manner in one or more embodiments. Thus, the particular features, structures, or characteristics illustrated or described in connection with one embodiment may be combined, in whole or in part, with the features structures, or characteristics of one or more other embodiments without limitation. Such modifications and variations are intended to be included within the scope of the present invention.


The terms “proximal” and “distal” are used herein with reference to a clinician manipulating the handle portion of the surgical instrument. The term “proximal” referring to the portion closest to the clinician and the term “distal” referring to the portion located away from the clinician. It will be further appreciated that, for convenience and clarity, spatial terms such as “vertical”, “horizontal”, “up”, and “down” may be used herein with respect to the drawings. However, surgical instruments are used in many orientations and positions, and these terms are not intended to be limiting and/or absolute.


Various exemplary devices and methods are provided for performing laparoscopic and minimally invasive surgical procedures. However, the person of ordinary skill in the art will readily appreciate that the various methods and devices disclosed herein can be used in numerous surgical procedures and applications including, for example, in connection with open surgical procedures. As the present Detailed Description proceeds, those of ordinary skill in the art will further appreciate that the various instruments disclosed herein can be inserted into a body in any way, such as through a natural orifice, through an incision or puncture hole formed in tissue, etc. The working portions or end effector portions of the instruments can be inserted directly into a patient's body or can be inserted through an access device that has a working channel through which the end effector and elongated shaft of a surgical instrument can be advanced.


Turning to the Drawings wherein like numerals denote like components throughout the several views, FIG. 1 depicts a modular surgical instrument system generally designated as 2 that, in one form, includes a motor driven surgical instrument 10 that may be used in connection with a variety of surgical end effectors such as, for example, end effectors 1000, 2000 and 3000. In the illustrated embodiment, the motor driven surgical instrument 10 includes a housing 12 that consists of a handle 14 that is configured to be grasped, manipulated and actuated by a clinician. As the present Detailed Description proceeds, it will be understood that the various unique and novel drive system arrangements depicted in connection with handle 14 as well as the various end effector arrangements disclosed herein may also be effectively employed in connection with robotically-controlled surgical systems. Thus, the term “housing” may also encompass a housing or similar portion of a robotic system that may house or otherwise operably support various forms of the drive systems depicted herein and which may be configured to generate control motions which could be used to actuate the end effector arrangements described herein and their respective equivalent structures. The term “frame” may refer to a portion of a handheld surgical instrument. The term “frame” may also represent a portion of a motor driven system or a robotically controlled surgical instrument and/or a portion of the robotic system that may be used to operably control a surgical instrument. For example, the drive system arrangements and end effector arrangements disclosed herein may be employed with various robotic systems, instruments, components and methods disclosed in U.S. patent application Ser. No. 13/118,241, entitled SURGICAL STAPLING INSTRUMENTS WITH ROTATABLE STAPLE DEPLOYMENT ARRANGEMENTS, now U.S. Patent Application Publication No. 2012/0298719 which is hereby incorporated by reference herein in its entirety.


Referring now to FIGS. 2-5, the handle 14 may comprise a pair of handle housing segments 16 and 18 that may be interconnected by screws, snap features, adhesive, etc. In the illustrated arrangement, the handle housing segments 16, 18 cooperate to form a pistol grip portion 19 that can be gripped and manipulated by the clinician. As will be discussed in further detail below, the handle 14 operably supports two rotary drive systems 20, 40 therein that are configured to generate and apply various control motions to corresponding drive shaft portions of a particular end effector coupled thereto. The first rotary drive system 20 may, for example, be employed to apply “closure” motions to a corresponding closure drive shaft arrangement that is operably supported in an end effector and the second rotary drive system 40 may be employed to apply “firing” motions to a corresponding firing drive shaft arrangement in the end effector that is coupled thereto.


The first and second rotary drive systems 20, 40 are powered by a motor 80 through a unique and novel “shiftable” transmission assembly 60 that essentially shifts power/motion between two power trains. The first rotary drive system 20 includes a first rotary drive shaft 22 that is rotatably supported in the housing 12 of the handle 14 and defines a first drive shaft axis “FDA-FDA”. A first drive gear 24 is keyed onto or otherwise non-rotatably affixed to the first rotary drive shaft 22 for rotation therewith about the first drive shaft axis FDA-FDA. Similarly, the second rotary drive system 40 includes a second rotary drive shaft 42 that is rotatably supported in the housing 12 of the handle 14 and defines a second drive shaft axis “SDA-SDA”. In at least one arrangement, the second drive shaft axis SDA-SDA is offset from and parallel or is substantially parallel to the first drive shaft axis FDA-FDA. As used in this context, the term “offset” means that the first and second drive shaft axes are not coaxial for example. The second rotary drive shaft 42 has a second drive gear 44 keyed onto or otherwise non-rotatably affixed to the second drive shaft 42 for rotation therewith about the second drive shaft axis SDA-SDA. In addition, the second drive shaft 42 has an intermediate drive gear 46 rotatably journaled thereon such that the intermediate drive gear 46 is freely rotatable on the second rotary drive shaft 42 about the second drive shaft axis SDA-SDA.


Referring to FIGS. 2-5, in one form, the motor 80 includes a motor output shaft 81 that has a motor drive gear 82 non-rotatably attached thereto. The motor drive gear 82 is configured for intermeshing “operable” engagement with the transmission assembly 60 as will be discussed in further detail below. In at least one form, the transmission assembly 60 includes a transmission carriage 62 that is supported for axial travel between the drive gear 82 and gears 44 and 46 on the second rotary drive shaft 42. For example, the transmission carriage 62 may be slidably journaled on a support shaft 63 that is mounted within the housing 12 on a shaft mount 61 such that the line of action of the transmission carriage is perpendicular to the gear trains of the rotary drive systems. The shaft mount 61 is configured to be rigidly supported within slots or other features within the housing 10. The transmission carriage 62 includes a carriage gear 64 that is rotatably supported on the support shaft 63 and is configured for selective meshing engagement with gears 44 and 46 while in driving engagement with drive gear 82. In the arrangement depicted in FIGS. 2-5, the transmission carriage 62 is operably attached to a shifter or a “means for shifting” 70 that is configured to axially shift the transmission carriage 62 between a “first drive position” and a “second drive position”. In one form, for example, the means for shifting 70 includes a shifter solenoid 71 that is supported within the housing 12 of the handle 14. The shifter solenoid 71 may comprise a bi-stable solenoid or, for example, may comprise a “dual position, spring loaded” solenoid. The illustrated arrangement, for example, includes a spring 72 that biases the transmission carriage 62 in the distal direction “DD” to the first drive position wherein the carriage gear 64 is in meshing engagement with the intermediate drive gear 46 while also in meshing engagement with the drive gear 82. When in that first drive position, activation of the motor 80 will result in rotation of gears 82, 46 and 24 which will ultimately result in rotation of the first drive shaft 22. As will be further discussed herein, the shifter solenoid 71 may be actuated by a firing trigger 90 that is pivotally supported on the housing 12 of handle 14 as shown in FIGS. 2 and 5. In the illustrated embodiment, the firing trigger 90 is pivotally supported on a firing trigger shaft 92 mounted in the handle 14. The firing trigger 90 is normally biased in an unactuated position by a firing trigger spring 94. See FIG. 3. The firing trigger 90 is mounted for operable actuation of a firing switch 96 that is operably supported on a control circuit board assembly 100. In the illustrated arrangement, actuation of the firing trigger 90 results in the actuation of the shifter solenoid 71. As described in more detail hereinbelow in connection with FIGS. 61, 63, 64, the handle processor 7024 provides the drive signal to shifter solenoid 7032 (71). With reference now back to FIGS. 2-5, thus, actuation of the firing trigger 90 will result in the shifter solenoid 71 pulling the transmission carriage 62 in the proximal direction “PD” to thereby move the carriage gear 64 into meshing engagement with the second drive gear 44. See FIG. 7. Actuation of motor 80 when the carriage gear 64 is in meshing engagement with the drive gear 82 and the second drive gear 44 will result in the rotation of the second drive shaft 42 about the second drive shaft axis “SDA”. As can also be seen in FIGS. 2-5, the shiftable transmission assembly 60 may also include an indicator system 74 that includes a pair of switches 75 and 76 that are operably coupled to the control board 100 as well as a transmission indicator light 77. The switches 75, 76 serve to detect the position of the transmission carriage 62 which results in the control system actuating the indicator light 77 depending upon the position of the transmission carriage 62. For example, the indicator light 77 may be energized when the transmission carriage 62 is in the first drive position. This provides the clinician with an indication that actuation of the motor 80 will result in the actuation of the first drive system 20.


Various surgical instruments disclosed herein may also include a transmission assembly 60′ that is substantially identical to transmission assembly 60, but also include a locking assembly or means (generally designated as 65) for locking the first and second drive systems 20, 40 to prevent their inadvertent actuation when they are not intended to be actuated. For example, FIG. 6A illustrates an alternative transmission carriage 62′ that includes a first drive lock 66 and a second drive lock 68. The first drive lock 66 comprises a first gear engagement member or tooth on the transmission carriage 62′ that is located for intermeshing engagement with the second drive gear 44 when the carriage gear 64 is in driving engagement with the intermediate gear 46 (i.e., when the transmission assembly 60′ is in the first drive position). See FIG. 6B. Thus, when the transmission assembly 60′ is in the first drive position, the first drive lock 66 is in meshing engagement with the second drive gear 44 and prevents relative rotation thereof while the first drive shaft 22 is rotated in the above-described manner. Likewise, when the transmission assembly 60′ is in the second drive position (i.e., the carriage gear 64 is in meshing engagement with the second drive gear 44), the second drive lock 68 is in meshing engagement with the intermediate drive gear 46. See FIG. 6C. Thus, when the transmission assembly 60′ is in the second drive position, the second drive lock 68 prevents the intermediate gear 46 from rotating which also prevents the first drive gear 24 from rotating. As such, when the clinician operates the motor 80 to actuate the first drive system 20, the second drive system 40 is locked in position. Likewise, when the clinician actuates the second drive system 40, the first drive system 20 is locked in position.


The control system for the motor 80, as described hereinbelow in connection with FIGS. 61, 63, 64, may be programmed in such a way that it always stops in an orientation when one tooth of gears 42, 44 remains vertical or other defined position depending upon the orientation of the other matching gear. This feature will serve to avoid any interference between the gear teeth while shifting. When shifting, the locking members also shift and locks the position of the non-rotating gear train. When employed in connection with an end effector that includes a cartridge/anvil arrangement or other clamping configuration, another advantage gained by locking the non-rotating (i.e., non-powered) gear train is the retention of the clamp/anvil in a stable position while firing.


The motor 80 may be a DC brushed driving motor having a maximum rotation of, approximately, 25,000 RPM, for example. In other arrangements, the motor may include a brushless motor, a cordless motor, a synchronous motor, a stepper motor, or any other suitable electric motor, including motors which can be autoclavable. The motor 80 may be powered by a power source 84 that in one form may comprise a power pack 86 that is removably stored in the handle 14. As can be seen in FIGS. 2-5, for example, the power pack 86 may be removably housed within the pistol grip portion 19 of the handle 14. To access the power pack 86, the clinician removes a removable cap 17 that is attached to the pistol grip portion 19 as shown. The power pack 86 may operably support a plurality of batteries (not shown) therein. The batteries may each comprise, for example, a Lithium Ion (“LI”) or other suitable battery. The power pack 86 is configured for removable operable attachment to the control circuit board assembly 100 which is also operably coupled to the motor 80 and mounted within the handle 14. A number of batteries may be connected in series may be used as the power source for the surgical instrument. In addition, the power source 84 may be replaceable and/or rechargeable and, in at least one instance, can include CR123 batteries, for example. The motor 80 may be actuated by a “rocker-trigger” 110 that is pivotally mounted to the pistol grip portion 19 of the handle 14. The rocker trigger 110 is configured to actuate a first motor switch 112 that is operably coupled to the control board 100. The first motor switch 112 may comprise a pressure switch which is actuated by pivoting the rocker trigger 110 into contact therewith. Actuation of the first motor switch 112 will result in actuation of the motor 80 such that the drive gear 82 rotates in a first rotary direction. A second motor switch 114 is also attached to the circuit board 100 and mounted for selective contact by the rocker trigger 110. Actuation of the second motor switch 114 will result in actuation of the motor 80 such that the drive gear 82 is rotated in a second direction. For example, in use, a voltage polarity provided by the power source 84 can operate the electric motor 80 in a clockwise direction wherein the voltage polarity applied to the electric motor by the battery can be reversed in order to operate the electric motor 80 in a counter-clockwise direction. As with the other forms described herein, the handle 14 can also include a sensor that is configured to detect the directions in which the drive systems are being moved. One particular implementation of the motor 80 is described hereinbelow in connection with FIGS. 61, 63, 64 where a brushless DC motor 7038 is described. DC motor 7038 can be autoclavable.



FIGS. 8-12 illustrate another form of surgical instrument 10′ that may be identical to surgical instrument 10 except for the differences noted below. Those components of surgical instrument 10′ that are the same as the components in the surgical instrument 10 described above will be designated with the same element numbers. Those components of surgical instrument 10′ that may be similar in operation, but not identical to corresponding components of surgical instrument 10, will be designated with the same component numbers along with a “′” or in some cases a “″”. As can be seen in FIG. 8, for example, the first drive shaft axis “FDA” is offset from and parallel with or is substantially parallel with the second drive shaft axis “SDA”. Referring primarily to FIG. 9, for example, the transmission assembly 60 and, more specifically, the transmission carriage 62″ is manually shiftable by a linkage assembly 120 that is operably attached to the firing trigger 90′. As can be seen in that Figure, for example, the linkage assembly 120 includes a first transmission link 122 that is pivotally coupled to the firing trigger 90′ and extends axially to be pivotally coupled to a transmission yoke 124. The transmission yoke 124 is movably pinned to the transmission carriage 62″. Thus, actuation of the firing trigger 90′ results in the axial movement of the transmission carriage 62″. It will therefore be understood that the linkage assembly 120 essentially performs similar actuation motions to those performed by the shifter solenoid 71 that was described above. As used in the context of this embodiment with respect to movement of the transmission carriage 62″, the term “manually shiftable” refers to moving the transmission carriage between the first and second drive positions without the use of electricity or other power means other than depressing the firing trigger 90′.


As can also be seen in FIGS. 8-12, the second drive gear 44′ is spaced apart from the intermediate gear 46′ on the second drive shaft 42′ by a spacer 45. The second drive gear 44′ is keyed onto or otherwise non-rotatably affixed to the second drive shaft 42′, while the intermediate drive gear 46′ is rotatably journaled on the second drive shaft 42′ for free rotation relative thereto. In one form, for example, a distal drive gear 130 is supported in meshing engagement with the intermediate drive gear 46′. Similarly, a proximal drive gear 136 is supported in meshing engagement with the second drive gear 44′. In this arrangement, however, the transmission carriage 62″ also includes a centrally-disposed, transmission gear assembly 140 that is operably attached to the transmission carriage 62′ for axial travel therewith. Still referring to FIGS. 8-12, the transmission gear assembly 140 includes a centrally-disposed shifter drive gear 142 that is in slidable meshing engagement with the motor drive gear 82. Thus, rotation of motor drive gear 82 results in rotation of the shifter drive gear 142. In addition, a proximally extending, conically-shaped drive gear 144 is coupled to the shifter drive gear 142 and is configured for selective meshing engagement with a proximal gear socket 146 that is attached to the proximal drive gear 136. Likewise a distally extending, conically shaped drive gear 148 is configured for selective meshing engagement with a distal gear socket 150 attached to the distal drive gear 130.


When the clinician desires to actuate the first drive system 20, the clinician moves the firing trigger 90′ to axially move the transmission gear assembly 140 to bring the distally extending conically-shaped drive gear 148 into seated meshing engagement with the distal gear socket 150 that is attached to distal drive gear 130. See FIGS. 8-10. When in that position, operation of motor 80 will result in the rotation of motor drive gear 82, shifter drive gear 142, distal drive gear 130, intermediate drive gear 46′, the first drive gear 24 and the first drive shaft 22. When the clinician desires to actuate the second drive system 40, the clinician moves the firing trigger 90′ to the position shown in FIGS. 11 and 12 to thereby bring the proximally extending conically-shaped drive gear 144 into seated meshing engagement with the proximal gear socket 146 that is attached to the proximal drive gear 136. When in that position, operation of motor 80 will result in the rotation of drive gear 82, shifter drive gear 142, proximal drive gear 136, the second drive gear 44′ and the second drive shaft 42′. As can also be seen in FIGS. 8-12, sensors 152 and 154 may be employed to detect the position of the transmission carriage 62″ as will be discussed in further detail below. For example, the sensors 152 and 154 may be implemented using the Hall effect sensors 7028 described hereinbelow in connection with FIGS. 61, 63, 64.



FIGS. 13-16 illustrate another form of motor driven surgical instrument 310 that may be identical to surgical instrument 10 except for the differences noted below. Those components of surgical instrument 310 that are the same as the components in the surgical instrument 10 described above will be designated with the same element numbers. In this arrangement, the first and second drive systems 20, 40 are powered by motor 80 through a unique and novel “shiftable” transmission assembly 360. The first drive system 20 includes a first drive shaft 22 that has a first drive pulley 324 keyed thereon or otherwise non-rotatably affixed thereto. Similarly, the second drive system 40 includes a second drive shaft 42 that has a second drive pulley 344 keyed thereon or otherwise non-rotatably thereto. As can be seen in FIG. 14, for example, the first drive shaft axis “FDA” is offset from and parallel with or is substantially parallel with the second drive shaft axis “SDA”.


Still referring to FIGS. 13-16, in one form, the motor 80 includes a first motor pulley 382 that is non-rotatably attached to the shaft of the motor 80. The first motor pulley 382 drives a first drive belt 385 that is received on the first drive pulley 324. In addition, a second motor pulley 384 is non-rotatably mounted to the motor shaft and operably supports a second drive belt 387 thereon. The second drive belt 387 is also received on the second drive pulley 344 on the second drive shaft 42. The first and second drive belts 385, 387 may comprise V-belts, for example.


The instrument 310 also includes a transmission assembly 360 that includes a transmission carriage 362 that is supported for axial travel within the instrument housing. The transmission carriage 362 operably interacts with an idler carriage 374 that is supported to move laterally in response to contact with transmission carriage 362 as the transmission carriage 362 is moved axially by the shifter solenoid 71. The idler carriage 374 includes a first idler pulley 375 and a second idler pulley 376 mounted thereon. In the illustrated arrangement, the spring 72 biases the transmission carriage 362 in the distal direction “DD” to a first drive position wherein the transmission carriage 362 causes the idler carriage 374 to move in a first lateral direction “FLD” which causes the first idler pulley 375 to remove the slack from the first drive belt 385. When in that position, the second idler pulley 376 is located out of engagement with the second drive belt 387. Thus, operation of motor 80 will result in the rotation of the first drive shaft 22. Although the second motor pulley 384 will also be rotated when the motor 80 is activated, the slack in the second drive belt 387 prevents that rotary motion from being transferred to the second drive pulley 344. Thus, no rotary motion is transferred to the second drive system 40. As discussed above, the shifter solenoid 71 may be actuated by the firing trigger 90. However, in alternative arrangements, the shifter solenoid 71 may also be replaced by a manually actuatable linkage assembly of the type described above, for example. In the illustrated arrangement, actuation of the firing trigger 90 will result in the shifter solenoid 71 pulling the transmission carriage 362 in the proximal direction “PD” to thereby laterally displace the idler carriage 374 in a second lateral direction “SLD” to bring the second idler 376 into contact with the second drive belt 387 to remove the slack therefrom. Such lateral movement of the idler carriage 374 also moves the first idler 375 out of engagement with the first drive belt 385 to permit the first drive belt 385 to slacken. Thus, when in such second drive position, actuation of the motor 80 results in the actuation of the second drive system 40. The slack in the first drive belt 385 prevents the rotary motion from being transferred to the first drive system 20.


The transmission assembly 360 may provide several distinct advantages. For example, the use of V-belts eliminates meshing gears or gear alignments with a clutch. Furthermore, such transmission arrangement may be activated or deactivated under load. In addition, the transmission assembly 360 requires little displacement to disengage and engage.



FIGS. 17-21 illustrate another form of motor driven surgical instrument 410 that may be identical to surgical instrument 10 except for the differences noted below. Those components of surgical instrument 410 that are the same as the components in the surgical instrument 10 described above will be designated with the same element numbers. In this arrangement, the first and second drive systems 20, 40 are powered by motor 480 through a unique and novel “shiftable” transmission assembly 460. The first drive system 20 includes a first drive shaft 22 that has a first drive pulley 424 keyed thereon or otherwise non-rotatably affixed thereto. Similarly, the second drive system 40 includes a second drive shaft 42 that has a second drive pulley 444 keyed thereon or otherwise non-rotatably fixed thereto. As can be seen in FIG. 18, for example, the first drive shaft axis “FDA” is offset from and parallel with or is substantially parallel with the second drive shaft axis “SDA”.


Referring now to FIG. 19, in one form, the motor 480 includes a splined drive shaft 481 that is adapted to slidably engage a transmission shaft assembly 490 that is configured to interact with a transmission carriage 462 such that axial movement of the transmission carriage 462 results in axial movement of the transmission shaft assembly 490 on the splined drive shaft 481. As can be seen in FIG. 19, the transmission shaft assembly 490 has a splined bore 491 therein for slidably and operably receiving the splined drive shaft 481 therein. In addition, a distal engagement collar 492 is formed on a distal end of the transmission shaft assembly 490. The distal engagement collar 492 is configured with an annular groove 493 that is configured to receive therein two opposed yoke rods 465 that are attached to a yoke portion 464 of the transmission carriage 462. Such arrangement serves to couple the transmission carriage 462 to the transmission shaft assembly 490 while permitting the transmission shaft assembly 490 to rotate relative to the transmission carriage 462.


Still referring to FIG. 19, a first motor pulley 482 is configured for selective driving engagement with the transmission shaft assembly 490. As can be seen in FIG. 19, for example, the transmission shaft assembly 490 has a bearing collar 494 formed on the proximal end thereof that is sized to be slidably and rotatably received within bore 483 in the first motor pulley 482. In addition, the first motor pulley 482 also includes a star-shaped proximal drive cavity 488 that is adapted to meshingly engage a complementary-shaped drive portion 495 formed on the transmission shaft assembly 490. The first motor pulley 482 drives a first drive belt 485 that is also received on the first drive pulley 424. The surgical instrument 410 also includes a second motor pulley 484 that has a star-shaped bore 489 that is configured to meshingly engage the drive portion 495 of the transmission shaft assembly 490 therein. A second motor pulley 484 operably supports a second drive belt 487 thereon that is also received on the second drive pulley 444.


As indicated above, the instrument 410 also includes a transmission assembly 460 that includes a transmission carriage 462 that is supported for axial travel within the instrument housing. The transmission carriage 462 operably interacts with transmission shaft assembly 490 to also move the transmission shaft assembly 490 axially while the transmission shaft assembly 490 remains engaged with the motor shaft 481. FIG. 20 illustrates the shifter solenoid 71 in the unactuated position. As can be seen in that Figure, the transmission carriage 462 has moved the transmission shaft assembly 490 to its proximal-most position which may also be referred to as the “first drive position” wherein the drive portion 495 is in driving engagement with the star-shaped bore 488 in the first motor pulley 482. Thus, rotation of the motor shaft 481 will result in rotation of the transmission shaft assembly 490 and the first motor pulley 482. Rotation of the first motor pulley 482 results in rotation of the first drive belt 485 which ultimately results in rotation of the first drive shaft 22. When the transmission shaft assembly 490 is in the first drive position, the transmission shaft assembly 490 rotates freely relative to the second motor pulley 484. Thus, when the first drive system 20 is actuated, the second drive system 40 remains unactuated. When the shifter solenoid 71 is actuated to the position shown in FIG. 21 (by actuating the firing trigger 90), the transmission carriage 462 moves the transmission shaft assembly 490 to its distal-most position on the motor shaft 481 which may also be referred to as the ‘second drive position”. As can be seen in FIG. 21, when the transmission shaft assembly 490 is in the second drive position, the drive portion 495 thereof is moved into meshing engagement with the star-shaped bore 489 in the second motor pulley 484. Thus, rotation of the motor shaft 481 will result in the rotation of the second motor pulley 484. Rotation of the second motor pulley 484 will result in the rotation of the second drive belt 487 which results in the rotation of the second drive shaft 42. When in that second drive position, the transmission shaft assembly 490 rotates freely within the first motor pulley 482. Thus, when the second drive system 40 is actuated, the first drive system 20 is in an unactuated state.



FIGS. 22-27 illustrate another motor, transmission assembly and first and second drive systems that may be employed with various surgical instruments described herein. The illustrated arrangement includes a motor 580 that has a motor shaft 581. See FIGS. 23 and 24. A motor drive gear 582 or “sun gear” 582 is non-rotatably affixed to the motor shaft 581 for rotation therewith. The arrangement further includes a planetary gear assembly 570 that includes three planetary gears 572 that are rotatably supported between a distal carrier bracket 573 and proximal carrier bracket 574. The proximal carrier bracket 574 is supported on a hub portion of the sun gear 582 such that the sun gear 582 may rotate relative to the proximal carrier bracket 574. The distal carrier bracket 573 is affixed to a second drive shaft 542 of a second drive system 40 such that rotation of the distal carrier bracket 573 will result in the rotation of the second drive shaft 542 of the second drive system 40. The three planetary gears 572 are supported in meshing engagement with a ring gear assembly 575. More specifically, the planetary gears 572 are in meshing engagement with an internal ring gear 576 on the ring gear assembly 575. The ring gear assembly 575 further includes an external ring gear 577 that is in meshing engagement with a first drive gear 524 that is affixed to a first drive shaft 522 of the first drive system 20. As can be seen in FIG. 24, for example, the first drive shaft axis “FDA” is offset from and parallel with or is substantially parallel with the second drive shaft axis “SDA”.


As can be seen in FIG. 23, the arrangement further includes a solenoid 71 that may be operated by the firing trigger in the various manners described herein. In this arrangement, the transmission assembly 560 is attached to the shaft 73 of the solenoid 71. FIG. 24 illustrates the transmission assembly 560 in the first drive position. In one form, the transmission assembly 560 includes a locking assembly, generally designated as 590 that comprises a first or proximal lock lug portion 592 and a second or distal lock lug portion 594 on the transmission assembly 560. As can be seen in that Figure, the transmission assembly 560 is positioned such that the proximal lock lug portion 592 is in engagement with the proximal carrier bracket 574. When in that first drive position, the proximal lock lug portion 592 prevents the planetary gear assembly 570 from rotating as a unit with the sun gear 582. However, rotation of the sun gear 582 results in rotation of the planetary gears 572. Rotation of the planetary gears 572 results in rotation of the ring gear assembly 575. Rotation of the ring gear assembly 575 results in rotation of the first drive gear 524 and the first drive shaft 522. Because the proximal carrier bracket 574 is prevented from rotating, the distal carrier bracket 573 is also prevented from rotating. Thus, the second drive shaft 544 is also prevented from rotating while the first drive shaft 522 is rotated. A spring (not shown) may be employed to bias the solenoid 71 (and the transmission assembly 560 attached thereto) into this “first drive position”. When the clinician desires to actuate the second drive system 40, the solenoid 71 may be actuated using the firing trigger as described above to move the solenoid shaft 73 to the position shown in FIG. 25. When the transmission assembly 560 is in that “second drive position”, the distal lock lug portion 594 retainingly engages the ring gear assembly 575 to prevent rotation thereof. Thus, when the sun gear 582 is rotated, the planetary gear carrier (i.e., the distal carrier bracket 573 and proximal carrier bracket 574) will also rotate. The planetary gears 572 will rotate within the fixed internal ring gear 576. Such rotary motion will be transferred to the second drive shaft 542 while the first drive shaft 522 remains unactuated.



FIG. 28 illustrates another form of motor driven surgical instrument 610 that may be identical to surgical instrument 10 except for the differences noted below. Those components of surgical instrument 610 that are the same as the components in the surgical instrument 10 described above will be designated with the same element numbers. As can be seen in FIG. 28, for example, the first drive shaft axis “FDA” is offset from and parallel with or is substantially parallel with the second drive shaft axis “SDA”. This arrangement comprises a motor 680 that has dual, independently actuatable motor shafts 681, 683. The motor 680 may be controlled by a firing trigger arrangement of the various types described herein, such that actuation of the firing trigger in one manner causes the motor 680 to rotate the first motor shaft 681 and actuation of the firing trigger in another manner causes the motor 680 to rotate the second motor shaft 683. In this arrangement, a first motor gear 682 is mounted on the first motor shaft 681 and is supported in meshing engagement with an idler gear 646. Idler gear 646 is operably supported in meshing engagement with a first drive gear 624 that is mounted to a first drive shaft 622 of a first drive system 620. Thus, actuation of the first motor shaft 681 will result in actuation of the first drive system 620. Likewise, a second motor gear 684 is mounted on the second motor shaft 683 and is supported in meshing engagement with a second drive gear 644 that is mounted on a second drive shaft 642 of a second drive system 640. As such, actuation of the second motor shaft 683 will result in the actuation of the second drive system 640.



FIG. 29 illustrates another form of motor driven surgical instrument 710 that may be identical to surgical instrument 10 except for the differences noted below. Those components of surgical instrument 710 that are the same as the components in the surgical instrument 10 described above will be designated with the same element numbers. As can be seen in FIG. 29, for example, the first drive shaft axis “FDA” is offset from and parallel with or is substantially parallel with the second drive shaft axis “SDA”. In this arrangement, first and second drive systems 720, 740 are powered by a motor 780 through a unique and novel “shiftable” transmission assembly 760. The first drive system 720 includes a first drive shaft 722 that has a first drive gear 724 keyed thereon or otherwise non-rotatably affixed thereto. Similarly, the second drive system 740 includes a second drive shaft 742 that has a second drive gear 744 keyed thereon or otherwise non-rotatably thereto. The motor 780 includes a motor gear 782 that is non-rotatably attached to the shaft 781 of the motor 780.


In the illustrated arrangement, a second motor 750 is employed to shift the transmission assembly 760 as will be discussed in further detail below. The second motor 750 may be controlled, for example, by the various firing trigger and switch arrangements disclosed herein. The second motor 750 can be controlled in a manner similar to the way that the motor 7038 is controlled as described hereinbelow in connection with FIGS. 61, 63, 64. As can be seen in FIG. 29, a first transfer pulley 753 is keyed onto or otherwise non-rotatably affixed to the motor shaft 752. A first pivot shaft 754 is rotatably supported within the housing 12 of the handle 14. The first pivot shaft defines a pivot axis “PA”. A second transfer pulley 755 is non-rotatably mounted on the first pivot shaft 754 and a transfer belt 756 is mounted on the first and second transfer pulleys 753, 755. In one form, the shiftable transmission assembly 760 includes a transfer link 762 that is attached to the first pivot shaft 754. In addition, an idler shaft 763 is attached to the transfer link 762 which operably supports an idler gear 764 thereon. The shiftable transmission assembly 760 is movable between a first drive position and a second drive position. To move the shiftable transmission assembly 760 to the first drive position, the clinician actuates the second motor 750 to rotate the pivot shaft 763 and idler gear 764 about pivot axis PA such that it is in meshing engagement with the motor gear 782 and the first drive gear 724. When in that position, actuation of the motor 780 will then result in actuation of the first drive system 720. When the clinician desires to actuate the second drive system 740, the second motor 750 is actuated to rotate the idler gear 764 about pivot axis PA into meshing engagement with the motor gear 782 and the second drive gear 744. When in that position, actuation of motor 780 results in actuation of the second drive system 740. One benefit that may be achieved with this arrangement is that precise gear orientation is not required. As the idler gear 764 swings into position, it may be rotating and automatically will find a mating tooth.



FIGS. 30-32 illustrate a unique and novel motor unit 800 that may be mounted within a housing of the types described herein. The motor unit 800 may include a separate housing structure 801 that operably supports a first motor 802 with a first motor shaft 803 that defines a first drive system 804. The motor unit 800 may include a second motor 805 with a second motor shaft 806 that defines a second drive system 807. As can be seen in FIG. 8, for example, the first drive shaft axis “FDA” is offset from and parallel with or is substantially parallel with the second drive shaft axis “SDA”. The unit 800 may further include a control circuit board 808 which contacts 808A that operably interface with corresponding contacts on the circuit board mounted within the instrument housing or otherwise supported therein and communicating with the instrument's control system. The housing may further include electrical contacts 808B which are configured to operably interface with corresponding electrical contacts on an end effector tool that is coupled thereto.


As illustrated in FIG. 1, the modular surgical system 2 may include a variety of different surgical end effector arrangements 1000, 2000, and 3000 that may be used in connection with various surgical instruments described herein. As will be discussed in further detail below, each of the end effectors 1000, 2000, 3000 include dual, separate “first and second end effector drive systems” that are adapted to operably interface with the first and second drive systems in the surgical instrument to receive control motions therefrom. The end effector drive systems are each configured to linearly move corresponding end effector actuator components from first or beginning linear positions to second or ending linear positions in response to corresponding rotary motions applied to the end effector drive systems by the surgical instrument to which the end effector is operably attached. The end effector actuator components apply linear actuation motions to various end effector components located in the end effector tool head portion in order to perform various surgical procedures. As will be discussed in further detail below, the end effectors employ unique components and systems for assisting the clinician in coupling the first and second drive shafts of the surgical instrument with the corresponding drive shafts in the end effector. Because the four drive shafts are essentially simultaneously coupled together, various coupling arrangements and control techniques may be employed to ensure that the shafts are in the correct positions or “near correct positions” that will facilitate such simultaneous coupling of the drive systems.


Referring now to FIG. 33, one form of mechanical coupling system 50 may be employed to facilitate the simultaneous removable and operable coupling of the two drive systems in the surgical instrument to the corresponding “driven” shafts in the end effectors. The coupling system 50 may comprise male couplers that may be attached to the drive shafts in the surgical instrument and corresponding female socket couplers that are attached to the driven shafts in the surgical end effector. For example, FIG. 9 illustrates male couplers 51 attached to the first and second drive shafts 22, 42 by set screws 52. Referring again to FIG. 33, each of the male couplers 51 are configured to be drivingly received within corresponding female socket couplers 57 that may also be attached to the driven shafts within the end effector. In one form, each male coupler 51 includes at least three drive ribs 53 that are equally spaced around a center portion 54 of the male coupler 51. In the illustrated embodiment, for example, five drive ribs 53 are equally spaced around the center portion 54. Each drive rib 53 has a pointed distal end 55. Each drive rib 53 may be formed with somewhat rounded edges 56 to facilitate easy insertion into corresponding socket grooves 58 within the female socket coupler 57. Each socket groove 58 has a tapered proximal entrance portion 59 to facilitate insertion of a corresponding drive rib 53 therein. The pointed distal end 55 of each drive rib 53 in conjunction with the tapered entrance 59 of each socket groove 58 will accommodate some misalignment between the male coupler 51 and its corresponding female socket coupler 57 during the coupling process. In addition, the rounded edges 57 on the pointed distal end 55 also assist in the slidable insertion of the male coupler 51 into the corresponding female socket coupler 58.


In one form, at least one of the male couplers 51 is movably attached to its corresponding first or second drive shaft of the surgical instrument or its corresponding first and second driven shaft of the surgical end effector. More specifically, the male coupler 51 may be attached for radial, or angular, travel on the shaft for a “first predetermined amount of radial travel” on the shaft. This may be accomplished for example, by key and keyway arrangements that are sized relative to each other to facilitate an amount of radial, or angular, travel of the male coupler 51 on the shaft. Stated another way, for example, the shaft may have a key formed thereon or otherwise mounted thereto that is smaller than a corresponding keyway formed in the male coupler 51 such that the key may move within the keyway and establish a first predetermined amount of radial travel. This first predetermined amount of radial travel is preferably sufficient enough to back drive or forward drive the coupler. For a male coupler 51 that has five ribs 53, for example, the first predetermined range of radial travel may be, for example, 5-37 degrees. Some embodiments may exist where the first predetermined range of radial travel may be less than 5° and preferably not more than 4°, for example. Such range of radial, or angular, travel may be sufficient if, for example, the corresponding female socket coupler 57 was rigidly affixed to its corresponding drive shaft and otherwise was incapable of any radial travel. However, if both the male and female couplers have the ability to radially, or angularly, adjust, such range of radial, or angular, travel may be reduced by 50% to provide each coupler (male coupler and corresponding female socket coupler) with a range of travel of about 3-16 degrees. The amount of radial, or angular, travel that a female socket coupler 57 may move on its corresponding shaft may be referred to herein as a “second predetermined amount of radial travel”. The female socket couplers 57 may also be attached to their respective drive shafts with a key and keyway arrangement as described above that provides the desired second predetermined amount of radial travel. Some embodiments may exist where the second range of predetermined radial travel may be less than 5° and preferably not more than 4°, for example.


Various combinations and mounting arrangements of the male couplers and the female socket couplers are contemplated. For example, one or both of the male couplers may be movably mounted to their respective drive shafts of the surgical instrument (or driven shafts of the surgical end effector) in the various manners described herein. Likewise one or both of the female socket couplers may be movably mounted to their respective driven shafts on the end effector (or drive shafts of the surgical instrument) in the various manners described herein. For example, a male coupler on one of the first and second drive shafts may be movably mounted thereon. The other male coupler that is attached to the other drive shaft may be non-movably mounted thereto. The female socket coupler on the driven shaft that corresponds to the movably mounted male coupler may be non-movably attached to its driven shaft and the female socket coupler mounted on the other driven shaft that corresponds to the non-movably mounted coupler may be movably mounted to its driven shaft. Thus, one of a male coupler and a female coupler socket of a “coupler pair” is movable. The term “coupler pair” refers to the male coupler and corresponding female socket coupler that is configured to be coupled together to operably couple a drive shaft of the surgical instrument to its corresponding driven shaft of the end effector. In other arrangements both the male coupler and female coupler socket of a coupler pair may both be movably coupled to their respective shafts.


Such coupler arrangements serve to provide a small amount of angular slack, for example, between the coupler components so that the components may rotate slightly for sufficient alignment which will permit simultaneous alignment of the coupler components attached to the two separate rotary drive trains. In addition, there may be a sufficient amount of backlash or slack provided in the drive trains to accommodate the coupling process. Such backlash or slack may be provided by forming keys/keyways into the gears, couplers and or mating shafts to facilitate such slight rotation of components. In addition, a switch arrangement may be employed in connection with the various shiftable transmission assemblies which may activate the motor to cause a slight rotation of the drive shafts for coupling purposes.


This and other control techniques may be employed to ensure that the drive shafts in the surgical instruments are positioned in desired positions that facilitate their coupling with the corresponding drive shafts in the end effectors. The unique and novel mechanical coupling system 50 serves to provide some additional flexibility during the coupling process to enable the drive shafts to be coupled together in the event that there is some misalignment between the respective shafts. It will be understood that although the various embodiments described herein illustrate the male couplers 51 attached to the drive shafts within the surgical instrument and the female socket couplers 58 attached to the end effector drive shafts, the male couplers 51 could be attached to the end effector drive shafts and the female socket couplers 58 could be attached to the instrument drive shafts.



FIGS. 34-37 depict a surgical end effector 1000 that comprises a surgical cutting and fastening instrument of a type that is commonly referred to as an “open linear” stapler. Various forms of such open linear stapling devices are disclosed in, for example, U.S. Pat. No. 5,415,334, entitled SURGICAL STAPLER AND STAPLE CARTRIDGE and U.S. Pat. No. 8,561,870, entitled SURGICAL STAPLING INSTRUMENT, the entire disclosures of each being hereby incorporated by reference herein. The end effector 1000 comprises an end effector housing 1010 that may be fabricated from housing segments 1012, 1014 that are removably coupled together by screws, lugs, snap features, etc. Protruding from the end effector housing 1010 are a lower jaw 1020 and an upper jaw 1040 which may collectively form the end effector tool head 1004. The lower jaw 1020 comprises a lower jaw frame 1022 that is configured to operably support a surgical staple cartridge 1060 therein. Such surgical staple cartridges are well known in the art and will therefor not be described in great detail herein. Briefly, the surgical staple cartridge 1060 may comprise a cartridge body 1062 that has lines of staple pockets 1066 formed therein on each lateral side of an elongate slot 1068 that is centrally disposed within cartridge body 1062. The slot 1068 is configured to accommodate the longitudinal travel of a cutting member 1090 therethrough as will be discussed in further detail below. A surgical staple or staples (not shown) are supported in the staple pockets 1066 on staple drive members (not shown) that are configured to move upward within their respective pocket 1066 during a firing process. The staple cartridge 1060 may be configured to be removed from the lower jaw frame 1022 and replaced with another unspent cartridge making the end effector 1000 reusable. However, the end effector 1000 may also be disposable after a single use.


Referring to FIG. 36, the lower jaw frame 1022 may be formed from metal material and have a U-shaped distal portion 1024 that is configured to seatingly receive the surgical staple cartridge 1060 therein. The side walls 1026 of the U-shaped distal portion 1024 may have a distal end 1028 that is configured to releasably and retainingly engage a portion of the surgical cartridge 1060. The staple cartridge body 1062 may also have engagement features 1064 that are adapted to releasably engage upstanding wall portions 1030 of the lower jaw frame 1022. The end effector 1000 further comprises an upper jaw 1040 that includes an anvil portion 1042. The anvil portion 1042 may include an underside (not shown) that has a plurality of staple-forming pockets therein. The upper jaw 1040 further includes a proximal body portion 1044 that has a distal trunnion pin 1046 extending therethrough. The ends of the distal trunnion pin 1046 that protrude laterally from the proximal end of the proximal body portion 1044 are rotatably received within trunnion holes 1032 in the lower jaw 1020. The trunnion pin 1046 defines an attachment axis AA-AA about which the proximal end of the upper jaw 1040 pivots relative to the lower jaw 1020 such that the anvil portion 1042 is movable between an open position spaced from the staple cartridge 1060 mounted within the lower jaw 1020 and a closed position adjacent the staple cartridge 1060 and/or tissue that is located therebetween. The end effector 1000 may further include a transverse fulcrum pin 1050 that is received within cradles 1034 formed in the upstanding walls 1030 of the lower jaw 1020 and is mounted within holes 1016 in the housing segments 1012, 1014. The fulcrum pin 1050 may serve as a fulcrum axis or surface about which the anvil portion 1042 pivots.


The movement of the anvil portion 1042 between the open and closed positions is controlled by a first end effector drive system also referred to herein as the end effector closure system 1070. In one form, for example, the end effector closure system 1070 includes a closure shuttle 1072 that extends around the proximal body portion 1024 of the lower jaw 1020. The closure shuttle 1072 may also be referred to as a “first end effector actuator”. The closure shuttle 1072 may include a U-shape portion that includes distal upstanding walls 1074 and proximal upstanding walls 1076. Each distal upstanding wall 1074 includes an arcuate cam slot 1078 that is adapted to receive a corresponding portion of a cam pin 1048 that is attached to the upper jaw 1040. Thus, axial or linear movement of the closure shuttle 1072 relative to the lower jaw 1020 will cause the upper jaw 1040 to pivot on the fulcrum pin 1050 and about the attachment axis AA-AA by virtue of the interaction of the cam pin 1048 within the cam slots 1078.


In various forms, the closure system 1070 includes a rotary end effector closure shaft 1080 that is threaded and includes a distal end portion 1082 that is rotatably supported within the end effector housing 1010. The end effector closure shaft 1080 defines a closure shaft axis CSA-CSA. See FIG. 37. A female socket coupler 57 is attached to the proximal end of the closure shaft 1080 to facilitate coupling of the closure shaft 1080 with a male coupler 51 attached to a first drive shaft in a surgical instrument. The closure system 1070 further includes a closure nut 1084 that is threadably received on the closure shaft 1080. The closure nut 1084 is configured to be seated within mounting slots 1077 in the upstanding walls 1076 of the closure shuttle 1072. Thus, rotation of the closure shaft 1080 in a first direction will cause the closure nut 1084 to drive the closure shuttle 1072 in the distal direction “DD”. Movement of the closure shuttle 1072 in the distal direction “DD” results in the pivotal travel of the upper jaw 1040 from an open position to a closed position. Likewise, movement of the closure shuttle 1084 in the proximal direction “PD” will result in the movement of the upper jaw 1040 from a closed position back to an open position.


The end effector 1000 further includes a second end effector drive system also referred to herein as a firing system 1100 for driving a tissue cutting member 1090 and wedge sled assembly 1092 between starting and ending positions. When the wedge sled assembly 1092 is driven distally through the surgical staple cartridge 1060, the wedge sled assembly 1092 operably interacts with the drivers within the cartridge 1060 that have surgical staples supported thereon. As the wedge sled assembly 1092 is driven distally, the drivers are driven upward within their respective pockets to drive the staples supported thereon into forming engagement with the underside of the anvil portion 1042 of the upper jaw 1040. In one form, the firing system 1100 further includes a rotary threaded firing shaft 1102 that is rotatably supported in the end effector housing 1010. The firing shaft 1102 defines a firing shaft axis FSA-FSA that is parallel with or substantially parallel with the closure shaft axis CSA-CSA. See, e.g., FIG. 37. The firing shaft 1102 includes a distal end portion 1104 that is rotatably supported in a mounting unit 1106 that is mounted within the end effector housing 1010. A female socket coupler 57 is attached to the proximal end of the firing shaft 1102 to facilitate coupling of the firing shaft 1102 with a male closure coupler 51 that is attached to a second drive shaft in a surgical instrument. The firing system 1100 further includes a firing nut 1110 that is threadably received on the firing shaft 1102. Thus, rotation of the firing shaft 1102 results in the axial travel of the firing nut 1110 within the end effector housing 1010. In one form, the tissue cutting member 1090 and wedge sled assembly 1092 are coupled to the firing nut 1110 by a firing bar or firing bars 1112. The firing bar or bars may also be referred to herein as a “second end effector actuator” that is linearly or axially moved in response to actuation of the firing system. Thus, rotation of the firing shaft 1102 in a first direction will drive the firing nut 1110, firing bar(s) 1112, the tissue cutting member 1090 and the wedge sled assembly 1092 in the distal direction “DD” from, for example, a starting position (FIG. 35) to an ending position wherein the tissue cutting member 1090 and wedge sled assembly 1092 have been driven to the distal end of the surgical staple cartridge 1060. Rotation of the firing shaft 1102 in an opposite direction will drive the firing nut 1110, the firing bar(s) 1112, the tissue cutting member 1090 and the wedge sled assembly 1092 in a proximal direction “PD” from their respective ending positions back to their respective starting positions. In some embodiments, the wedge sled assembly may remain at the distal end of the surgical staple cartridge and not return with the tissue cutting member 1090 to the starting position. In still other embodiments, the tissue cutting member and the wedge sled assembly member may remain at the distal end of the staple cartridge member.


The end effector 1000 may also be equipped with various sensors that are coupled to an end effector contact board 1120 mounted within the end effector housing 1010. The contact board 1120 may be positioned with the end effector housing 1020 such that when the end effector 1000 is operably coupled to the surgical instrument, the end effector contact board 1120 is electrically coupled to a surgical instrument contact board 30 mounted in the surgical instrument housing 12. See, e.g., FIG. 1. Referring again to FIG. 34, a closure sensor 1122 may be mounted within the end effector housing 1010 and be electrically coupled to the end effector contact board 1120 such that when the end effector 1000 is operably coupled to the surgical instrument, the closure sensor 1122 is in communication with the surgical instrument's control system. The closure sensor 1122 may comprise a Hall effect sensor 7028 as shown hereinbelow, for example, in connection with FIGS. 61, 63 that is configured to detect the position of a switch lug 1086 on the closure nut 1084. In addition, a firing sensor 1124 may also be mounted within the end effector housing 1010 to detect the presence of a firing bar 1112. The firing sensor 1112 may comprise a Hall effect sensor 7028 as shown hereinbelow, for example, in connection with FIGS. 61, 63 and be electrically coupled to the end effector contact board 1120 for ultimate communication with the surgical instrument control system, such as the handle processor 7024 as will be discussed in further detail below in connection with FIGS. 61, 63, 64.


Use of the end effector 1000 will now be explained in connection with surgical instrument 10. It will be appreciated, however, that the end effector 1000 may be operably coupled to various other surgical instrument arrangements disclosed herein. Prior to use, the closure shaft 1080 and the firing shaft 1102 are “clocked” or positioned in their respective starting positions to facilitate attachment to the first and second drive shafts 22, 42, respectively. To couple the end effector 1000 to the surgical instrument 10, for example, the clinician moves the end effector 1000 into a position wherein the closure shaft axis CA-CA is in axial alignment with the first drive shaft axis FDA-FDA and wherein the firing shaft axis FSA-FSA is in axial alignment with the second drive shaft axis SDA-SDA. The female socket coupler 57 on the closure shaft 1080 is inserted into operable engagement with the male coupler 51 on the first drive shaft 22. Likewise, the female socket coupler 57 on the firing shaft 1102 is inserted into operable engagement with the male coupler 51 on the second drive shaft 42. Thus, when in that position, the closure shaft 1080 is operably coupled to the first drive shaft 22 and the firing shaft 1102 is operably coupled to the second drive shaft 42. The end effector contact board 1120 is operably coupled to the surgical instrument contact board 30 so that the sensors 1122, 1124 (and any other sensors within the end effector 1000) are in operable communication with the surgical instrument's control system. To retain the end effector 1000 in coupled operable engagement with the surgical instrument 10, the end effector 1000 includes a retainer latch 1130 that is attached to the end effector housing 1010 and configured to releasably engage a portion of the instrument housing 12. The retainer latch 1130 may include a retention lug 1132 that may releasable engage a retainer cavity 15 formed in the housing 12. See FIG. 1.


When coupled together, the closure sensor 1122 detects the position of the closure nut 1084 and the firing sensor 1124 detects the position of the firing bar 1112. That information is communicated to the surgical instrument control system. In addition, the clinician may confirm that the shiftable transmission assembly (or the transmission carriage 62 thereof) is in its first drive position. This may be confirmed by the actuation of the indicator light 77 on the housing 12 as discussed above. If the shiftable transmission assembly 60 is not in its first drive position, the clinician may actuate the firing trigger 92 to move the transmission carriage 62 into the first drive position, such that actuation of the rocker trigger 110 to actuate the motor 80 will result in actuation of the first drive system 20. Assuming that the closure system 1070 and firing system 1100 are each in their respective starting positions and the end effector 1000 has an unspent staple cartridge 1060 properly installed therein, the clinician can then position the jaws 1020, 1040 relative to the target tissue to be cut and stapled. The clinician may close the upper jaw 1040 by actuating the rocker trigger 110 to actuate the motor 80 and rotate the first drive shaft 22. Once the target tissue has been clamped between the upper jaw 1040 and the surgical staple cartridge 1060 in the lower jaw 1020, the clinician may then actuate the firing trigger 92 to move the transmission carriage 62 to its second drive position such that actuation of the motor 80 will result in the rotation of the second drive shaft 42. Once the transmission carriage 62 is moved to the second drive position, the clinician may once again actuate the rocker trigger 110 to actuate the second drive system 40 and the firing system 1100 in the end effector 1000 to drive the tissue cutting member 1090 and wedge sled assembly 1092 distally through the surgical staple cartridge 1060. As the tissue cutting member 1090 and wedge sled assembly 1092 are driven distally, the target tissue clamped between the jaws 1020, 1040 is cut and stapled. Once the tissue cutting member 1090 and wedge sled assembly 1092 have been driven to their distal-most positions in the surgical staple cartridge 1060, the clinician can actuate the rocker trigger 110 to reverse the motor rotation and return the firing system 1100 to its starting position.


When employing end effector 1000 and other end effector and surgical instruments disclosed herein containing similar jaw arrangements it can be challenging to adequately clean the anvil pockets in the underside of the anvil. In addition, the anvil pockets can gall, scive or simply wear over time making them ill-suited for reuse. Furthermore, depending upon the application, loading and removing of the surgical staple cartridge may be difficult. FIGS. 119-121 illustrate a single-use “staple pack” 1300 that may address some, if not all, of these challenges.



FIG. 119 depicts a portion of an end effector 1000′ that may be similar in construction and operation to, for example, end effector 1000 as well as other end effectors disclosed herein except for the specific differences discussed below. As can be seen in FIG. 119, the upper jaw 1240 includes an open distal end 1243. The upper jaw 1240 may be formed form metal material and have a U-shaped configuration when viewed from the distal end and include two-inwardly-extending, opposed retention lips 1245. The end effector 1000′ further includes a lower jaw frame 1222 that is similar to, for example, lower jaw frame 1222 described herein. As can be seen in that Figure, the lower jaw frame 1222 also has an open distal end 1223.


Still referring to FIG. 119, one form of “single-use” staple pack 1300 includes an anvil 1302 that has a staple-forming surface 1304 that includes a plurality of staple-forming pockets (not shown) that are formed therein. The staple pack 1300 further includes a staple cartridge 1310 that has a cartridge deck 1312 that is configured for spaced confronting relationship to the staple-forming undersurface 1304 of the anvil 1302. The staple cartridge 1310 may be similar to other staple cartridges disclosed in further detail herein and operably support a plurality of surgical staples therein. The staple pack 1300 further includes a disposable keeper member 1320 that is sized and shaped to frictionally engage the anvil 1302 and staple cartridge 1310 in such a manner as to maintain alignment between the staple pockets in the staple-forming undersurface 1304 and the staples (not shown) within the staple cartridge 1310 prior to use. The keeper 1320 may also include a spacer strip 1322 that extends between the anvil 1302 and the staple cartridge 1310. The keeper may, for example, be molded from plastic or other suitable polymer material and the spacer strip 1322 may be fabricated from metal material. The spacer strip 1322 may be frictionally retained in a slot or other retention feature formed in the keeper 1320.


Referring now to FIG. 120, the staple pack 1300 is installed by aligning the anvil 1302 with the open distal end 1243 in the upper jaw 1240 and the staple cartridge 1310 is aligned with the open distal end 1245 in the lower jaw frame 1222. Thereafter, the staple pack 1300 is moved in the proximal direction “PD” to the position illustrated in FIG. 120. The retention lips 1245 serve to support the anvil 1302 within the upper jaw 1240. The end effector 1000′ may also include a manually actuatable latch feature 1340 that may be moved from an unlatched position (FIG. 119) to a latched position (FIG. 121). When in the latched position, for example, the latch feature 1340 retains the anvil 1302 within the upper jaw 1240 and the staple cartridge 1310 within the lower jaw frame 1222. For example, the latch feature 1340 may include a movable upper latch arm 1342 that is configured to releasably engage a portion (e.g., lip, detent, ledge or other retention feature(s)) formed on the proximal end of the anvil 1302. Similarly the latch feature 1340 may include a movable lower latch arm 1344 that is configured to releasably engage a portion (e.g., lip, detent, ledge or other retention feature(s)) formed on the staple cartridge 1310. The upper and lower latch arms 1342, 1344 may be pivotally or otherwise movably supported on the end effector 1000′ for selective movement between the latched and unlatched positions. In various forms the upper and lower latch arms 1342, 1344 may be normally biased into the latched position by a spring or springs (not shown). In such arrangements, the clinician may insert the staple pack 1300 into the upper jaw 1240 and lower jaw frame 1222. As the proximal end of the anvil 1302 contacts the upper latch arm 1342, the upper latch arm 1342 is pivoted or moved to permit the anvil 1302 to be seated into position. Once the anvil is seated in position, the upper latch arm 1342 is biased into latching engagement with the anvil 1302 (if a spring or biasing member is employed). In alternative arrangements, the upper latch arm 1342 may be manually moved into the latched position. Likewise, as the proximal end of the staple cartridge 1310 contacts the lower latch arm 1344, the lower latch arm 1344 is pivoted or moved to permit the staple cartridge 1310 to be seated into position. Once the staple cartridge 1310 is seated in position, the lower latch arm 1344 is biased into latching engagement with the staple cartridge 1310 to retain it in position (if a spring or biasing arrangement is employed). In alternative embodiments, the lower latch arm 1344 may be manually moved to the latched position. Once the staple pack 1300 has been installed and the anvil 1302 and staple cartridge 1310 have been latched or otherwise attached to the end effector 1000′, the clinician may remove the keeper assembly 1320. See, e.g., FIG. 121. After the staple pack 1300 has been used, the clinician may then replace the keeper 1320 onto the distal ends of the anvil 1302 and the staple cartridge 1310. This may be accomplished by aligning the open end of the keeper member 1320 and then pressing the keeper member 1320 back into frictional engagement with the anvil 1302 and staple cartridge 1310. Once the distal ends of the anvil 1302 and staple cartridge 1310 have been seated into the keeper member 1320, the clinician may move the upper and lower latch arms 1342, 1344 to their an unlatched positions to enable the staple pack 1300 to be pulled out of the upper jaw 1240 and lower jaw frame 1222. Thereafter, the staple pack 1300 may be discarded as a unit. In other situations, the clinician may separately remove the anvil 1302 and staple cartridge 1310 from the end effector 1000′ without first installing the keeper member 1320.



FIGS. 38-41 depict a surgical end effector 2000 that comprises a surgical cutting and fastening instrument of a type that may commonly be referred to as a “curved cutter stapler”. Various forms of such stapling devices are disclosed in, for example, U.S. Pat. No. 6,988,650, entitled RETAINING PIN LEVER ADVANCEMENT MECHANISM FOR A CURVED CUTTER STAPLER and U.S. Pat. No. 7,134,587, entitled KNIFE RETRACTION ARM FOR A CURVED CUTTER STAPLER the entire disclosures of each being hereby incorporated by reference herein. The end effector 2000 comprises an end effector housing 2010 that may be fabricated from housing segments 2012, 2014 that are removably coupled together by screws, lugs, snap features, etc. Protruding from the end effector housing 2010 is an elongated frame assembly 2020 that terminates in an end effector tool head 2002. In one form, the frame assembly 2020 comprises a pair of spaced frame struts or plates 2022 that are fixedly attached to the housing 2010 and protrude distally therefrom. A C-shaped supporting structure 2024 is attached to the distal end of the frame plates 2022. The term “C-shaped” is used throughout the specification to describe the concave nature of the supporting structure 2024 and a surgical cartridge module 2060. The C-shaped construction facilitates enhanced functionality and the use of the term C-shaped in the present specification should be construed to include a variety of concave shapes which would similarly enhance the functionality of surgical stapling and cutting instruments. The supporting structure 2024 is attached to the frame plates 2022 by a shoulder rivet 2023 and posts 2026 which extend from the supporting structure 2024 into receiving holes in the frame plates 2022. In various forms, the supporting structure 2024 may be formed via a single piece construction. More specifically, the supporting structure 2024 may be formed from extruded aluminum material. By forming the supporting structure 2024 in this manner, multiple parts are not required and the associated cost of manufacture and assembly is substantially reduced. In addition, it is believed the unitary structure of the supporting structure 2024 enhances the overall stability of the end effector 2000. Furthermore, the unitary extruded structure of the supporting structure 2024 provides for a reduction in weight, easier sterilization since cobalt irradiation will effectively penetrate the extruded aluminum and less trauma to tissue based upon the smooth outer surface achieved via extrusion.


The end effector 2000 further includes a first end effector drive system also referred to as end effector closure system 2070 and a second end effector drive system also referred to herein as a firing system 2100. In one form, for example, the end effector closure system 2070 includes a closure beam assembly 2072 that is sized to be slidably received between the frame struts 2022 for axial travel therebetween. The closure beam assembly 2072 may also be referred to as a first end effector actuator and has an open bottom configured to slidably receive a firing bar assembly 2112 of the firing system 2100 as will be discussed in further detail below. In one form, for example, the closure beam assembly 2072 is a molded plastic member shaped for movement and functionality as will be further discussed below. By manufacturing the closure beam assembly 2072 from plastic, manufacturing costs may be reduced and the weight of the end effector 2000 may also be reduced. In addition, the end effector 2000 may be easier to sterilize with cobalt irradiation as plastic is easier to penetrate than stainless steel. In accordance with an alternate arrangement, the closure beam assembly 2072 may be made from extruded aluminum with the final features machined into place. While an extruded aluminum closure beam assembly might not be as easy to manufacture as the plastic component, it would still have the same advantages (i.e., elimination of components, easier to assemble, lower weight, easier to sterilize).


The closure beam assembly 2072 includes a curved distal end 2074 that is sized to be received between the side walls 2027 of the supporting structure 2024. The curved distal end 2074 is sized and shaped to receive and retain a cartridge housing 2062 of the cartridge module 2060. In various forms, the proximal end of the closure beam assembly 2072 is coupled to a closure nut 2084 that is threadably received on a threaded closure shaft 2080. The closure shaft 2080 defines a closure shaft axis CSA-CSA and has a female socket coupler 57 is attached to its proximal end to facilitate coupling of the closure shaft 2080 with a male coupler 51 attached to a first drive shaft in a surgical instrument. Rotation of the closure shaft 2080 in a first direction will cause the closure nut 2084 to drive the closure beam assembly 2072 in the distal direction “DD”. Rotation of the closure shaft 2080 in an opposite direction will likewise result in the proximal travel of the closure nut 2084 and the closure beam assembly 2072.


As indicated above, the distal end 2074 of the closure beam assembly 2072 is configured to operably support the cartridge housing 2062 of a cartridge module 2060 therein. The cartridge module 2060 includes a plurality of surgical staples (not shown) on a staple driver (not shown) that, when axially advanced, drives the surgical staples out of their respective pockets 2066 positioned on each side of a slot 1068 that is configured to accommodate the passage of a knife member 2115 therethrough. The cartridge module 2060 may, for example, be somewhat similar to the cartridge modules disclosed in, for example, U.S. Pat. Nos. 6,988,650 and 7,134,587, which have both been incorporated by reference in their respective entireties herein excepted for any noted differences. The end effector 2000 may be disposed of after a single use or the end effector 2000 may be reusable by replacing the spent cartridge module during an ongoing procedure or for a new procedure after being resterilized.


The end effector 2000 further includes a firing system 2100 which includes a firing bar assembly 2112 that is configured to be slidably received within the open bottom of the closure beam assembly 2072. See FIG. 39. In one form, the firing system 2100 further includes a firing shaft 2102 that has a threaded distal end 2104 and a proximal portion 2106 that has a square cross-sectional shape. The threaded distal end 2104 is threadably received within a threaded firing nut 2110 that is attached to the proximal end of the firing bar assembly 2112. The threaded firing nut 2110 is sized to be slidably received within an axial cavity 2085 within the closure nut assembly 2084. See FIG. 41. Such arrangement permits the firing nut 2110 to be axially advanced with the closure nut assembly 2084 when the end effector 2000 is moved to a closed position and then move axially relative to the closure nut 2084 and closure beam assembly 2072 when the firing system 2100 is actuated. The firing shaft 2102 defines a firing shaft axis FSA-FSA that is parallel with or substantially parallel with the closure shaft axis CSA-CSA. See, e.g., FIG. 41. As can also be seen in FIGS. 39 and 41, the proximal portion 2106 of the firing shaft 2102 is slidably received within an elongated passage 2105 within a female socket coupler 57′ that is otherwise identical to the female socket couplers described herein. The elongated passage 2105 has a square cross-sectional shape that is sized to slidably receive the proximal portion 2106 of the firing shaft 2102 therein. Such arrangement permits the firing shaft 2102 to move axially relative to the female socket coupler 57′ while being rotatable with the female socket coupler 57′. Thus, when the closure beam assembly 2072 is advanced in the distal direction “DD” upon actuation of the first drive system in the surgical instrument, the firing nut 2110 will be carried in the distal direction “DD” within the closure nut assembly 2084. The proximal portion 2106 of the firing shaft 2102 will move axially within the passage 2105 in the female socket coupler 57′ while remaining engaged therewith. Thereafter, activation of the second drive system in one rotary direction in the surgical instrument which is operably coupled to the female socket coupler 57′ will rotate the firing shaft 2102 which will cause the firing bar assembly 2112 to move in the distal direction “DD”. As the firing bar assembly 2112 moves in the distal direction, the knife bar 2115 is advanced distally through the cartridge module 2060. Actuation of the second drive system in a second rotary direction will cause the firing bar assembly 2112 to move in the proximal direction “PD”.


The distal end of the firing bar assembly 2112 includes a drive member 2114 and the knife member 2115 that protrudes distally therefrom. As can be seen in FIG. 39, the knife member 2115 is slidably received within an anvil arm portion 2142 of an anvil assembly 2140 that is configured to be seated within a curved anvil support portion 2025 of the support structure 2024. Further details regarding the anvil assembly 2140 may be found in U.S. Pat. Nos. 6,988,650 and 7,134,587. The end effector 2000 may also include a safety lockout mechanism 2150 (FIG. 39) for preventing the firing of a previously fired cartridge module 2060. Details regarding the interaction between the cartridge module 2060 and the safety lockout mechanism may be found in U.S. Pat. Nos. 6,988,650 and 7,134,587.


The end effector 2000 also includes a tissue retaining pin actuation mechanism 2160. The tissue retaining pin actuation mechanism 2160 includes a saddle shaped slide 2162 that is positioned on a top portion of the housing 2010. The slide 2162 is pivotally connected to a push rod driver 2163 that is slidably supported within the housing 2010. The push rod driver 2163 is restrained for longitudinal movement along the long axis of the end effector 2000. The push rod driver 2163 is connected to a push rod 2164 by a circumferential groove 2165 on the push rod 2164 that snaps into a slot 2166 of the push rod driver 2163. See FIG. 41. The distal end of the push rod 2164 contains a circumferential groove 2167 that interconnects with a groove 2172 in a proximal end of a coupler 2170 that is attached to the cartridge module 2160 (best seen in FIG. 41). The distal end of the coupler 2170 contains a groove 2174 for interconnecting with a circumferential slot 2182 on a retaining pin 2180. Manual movement of the slide 2162 results in movement of the push rod 2164. The distal movement or proximal retraction of the push rod 2164 results in corresponding movement of the retaining pin 2180. The retaining pin 2180 actuation mechanism 2160 also operably interacts with the closure beam assembly 2072 such that actuation of the closure system 2070 will result in automatic distal movement of the retaining pin 2180 if it has not already been manually moved to its most proximal position. When the retaining pin 2180 is advanced, it extends through the cartridge housing 2062 and into the anvil assembly 2140 to thereby capture tissue between the cartridge module 2060 and the anvil assembly 2140.


In one form, the retaining pin actuation mechanism 2160 includes a yoke 2190 rotationally or pivotally supported within the housing 2010 via a pivot pin 2192. The closure beam assembly 2072 further includes posts or lugs 2073 which extend laterally on both sides of the closure beam assembly 2072 inside the housing 2010. These posts 2073 are slidably received within corresponding arcuate slots 2194 in the yoke 2190. The yoke 2190 contains cam pins 2196 positioned to push camming surfaces 2168 on the push rod driver 2163. The yoke 2190 is not directly attached to the retaining pin 2180 so the surgeon, if they chose, can advance the retaining pin 2180 manually. The retaining pin 2180 will advance automatically if the surgeon chooses to leave the retaining pin 2180 alone when the closure beam assembly 2072 is advanced distally to a closed position. The surgeon must retract the retaining pin 2180 manually. By constructing the retaining pin actuation mechanism 2160 in this manner, manual closing and retracting of the retaining pin 2180 is permitted. If the surgeon does not manually close the retaining pin 21280, the present retaining pin actuation mechanism 2160 will do it automatically during instrument clamping. Further details regarding actuation and use of the retaining pin may be found in U.S. Pat. Nos. 6,988,650 and 7,134,587.


The end effector 2000 may also be equipped with various sensors that are coupled to an end effector contact board 2120 mounted within the end effector housing 2010. For example, the end effector 2000 may include a closure sensor 2122 that is mounted within the end effector housing 2010 and is electrically coupled to the end effector contact board 2120 such that when the end effector 2000 is operably coupled to the surgical instrument, the closure sensor 2122 is in communication with the surgical instrument's control system. The closure sensor 2122 may comprise a Hall effect sensor 7028 as shown hereinbelow in connection with FIGS. 61, 63 that is configured to detect the position of a switch lug 2086 on the closure nut 21084. See FIG. 40. In addition, a firing sensor 2124 may also be mounted within the end effector housing 2010 and be arranged to detect the location of the firing nut 2110 within the closure nut 2084. The firing sensor 2124 may comprise a Hall effect sensor 7028 as described hereinbelow in connection with FIGS. 61, 63 and be electrically coupled to the end effector contact board 2120 for ultimate communication with the surgical instrument control system as discussed herein. The contact board 2120 may be positioned with the end effector housing 2020 such that when the end effector 2000 is operably coupled to the surgical instrument, the end effector contact board 2120 is electrically coupled to a surgical instrument contact board 30 mounted in the surgical instrument housing 12 as was discussed above.


Use of the end effector 2000 will now be explained in connection with surgical instrument 10. It will be appreciated, however, that the end effector 2000 may be operably coupled to various other surgical instrument arrangements disclosed herein. Prior to use, the closure shaft 2080 and the firing shaft 2102 are “clocked” or positioned in their starting positions to facilitate attachment to the first and second drive shafts 22, 42, respectively. To couple the end effector 2000 to the surgical instrument 10, for example, the clinician moves the end effector 2000 into a position wherein the closure shaft axis CSA-CSA is in axial alignment with the first drive shaft axis FDA-FDA and wherein the firing shaft axis FSA-FSA is in axial alignment with the second drive shaft axis SDA-SDA. The female socket coupler 57 on the closure shaft 2080 is inserted into operable engagement with the male coupler 51 on the first drive shaft 22. Likewise, the female socket coupler 57′ on the firing shaft 2102 is inserted into operable engagement with the male coupler 51 on the second drive shaft 42. Thus, when in that position, the closure shaft 2080 is operably coupled to the first drive shaft 22 and the firing shaft 2102 is operably coupled to the second drive shaft 42. The end effector contact board 1120 is operably coupled to the surgical instrument contact board 30 so that the sensors within the end effector 2000 are in operable communication with the surgical instrument's control system. To retain the end effector 2000 in coupled operable engagement with the surgical instrument 10, the end effector 2000 includes a retainer latch 2130 that is attached to the end effector housing 2010 and is configured to releasably engage a portion of the instrument housing 12. The retainer latch 2130 may include a retention lug 2132 that may releasable engage a retainer cavity 15 formed in the housing 12. See FIG. 1. When coupled together, the closure sensor 2122 detects the position of the closure nut 2084 and the firing sensor 2124 detects the position of the firing nut 2110. That information is communicated to the surgical instrument control system. In addition, the clinician may confirm that the shiftable transmission assembly (or the transmission carriage 62 thereof) is in its first drive position. This may be confirmed by the actuation of the indicator light 77 on the housing 12 as was discussed above. If the shiftable transmission assembly 60 is not in its first drive position, the clinician may actuate the firing trigger 92 to move the transmission carriage 62 into the first drive position, such that actuation of the rocker trigger 110 to actuate the motor 80 will result in actuation of the first drive system 20. Assuming that the closure system 2070 and firing system 2100 are each in their respective starting positions and the end effector 2000 has an unspent staple cartridge module 2060 properly installed therein, the clinician can then actuate the closure system 2070 to capture the target tissue between the cartridge module 2060 and the anvil assembly 2140.


The clinician may move the closure beam assembly 2072 distally by actuating the rocker trigger 110 to actuate the motor 80 and rotate the first drive shaft 22. This actuation moves the cartridge module 2060 toward the anvil assembly 2140 to clamp the target tissue therebetween. As the closure beam 2072 moves distally, the interaction of the posts 2073 and the yoke 2190 will cause actuation of the tissue retaining actuation mechanism 2160 to drive the retaining pin 2180 distally through the deck portion 2161 and through the anvil assembly 2140 into a pin pocket 2141 (See FIG. 41) therein. The retaining pin 2180 serves to trap the target tissue between the anvil assembly 2140 and the cartridge module 2060. Once the target tissue has been clamped between the anvil assembly 2140 and the cartridge module 2060, the clinician may then actuate the firing trigger 92 to move the transmission carriage 62 to its second drive position such that actuation of the motor 80 will result in the rotation of the second drive shaft 42. Once the transmission carriage 62 is moved to the second drive position, the clinician may once again actuate the rocker trigger 110 to actuate the second drive system 40 and the firing system 2100 in the end effector 2000 to drive the firing bar assembly 2112 distally which also drives the knife member 2115 distally through the cartridge module 2060 cutting the target tissue clamped between the anvil assembly 2140 and the cartridge module 2060. As the firing bar assembly 2112 moves distally, the drive member 2114 also drives the surgical staples supported in the cartridge module 2060 out of the cartridge module 2060 through the target tissue and into forming contact with the anvil assembly 2140. Once the cutting and stapling action is completed, the clinician can actuate the rocker trigger 110 to reverse the motor rotation and return the firing system 2100 to its starting position. The clinician may then return the transmission carriage 62 to its first drive position by means of the firing trigger 92 such that actuation of the rocker trigger 110 in the opposite direction will cause the motor 80 to rotate in a reverse direction to return the closure beam assembly 2073 to its starting position. As the closure beam assembly 2073 moves in the proximal direction, the yoke 2190 may interact with the tissue retaining pin actuation mechanism 2160 to withdraw the retaining pin 2180 to its starting position. In the alternative, the clinician may manually retract the retention pin 2180 to its starting position using the saddle shaped slide 2162. The clinician may retract the retention pin 2180 to its starting position prior to actuating the closure system 2070 to return the closure beam 2072 to its starting position. Further details regarding use of curved staple cutters may be found in U.S. Pat. Nos. 6,988,650 and 7,134,587.



FIGS. 42-45 depict a surgical end effector 3000 that comprises a surgical cutting and fastening instrument of a type that may commonly be referred to as a “circular surgical stapler”. In certain types of surgical procedures, the use of surgical staples has become the preferred method of joining tissue and, as such, specially configured surgical staplers have been developed for these applications. For example, intra-luminal or circular staplers have been developed for use in surgical procedures involving the lower colon wherein sections of the lower colon are joined together after a diseased portion has been excised. Circular staplers useful for performing such procedures are disclosed, for example, in U.S. Pat. Nos. 5,104,025; 5,205,459; 5,285,945; 5,309,927; 8,353,439; and 8,360,297 which are each herein incorporated by reference in their respective entireties.


As shown in FIG. 42, the end effector 3000 comprises an end effector housing 3010 that may be fabricated from housing segments 3012, 3014 that are removably coupled together by screws, lugs, snap features, etc. Protruding from the end effector housing 3010 is an elongated shaft assembly 3020. The elongated shaft assembly 3020 is configured to operably support and interact with a circular tool head 3300 and an anvil 3320. As evidenced by the exemplary U.S. patents referenced above, a variety of different circular staple cartridge and anvil arrangements are known in the art. As shown in FIG. 43, for example, the circular stapler head 3300 may include a casing member 3302 that supports a cartridge supporting assembly in the form of a circular staple driver assembly 3304 therein that is adapted to interface with a circular staple cartridge 3306 and drive staples supported therein into forming contact with the staple forming undersurface 3326 of the anvil 3320. A circular knife member 3308 is also centrally disposed within the staple driver assembly 3304. The proximal end of the casing member 3302 may be coupled to an outer tubular shroud 3022 of the arcuate shaft assembly 3020 by a distal ferrule member 3024. The anvil 3320 includes a circular body portion 3322 that has an anvil shaft 3324 for attaching a trocar thereto. The anvil body 3322 has a staple forming undersurface 3326 thereon and may also have a shroud 3328 attached to the distal end thereof. The anvil shaft 3324 may be further provided with a pair of trocar retaining clips or leaf-type springs 3330 that serve to releasably retain a trocar 3042 in retaining engagement with the anvil shaft 3324 as will be discussed in further detail below.


In one form, the shaft assembly 3020 includes a compression shaft 3030, a distal compression shaft portion 3032, and a tension band assembly 3040 that are operably supported within the outer tubular shroud 3022. A trocar tip 3042 is attached to a distal end of the tension band assembly 3040 by fasteners 3041. As is known, the trocar tip 3042 may be inserted into the anvil shaft 3324 of the anvil 3320 and retained in engagement by trocar retaining clips 3330.


The surgical end effector 3000 further includes a closure system 3070 and a firing system 3100. In at least one form, the closure system 3070 includes a closure nut assembly 3084 that is attached to the proximal end of the tension band 3040. As can be seen in FIGS. 42 and 43, the closure nut assembly 3084 includes a proximal coupler member 3085 that is attached to the proximal end of the tension band 3040 by a fastener 3087. The closure system 3070 further includes a threaded closure shaft 3080 that is in threaded engagement with the closure nut 3084. The closure shaft 3080 defines a closure shaft axis CSA-CSA and has a female socket coupler 57 attached to its proximal end to facilitate coupling of the closure shaft 3080 with a male coupler 51 that is attached to a first drive shaft in a surgical instrument. Rotation of the closure shaft 3080 in a first direction will cause the closure nut 3084 to drive the tension band assembly 3040 in the distal direction “DD”. Rotation of the closure shaft 3080 in an opposite direction will likewise result in the proximal travel of the closure nut 3084 and the tension band assembly 3040.


As can be seen in FIG. 43, the distal compression shaft portion 3032 is coupled to the staple driver assembly 3304. Thus, axial movement of the compression shaft 3030 within the outer tubular shroud 3022 causes the staple driver assembly 3304 to move axially within the casing member 3302. The axial travel of the compression shaft 3030 is controlled by the firing system 3100. In one form, the firing system 3100 includes a threaded firing shaft 3102 that is in threaded engagement with a threaded firing nut 3110 that is attached to the proximal end of the compression shaft 3030. The firing shaft 3102 defines a firing shaft axis FSA-FSA that is parallel with or substantially parallel with the closure shaft axis CSA-CSA. See, e.g., FIGS. 44 and 45. The proximal end of the firing shaft 3102 has a female socket coupler 57 attached thereto to facilitate coupling of the firing shaft 3102 with a male coupler 51 that is attached to a second drive shaft in a surgical instrument. Activation of the second drive system of the surgical instrument in one rotary direction will rotate the firing shaft 3102 in a first direction to thereby drive the compression shaft 3030 in the distal direction “DD”. As the compression shaft 3030 moves in the distal direction “DD”, the circular staple driver assembly 3304 is driven distally to drive the surgical staples in the staple cartridge 3306 into forming contact with the underside 3326 of the anvil body 3322. In addition, the circular knife member 3308 is driven through the tissue clamped between the anvil body 3322 and the staple cartridge 3306. Actuation of the second drive system in a second rotary direction will cause the compression shaft 3030 to move in the proximal direction “PD”.


The end effector 3000 may also be equipped with various sensors that are coupled to an end effector contact board 3120 mounted within the end effector housing 3010. For example, the end effector 3000 may include closure sensor(s) 3122 that are mounted within the end effector housing 3010 and are electrically coupled to the end effector contact board 3120 such that when the end effector 3000 is operably coupled to the surgical instrument, the closure sensor(s) 3122 are in communication with the surgical instrument's control system. The closure sensor(s) 3122 may comprise Hall effect sensors 7028 as described hereinbelow in connection with FIGS. 61, 63 that are configured to detect the position of the closure nut 3084. See FIG. 44. In addition, firing sensor(s) 3124 may also be mounted within the end effector housing 3010 and be arranged to detect the location of the firing nut 3110 within the closure nut 3084. The firing sensor(s) 3124 also may comprise Hall effect sensors 7028 as described hereinbelow in connection with FIGS. 61, 63 and be electrically coupled to the end effector contact board 3120 for ultimate communication with the surgical instrument control system, such as the handle processor 7024, for example, as described in further below in connection with FIGS. 61, 63, 64. The contact board 3120 may be positioned with the end effector housing 3020 such that when the end effector 3000 is operably coupled to the surgical instrument, the end effector contact board 3120 is electrically coupled to a surgical instrument contact board 30 mounted in the surgical instrument housing 12 as was discussed above.


Use of the end effector 3000 will now be explained in connection with surgical instrument 10. It will be appreciated, however, that the end effector 3000 may be operably coupled to various other surgical instrument arrangements disclosed herein. Prior to use, the closure shaft 3080 and the firing shaft 3102 are “clocked” or positioned in their starting positions to facilitate attachment to the first and second drive shafts 22, 42, respectively. To couple the end effector 3000 to the surgical instrument 10, for example, the clinician moves the end effector 3000 into a position wherein the closure shaft axis CSA-CSA is in axial alignment with the first drive shaft axis FDA-FDA and wherein the firing shaft axis FSA-FSA is in axial alignment with the second drive shaft axis SDA-SDA. The female socket coupler 57 on the closure shaft 3080 is inserted into operable engagement with the male coupler 51 on the first drive shaft 22. Likewise, the female socket coupler 57 on the firing shaft 3102 is inserted into operable engagement with the male coupler 51 on the second drive shaft 42. Thus, when in that position, the closure shaft 3080 is operably coupled to the first drive shaft 22 and the firing shaft 3102 is operably coupled to the second drive shaft 42. The end effector contact board 3120 is operably coupled to the surgical instrument contact board 30 so that the sensors 3122, 3124 within the end effector 3000 are in operable communication with the surgical instrument's control system. To retain the end effector 3000 in coupled operable engagement with the surgical instrument 10, the end effector 3000 includes a retainer latch 3130 that is attached to the end effector housing 3010 and configured to releasably engage a portion of the instrument housing 12. The retainer latch 3130 may include a retention lug 3132 that may releasable engage a retainer cavity 15 formed in the housing 12. See FIG. 1. When coupled together, the closure sensor 3122 detects the position of the closure nut 3084 and the firing sensor 3124 detects the position of the firing nut 3110. That information is communicated to the surgical instrument control system. In addition, the clinician may confirm that the shiftable transmission assembly (or the transmission carriage 62 thereof) is in its first drive position. This may be confirmed by the actuation of the indicator light 77 on the housing 12 as was discussed above. If the shiftable transmission assembly 60 is not in its first drive position, the clinician may actuate the firing trigger 92 to move the transmission carriage 62 into the first drive position, such that actuation of the rocker trigger 110 to actuate the motor 80 will result in actuation of the first drive system 20. Assuming that the closure system 3070 and firing system 3100 are each in their respective starting positions and the end effector 3000 has an unspent staple cartridge module properly installed therein, the end effector 3000 is ready for use.


As is known, when performing an anastomosis using a circular stapler, the intestine may be stapled using a conventional surgical stapler with multiple rows of staples being emplaced on either side of a target section (i.e., specimen) of the intestine. The target section is typically simultaneously cut as the section is stapled. After removing the target specimen, the clinician inserts the anvil 3320 into the proximal portion of the intestine, proximal of the staple line. This may be done by inserting the anvil body 3322 into an entry port cut into the proximal intestine portion or the anvil 3320 can be placed trans-anally, by placing the anvil 3320 on the distal end of the end effector 3000 and inserting the instrument through the rectum. Next, the clinician attaches the anvil shaft 3324 to the trocar tip 3042 of the end effector 3000 and inserts the anvil 3320 into the distal portion of the intestine. The clinician may then tie the distal end of the proximal section of the intestine to the anvil shaft 3324 using a suture or other conventional tying device and also tie the proximal end of the distal intestine portion around the anvil shaft 3324 using another suture.


The clinician may then move the tension band assembly 3040, trocar tip 3042 and anvil 3320 attached thereto proximally by actuating the rocker trigger 110 to actuate the motor 80 and rotate the first drive shaft 22. This actuation moves the anvil 3320 toward the cartridge 3306 supported in the casing member 3302 of the stapler head 3300 to close the gap therebetween and thereby engages the proximal end of the distal intestine portion with the distal end of the proximal intestine portion in the gap therebetween. The clinician continues to actuate the first drive system 20 until a desired amount of tissue compression is attained. Once the intestine portions have been clamped between the anvil assembly 3320 and the stapler head 3300, the clinician may then actuate the firing trigger 92 to move the transmission carriage 62 to its second drive position such that actuation of the motor 80 will result in the rotation of the second drive shaft 42. Once the transmission carriage 62 is moved to the second drive position, the clinician may once again actuate the rocker trigger 110 to actuate the second drive system 40 and the firing system 3100 in the end effector 3000 to drive the compression shaft 3030 distally which also drives the circular staple driver assembly 3304 and the circular knife member 3308 distally. Such action serves to cut the clamped pieces of intestine and drive the surgical staples through both clamped ends of the intestine, thereby joining the portions of intestine and forming a tubular pathway. Simultaneously, as the staples are driven and formed, the circular knife 3308 is driven through the intestinal tissue ends, cutting the ends adjacent to the inner row of staples. The clinician may then withdraw the end effector 3000 from the intestine and the anastomosis is complete.



FIGS. 46-49 illustrate another surgical end effector 3000′ that may be identical to the surgical end effector 3000 described above except for the differences noted below. Those components of the surgical end effector 3000′ that are the same as the components in the surgical end effector 3000 described above will be designated with the same element numbers. Those components of surgical end effector 3000′ that may be similar in operation, but not identical to corresponding components of the surgical end effector 3000, will be designated with the same component numbers along with a “′”. As can be seen in FIGS. 46-49, the surgical end effector 3000′ includes a drive disengagement assembly, generally designated as 3090, that is advantageously configured to enable the clinician to disengage a distal portion of a drive train from a proximal portion of a drive train.


In the depicted embodiment, the drive disengagement assembly 3090 is used in connection with the closure system 3070′ so that in the event that the distal portion of the closure system becomes inadvertently jammed or otherwise disabled, the clinician may quickly mechanically separate the distal drive train portion from the proximal drive train portion of the closure system. More specifically and with reference to FIG. 47, the tension band assembly 3040 and the trocar tip 3042 (See FIGS. 42, 43 and 45) may also be referred to as the “distal drive train portion” 3092 of the closure system 3070′ and the closure shaft 3080 and closure nut assembly 3084 may, for example, be referred to as the “proximal drive train portion” 3094 of the closure system 3070′. As can be seen in FIG. 47, one form of the drive disengagement assembly 3090 includes a distal coupler member 3095 that is attached to a proximal end of the tension band assembly 3040. The distal coupler member 3095 may be attached to the tension band assembly 3040 by press fit, adhesive, solder, welding, etc. or any combination of such attachment arrangements. The distal coupler member 3095 is sized to be slidable received within a slot 3097 in the proximal coupler member 3085′ that is attached to the closure nut assembly 3084. The distal coupler member 3095 includes a distal hole 3096 therethrough that is configured to axially register with a proximal hole 3098 in the proximal coupler member 3085′ when the distal coupler member 3095 is seated within the slot 3097. See FIG. 48. The drive disengagement assembly 3090 further comprises a drive coupler pin 3099 that is sized to be received within the axially aligned holes 3096, 3098 to retainingly couple the distal coupler member 3095 to the proximal coupler member 3085′. Stated another way, the drive coupler pin 3099 serves to mechanically and releasably couple the distal drive train portion 3092 to the proximal drive train portion 3094. The drive coupler pin 3099 extends along a coupling axis CA-CA that is transverse to the closure shaft axis CSA. To provide clearance for the drive coupler pin 3099 to move axially relative to the firing nut 3110, an axial slot 3111 is provided in the firing nut 3110. As can be seen in FIG. 46, the end effector housing portion 3014′ is provided with an axially extending clearance slot 3016 to facilitate axial travel of the drive coupler pin 3099 during the actuation of the closure system 3070′. Such arrangement enables the clinician to quickly decouple the distal drive train portion 3092 from the proximal drive train portion 3094 at any time during use of the end effector 3000′ simply by removing or pulling the drive coupler pin 3099 transversely out of the holes 3096, 3098 to permit the distal coupler member 3095 to be disengaged from the proximal coupler member 3085′.


While the drive disengagement assembly 3090 has been described in connection with the closure system 3070′ of the end effector 3000′, the drive disengagement assembly could, in the alternative, be employed in connection with the firing system 3100 of the end effector 3000′. In other arrangements, a drive disengagement assembly 3090 could be associated with the closure system and a second drive disengagement assembly may be associated with the firing system. Thus, one or both of the proximal drive train portions may be selectively mechanically separated from their respective distal drive train portions. Further, such drive disengagement assembly may be effectively employed in connection with the closure and/or firing systems of at least some of other surgical end effectors disclosed herein including but not necessarily limited to, for example, end effector 1000 and end effector 2000 and their respective equivalent arrangements.



FIGS. 50-53 illustrate another surgical end effector 2000′ that may be identical to the surgical end effector 2000 described above except for the differences noted below. Those components of the surgical end effector 2000′ that are the same as the components in the surgical end effector 2000 described above will be designated with the same element numbers. Those components of surgical end effector 2000′ that may be similar in operation, but not identical to corresponding components of the surgical end effector 2000, will be designated with the same component numbers along with a “′”. As can be seen in FIGS. 51-53, the surgical end effector 2000′ may be provided with indicator arrangements for providing a visual indication as to the firing status of the closure and firing systems.


More particularly and with reference to FIGS. 51 and 52, the closure system 2070 includes a closure system status assembly, generally designated as 2090. In one form, for example, the closure system status assembly 2090 includes a closure indicator member 2092 that is attached to or otherwise extends from the closure nut 2084′. The closure system status assembly 2090 further includes a closure indicator window 2094 or opening in the end effector housing 2010 such that the position of the closure indicator member 2092 may be assessed by the clinician by viewing the closure indicator member 2092 through the closure indicator window 2094. Similarly, the firing system 2100′ may include a firing system status assembly, generally designated as 2130. In one form, for example, the firing system status assembly 2130 includes a firing indicator member 2132 that is attached to or otherwise extends from the firing nut 2110′. The firing system status assembly 2130 further includes a firing indicator window or opening 2134 in the end effector housing 2010 such that the position of the firing indicator member 2132 may be assessed by the clinician by viewing the firing indicator member 2132 through the firing indicator window 2134.


The closure system status assembly 2090 and the firing system status assembly 2130 reveal the mechanical state of the closure system 2070 and the firing system 2100. The mechanical state of the distal end of the end effector can generally be observed by the clinician, but it sometimes is covered or obstructed by tissue. The mechanical state of the proximal portion of the end effector cannot be seen without a window arrangement or protruding indicator. Color coding on the exterior of the shaft arrangement and or on the indicator may also be employed to provide the clinician confirmation that the end effector has been fully closed or fired (e.g., indicator on green for fully closed). For example, the closure indicator member 2092 may have a closure mark 2093 thereon that is viewable through the closure indicator window 2094. In addition, the housing 2010 may have a first closure indicia 2095 and a second closure indicia 2096 adjacent to the closure indicator window 2094 to assess the position of the closure indicator 2092. For example, the first closure indicia 2095 may comprise a first bar that has a first color (e.g., range, red, etc.) and the second closure indicia may comprise a bar or section of a second color that differs from the first color (e.g., green). When the closure mark 2093 on the closure indicator member 2092 is aligned on the proximal-most end of the first closure indicia bar 2095 (this position is represented by element number 2097 in FIG. 50), the clinician can observe that the closure system 2070 is in its unactuated position. When the closure mark 2093 is aligned within the first closure indicia bar 2095, the clinician can observe that the closure system 2070 is partially actuated—but not fully actuated or fully closed. When the closure mark 2093 is aligned with the second closure indicia 2096 (represented by element number 2098 in FIG. 50), the clinician can observe that the closure system 2070 is in its fully actuated or fully closed position.


Similarly, the firing indicator member 2132 may have a firing mark 2133 thereon that is viewable through the firing indicator window 2134. In addition, the housing segment 2014′ may have a first firing indicia 2135 and a second firing indicia 2136 adjacent to the firing indicator window 2134 to assess the position of the firing indicator 2132. For example, the first firing indicia 2135 may comprise a first firing bar that has a first firing color (e.g., orange, red, etc.) and the second firing indicia may comprise a second firing bar or section of a second firing color that differs from the first firing color (e.g., green). When the firing mark 2133 on the firing indicator member 2132 is aligned on the proximal-most end of the first firing indicia bar 2135 (this position is represented by element number 2137 in FIG. 50), the clinician can observe that the firing system 2100 is in its unactuated position. When the firing mark 2133 is aligned within the first firing indicia bar 2135, the clinician can observe that the firing system 2100 is partially actuated—but not fully actuated or fully fired. When the firing mark 2133 is aligned with the second firing indicia 2136 (represented by element number 2138 in FIG. 50), the clinician can observe that the firing system 2170 is in its fully actuated or fully fired position. Thus, the clinician may determine the extent to which the closure and firing systems have been actuated by observing the position of the indicators within their respective windows.


In alternative arrangement, the indicator windows 2094 and 2134 may be provided in the end effector housing 2010′ such that when the closure system 2070 and firing system 2100′ are in their starting or unactuated positions, their respective indicators 2092, 2132 may be in full view in the indicator windows 2094, 2134, respectively. As the closure system 2070 and firing system 2100′ are actuated, their indicators 2092, 2132 will move out of their indicator windows 2094, 2134. The clinician may then assess how far each of the systems 2070, 2100′ have been actuated by observing how much of the indicators 2092, 2132 are viewable through the windows 2094, 2134.


The closure system status assembly 2090 and the firing system status assembly 2130 reveal the mechanical state of the closure system 2070 and the firing system 2100 whether the end effector 2000′ is attached to the surgical instrument handle or housing or not. When the end effector 2000 is attached to the handle or housing, the closure system status assembly 2090 and the firing system status assembly 2130 will afford the clinician with the opportunity to determine the mechanical states of those systems as a primary or secondary check to the state shown on the surgical instrument handle or housing. The closure system status assembly 2090 and the firing system status assembly 2130 also serve as a primary check when the end effector 2000′ is detached from the surgical instrument handle or housing. Further, such closure system and firing system status assemblies may be effectively employed in connection with the closure and/or firing systems of at least some of other surgical end effectors disclosed herein including but not necessarily limited to, for example, end effector 1000 and end effector 3000 and their respective equivalent arrangements.



FIGS. 54-60 illustrate another surgical end effector 2000″ that may be identical to the surgical end effector 2000′ described above except for the differences noted below. Those components of the surgical end effector 2000″ that are the same as the components in the surgical end effector 2000′ and/or end effector 2000 described above will be designated with the same element numbers. Those components of surgical end effector 2000″ that may be similar in operation, but not identical to corresponding components of the surgical end effector 2000′ and/or 2000, will be designated with the same component numbers along with a “″”. As can be seen in FIGS. 54-60, the surgical end effector 2000″ includes a drive disengagement assembly, generally designated as 2200, that is advantageously configured to enable the clinician to disengage a distal portion of a drive train from a proximal portion of a drive train.


In the depicted embodiment, the drive disengagement assembly 2200 is used in connection with the closure system 2070″ of the end effector 2000″ so that in the event that the distal portion of the closure system becomes inadvertently jammed or otherwise disabled, the clinician may quickly mechanically separate the distal drive train portion from the proximal drive train portion of the closure system. More specifically and with reference to FIG. 56, the closure beam assembly 2072 may also be referred to as the “distal drive train portion” 2202 of the closure system 2070″ and the closure shaft 2080 and closure nut assembly 2084″ may, for example, be referred to as the “proximal drive train portion” 2204 of the closure system 2070″. As can be seen in FIG. 59, the closure nut assembly 2084″, while substantially identical to closure nut assemblies 2084, 2084′ described above, is provided in two parts. More specifically, closure nut assembly 2084″ includes an upper threaded portion 2210 that is in threaded engagement with the closure shaft 2080 and a lower portion 2214 that supports the firing nut 2110 for axial movement therein in the manner discussed above. The lower portion 2214 of the closure nut assembly 2084″ is directly attached to the closure beam assembly 2072 and includes the closure indicator member 2092″ that functions in the same manner as closure indicator 2092 discussed above.


In at least one form, the drive disengagement assembly 2200 includes a drive coupler pin 2220 that serves to couple the lower portion 2214 of the closure nut assembly 2084″ to the upper portion 2210. As can be seen in FIG. 59, for example, the upper portion 2210 of the closure nut assembly 2084″ includes a first dovetail slot segment 2212 that is configured for alignment with a second dovetail slot segment 2216 in the lower portion 2214 of the closure nut assembly 2084″. When the first and second dovetail slot segments 2212, 2216 are aligned as shown in FIG. 59, they form hole 2215 into which the barrel portion 2222 of the drive coupler pin 2220 may be inserted to couple the upper and lower portions 2010 and 2014 together as shown in FIG. 56. Stated another way, the drive coupler pin 2220 serves to mechanically and releasably couple the distal drive train portion 2202 to the proximal drive train portion 2204 of the closure system 2070″. The drive coupler pin 2220 extends along a coupling axis CA-CA that is transverse to the closure shaft axis CSA. See FIG. 56. To provide clearance for the drive coupler pin 2220 to move axially with the closure nut assembly 2084″, the housing segment 2014″ of the end effector housing 2010″ is provided with an axially extending clearance slot 2224. Such arrangement enables the clinician to quickly decouple the distal drive train portion 2202 from the proximal drive train portion 2204 at any time during use of the end effector 2000″ simply by removing or pulling the drive coupler pin 2220 transversely out of the hole 2215 formed by the dovetail slot segments 2212, 2216. Once the drive coupler pin 2220 has been removed from the hole 2215, the lower portion 2214 of the closure assembly 2084″ can be moved relative to the upper portion 2212 to thereby enable the tissue to be released from between the cartridge module 2060 and the anvil assembly 2140.



FIGS. 54-56 depict the end effector 2000″ in an “open” position prior to use. As can be seen in those Figures, for example, a cartridge module 2060 is installed and ready for use. FIGS. 57 and 58 depict the end effector 2000 in its closed state. That is, the closure beam 2080 has been rotated to drive the closure nut assembly 2084″ in the distal direction “DD”. Because the lower portion 2214 of the closure nut assembly 2084″ is attached to the upper portion 2210 by the drive coupler pin 2220, the closure beam assembly 2072 (because it is attached to the lower portion 2214) is also moved distally to its closed position to clamp target tissue between the cartridge module 2260 and the anvil assembly 2140. As was also discussed above, the saddle shaped slide button 2162 on the housing 2010″ is moved distally to cause the retaining pin to extend through the cartridge housing and into the anvil assembly 2140 to thereby capture the tissue between the cartridge module 2060 and the anvil assembly 2140. As was discussed in detail above, when the closure nut assembly 2084″ moves distally, the firing nut 2110 also moves distally which draws the proximal portion 2106 of the firing shaft 2102 out of the elongated passage within the female socket coupler 57′. See FIG. 58. FIG. 59 illustrates the drive coupler pin 2220 removed from the hole 2215 formed by the dovetail slot segments 2212, 2216. Once the drive coupler pin 2220 has been removed from the hole 2215, the proximal drive train portion 2202 (closure beam assembly 2072) may be moved in the proximal direction “PD” by moving the saddle shaped slide button 2162 proximally. Such movement of the button 2162 will move the closure beam assembly 2072, the lower portion 2014 of the closure nut assembly 2084″, the firing nut 2110 and firing bar assembly 2112, as well as the retaining pin proximally. Such movement will enable the tissue to be released from between the cartridge module 2060 and the anvil assembly 2140.



FIG. 61 is a block diagram of a modular motor driven surgical instrument 7000 comprising a handle portion 7002 and a shaft portion 7004. The modular motor driven surgical instrument 7000 is representative of the modular surgical instrument system generally designated as 2 that, in one form, includes a motor driven surgical instrument 10 that may be used in connection with a variety of surgical end effectors such as, for example, end effectors 1000, 2000 and 3000 as shown in FIG. 1. Having described various functional and operational aspects of the modular motor driven surgical instrument 10 in detail hereinabove, for conciseness and clarity of disclosure such details will not be repeated in the following description associated with FIGS. 61-64. Rather, the description of FIGS. 61-64 that follows will focus primarily on the functional and operational aspects of the electrical systems and subsystems of the modular motor driven surgical instrument 7000, which can be applied in whole or in part to the modular motor driven surgical instrument described hereinabove.


Accordingly, turning now to FIG. 61 the modular motor driven surgical instrument 7000 comprises a handle portion 7002 and a shaft portion 7004. The handle and shaft portions 7002, 7004 comprise respective electrical subsystems 7006, 7008 electrically coupled by a communications and power interface 7010. The components of the electrical subsystem 7006 of the handle portion 7002 are supported by the previously described control board 100. The communications and power interface 7010 is configured such that electrical signals and power can be readily exchanged between the handle portion 7002 and the shaft portion 7004.


In the illustrated example, the electrical subsystem 7006 of the handle portion 7002 is electrically coupled to various electrical elements 7012 and a display 7014. In one instance, the display 7014 is an organic light emitting diode (OLED) display, although the display 7014 should not be limited in this context. The electrical subsystem 7008 of the shaft portion 7004 is electrically coupled to various electrical elements 7016, which will be described in detail hereinbelow.


In one aspect, the electrical subsystem 7006 of the handle portion 7002 comprises a solenoid driver 7018, an accelerometer 7020, a motor controller/driver 7022, a handle processor 7024, a voltage regulator 7026, and is configured to receive inputs from a plurality of switches 7028. Although, in the illustrated embodiment, the switches 7028 are designated as Hall switches, the switches 7028 are not limited in this context. In various aspects, the Hall effect sensors or switches 7028 may be located either in the end effector portion of the instrument, the shaft, and/or the handle.


In one aspect, the electrical subsystem 7006 of the handle portion 7002 is configured to receive signals from a solenoid 7032, a clamp position switch 7034, a fire position switch 7036, a motor 7038, a battery 7040, an OLED interface board 7042, and open switch 7044, close switch 7046, and fire switch 7048. In one aspect, the motor 7038 is a brushless DC motor, although in various aspects the motor is not limited in this context. Nevertheless, the description of the motor 7038 may be applicable to the motors 80, 480, 580, 680, 750, and 780 previously described. The solenoid 7032 is representative example of the previously described shifter solenoid 71.


In one aspect, the electrical subsystem 7008 of the shaft portion 7004 comprises a shaft processor 7030. The electrical subsystem 7008 of the shaft is configured to receive signals from various switches and sensors located in the end effector portion of the instrument that are indicative of the status of the clamp jaws and cutting element in the end effector. As illustrated in FIG. 61, the electrical subsystem 7008 of the shaft is configured to receive signals from a clamp opened status switch 7050, a clamp closed status switch 7052, a fire begin status switch 7054, and a fire end status switch 7056, which are indicative of the states of the clamp and cutting element.


In one aspect, the handle processor 7024 may be a general purpose microcontroller suitable for medical and surgical instrument applications and including motion control. In one instance, the handle processor 7024 may be a TM4C123BH6ZRB microcontroller provided by Texas Instruments. The handle processor 7024 may comprise a 32-bit ARM® Cortex™-M4 80-MHz processor core with System Timer (SysTick), integrated nested vectored interrupt controller (NVIC), wake-up interrupt controller (WIC) with clock gating, memory protection unit (MPU), IEEE754-compliant single-precision floating-point unit (FPU), embedded trace macro and trace port, system control block (SCB) and thumb-2 instruction set, among other features. The handle processor 7024 may comprise on-chip memory, such as 256 KB single-cycle Flash up to 40 MHz. A prefetch buffer can be provided to improve performance above 40 MHz. Additional memory includes a 32 KB single-cycle SRAM, internal ROM loaded with TivaWare™ for C Series software, 2 KB EEPROM, among other features, such as two Controller Area Network (CAN) modules, using CAN protocol version 2.0 part A/B and with bit rates up to 1 Mbps.


In one aspect, the handle processor 7024 also may comprise advanced serial integration including eight universal asynchronous receiver/transmitters (UARTs) with IrDA, 9-bit, and ISO 7816 support (one UART with modem status and modem flow control). Four Synchronous Serial Interface (SSI) modules are provided to support operation for Freescale SPI, MICROWIRE or Texas Instruments synchronous serial interfaces. Additionally, six Inter-Integrated Circuit (I2C) modules provide Standard (100 Kbps) and Fast (400 Kbps) transmission and support for sending and receiving data as either a master or a slave, for example.


In one aspect, the handle processor 7024 also comprises an ARM PrimeCell® 32-channel configurable μDMA controller, providing a way to offload data transfer tasks from the Cortex™-M4 processor, allowing for more efficient use of the processor and the available bus bandwidth. Analog support functionality includes two 12-bit Analog-to-Digital Converters (ADC) with 24 analog input channels and a sample rate of one million samples/second, three analog comparators, 16 digital comparators, and an on-chip voltage regulator, for example.


In one aspect, the handle processor 7024 also comprises advanced motion control functionality such as eight Pulse Width Modulation (PWM) generator blocks, each with one 16-bit counter, two PWM comparators, a PWM signal generator, a dead-band generator, and an interrupt/ADC-trigger selector. Eight PWM fault inputs are provided to promote low-latency shutdown. Two quadrature encoder interface (QEI) modules are provided, with a position integrator to track encoder position and velocity capture using built-in timer.


In one aspect, two ARM FiRM-compliant watchdog timers are provided along with six 32-bit general-purpose timers (up to twelve 16-bit). Six wide 64-bit general-purpose timers (up to twelve 32-bit) are provided as well as 12 16/32-bit and 12 32/64-bit capture compare PWM (CCP) pins, for example. Up to 120 general purpose input/outputs (GPIOs) can be provided depending on configuration, with programmable control for GPIO interrupts and pad configuration, and highly flexible pin multiplexing. The handle processor 7024 also comprises lower-power battery-backed hibernation module with real-time clock. Multiple clock sources are provided for the microcontroller system clock and include a precision oscillator (PIOSC), main oscillator (MOSC), 32.768-kHz external oscillator for the hibernation module, and an internal 30-kHz oscillator.


In one aspect, the accelerometer 7020 portion of the electrical subsystem 7006 of the handle portion 7002 may be a micro-electromechanical system (MEMS) based motion sensor. As is well known, MEMS technology combines computers with tiny mechanical devices such as sensors, valves, gears, mirrors, and actuators embedded in semiconductor chips. In one example, the MEMS based accelerometer 7020 may comprise an ultra low power 8 bit 3-axis digital accelerometer such as the LIS331DLM provided by STMicroelectronics, for example.


In one aspect, the accelerometer 7020, such as the LIS331DLM, may be an ultra low-power high performance three axes linear accelerometer belonging to the “nano” family, with digital I2C/SPI serial interface standard output, with is suitable for communicating with the handle processor 7024. The accelerometer 7020 may feature ultra low-power operational modes that allow advanced power saving and smart sleep to wake-up functions. The accelerometer 7020 may include dynamically user selectable full scales of ±2 g/±4 g/±8 g and it is capable of measuring accelerations with output data rates from 0.5 Hz to 400 Hz, for example.


In one aspect, the accelerometer 7020 may include self-test capability to allow the user to check the functioning of the sensor in the final application. The accelerometer 7020 may be configured to generate an interrupt signal by inertial wake-up/free-fall events as well as by the position of the instrument itself. Thresholds and timing of interrupt generators may be programmable on the fly.


In one aspect, the motor controller/driver 7022 may comprise a three phase brushless DC (BLDC) controller and MOSFET driver, such as the A3930 motor controller/driver provided by Allegro, for example. The 3-phase brushless DC motor controller/driver 7022 may be employed with N-channel external power MOSFETs to drive the BLDC motor 7038, for example. In one instance, the motor controller/driver 7022 may incorporate circuitry required for an effective three-phase motor drive system. In one instance, the motor controller/driver 7022 comprises a charge pump regulator to provide adequate (>10 V) gate drive for battery voltages down to 7 V, and enables the motor controller/driver 7022 to operate with a reduced gate drive at battery voltages down to 5.5 V. Power dissipation in the charge pump can be minimized by switching from a voltage doubling mode at low supply voltage to a dropout mode at the nominal running voltage of 14 V. In one aspect, a bootstrap capacitor is used to provide the above-battery supply voltage required for N-channel MOSFETs. An internal charge pump for the high-side drive allows for dc (100% duty cycle) operation.


An internal fixed-frequency PWM current control circuitry regulates the maximum load current. The peak load current limit may be set by the selection of an input reference voltage and external sensing resistor. The PWM frequency can be set by a user-selected external RC timing network. For added flexibility, the PWM input can be used to provide speed and torque control, allowing the internal current control circuit to set the maximum current limit.


The efficiency of the motor controller/driver 7022 may be enhanced by using synchronous rectification. The power MOSFETs are protected from shoot-through by integrated crossover control with dead time. The dead time can be set by a single external resistor.


In one aspect, the motor controller/driver 7022 indicates a logic fault in response to the all-zero combination on the Hall inputs. Additional features of the motor controller/driver 7022 include high current 3-phase gate drive for N-channel MOSFETs, synchronous rectification, cross-conduction protection, charge pump and top-off charge pump for 100% PWM, integrated commutation decoder logic, operation over 5.5 to 50 V supply voltage range, diagnostics output, provides +5 V Hall sensor power, and has a low-current sleep mode.


In one aspect, the modular motor driven surgical instrument 7000 is equipped with a brushless DC electric motor 7038 (BLDC motors, BL motors) also known as electronically commutated motors (ECMs, EC motors). One such motor is the BLDC Motor B0610H4314 provided by Portescap. The BLDC Motor B0610H4314 can be autoclavable. The BLDC motor 7038 is a synchronous motor that is powered by a DC electric source via an integrated inverter/switching power supply, which produces an AC electric signal to drive the motor such as the motor controller/driver 7022 described in the immediately foregoing paragraphs. In this context, AC, alternating current, does not imply a sinusoidal waveform, but rather a bi-directional current with no restriction on waveform. Additional sensors and electronics control the inverter output amplitude and waveform (and therefore percent of DC bus usage/efficiency) and frequency (i.e., rotor speed).


The rotor part of the BLDC motor 7038 is a permanent magnet synchronous motor, but in other aspects, BLDC motors can also be switched reluctance motors, or induction motors. Although some brushless DC motors may be described as stepper motors, the term stepper motor tends to be used for motors that are designed specifically to be operated in a mode where they are frequently stopped with the rotor in a defined angular position.


In one aspect, the BLDC motor controller/driver 7022 must direct the rotation of the rotor. Accordingly, the BLDC motor controller/driver 7022 requires some means of determining the rotor's orientation/position (relative to the stator coils.) In one instance, the rotor part of the BLDC motor 7038 is configured with Hall effect sensors or a rotary encoder to directly measure the position of the rotor. Others measure the back electromotive force (EMF) in the undriven coils to infer the rotor position, eliminating the need for separate Hall effect sensors, and therefore are often called sensorless controllers.


In one aspect, the BLDC motor controller/driver 7022 contains 3 bi-directional outputs (i.e., frequency controlled three phase output), which are controlled by a logic circuit. Other, simpler controllers may employ comparators to determine when the output phase should be advanced, while more advanced controllers employ a microcontroller to manage acceleration, control speed and fine-tune efficiency.


Actuators that produce linear motion are called linear motors. The advantage of linear motors is that they can produce linear motion without the need of a transmission system, such as a ball-and-lead screw, rack-and-pinion, cam, gears or belts that would be necessary for rotary motors. Transmission systems are known to introduce less responsiveness and reduced accuracy. The direct drive, BLDC motor 7038 may comprise a slotted stator with magnetic teeth and a moving actuator, which has permanent magnets and coil windings. To obtain linear motion, the BLDC motor controller/driver 7022 excites the coil windings in the actuator causing an interaction of the magnetic fields resulting in linear motion.


In one aspect, the BLDC motor 7038 is a Portescap B0610 brushless DC motor that provides a combination of durability, efficiency, torque, and speed in a package suitable for use in the modular motor driven surgical instrument 7000. Such BLDC motors 7038 provide suitable torque density, speed, position control, and long life. The slotless BLDC motor 7038 uses a cylindrical ironless coil made in the same winding technique as ironless DC motors. The slotted BLDC motors 7038 also are autoclavable. The slotted BLDC motor 7038 may include a stator that consists of stacked steel laminations with windings placed in the slots that are axially cut along the inner periphery. The brushless DC slotted BLDC motor 7038 provides high torque density and heat dissipation, along with high acceleration. The three-phase configuration of the BLDC motor 7038 includes Wye connections, Hall effect sensors, supply voltage of 4.5-24V. The housing of the BLDC motor 7038 may be made of a 303SS material and the shaft may be made of a 17-4 ph material.


In one aspect, the Hall switches 7028 may be Hall effect sensors known under the trade name BU520245G and are unipolar integrated circuit type Hall effect sensors. These sensors operate over a supply voltage range of 2.4V to 3.6V.


In one aspect, the voltage regulator 7026 replaces the usual PNP pass transistor with a PMOS pass element. Because the PMOS pass element behaves as a low-value resistor, the low dropout voltage, typically 415 mV at 50 A of load current, is directly proportional to the load current. The low quiescent current (3.2 μA typically) is stable over the entire range of output load current (0 mA to 50 mA).


In one aspect, the voltage regulator 7026 is a low-dropout (LDO) voltage regulator such as the TPS71533 LDO voltage regulator provided by Texas Instruments. Such LDO voltage regulators 7026 provide the benefits of high input voltage, low-dropout voltage, low-power operation, and miniaturized packaging. The voltage regulator 7026 can operate over an input range of 2.5 V to 24 V, are stable with any capacitor (≥0.47 μF). The LDO voltage and low quiescent current allow operations at extremely low power levels and thus the voltage regulator 7026 is suitable for powering battery management integrated circuits. Specifically, the voltage regulator 7026 is enabled as soon as the applied voltage reaches the minimum input voltage and the output is quickly available to power continuously operating battery charging integrated circuits of the handle portion 7002.


In one aspect, the battery 7040 is a lithium-ion polymer (LIPO) battery, polymer lithium ion or more commonly lithium polymer batteries (abbreviated Li-poly, Li-Pol, LiPo, LIP, PLI or LiP) are rechargeable (secondary cell) batteries. The LIPO battery 7040 may comprise several identical secondary cells in parallel to increase the discharge current capability, and are often available in series “packs” to increase the total available voltage.


Additional power for the modular motor driven surgical instrument 7000 may be provided by a synchronous step down DC-DC converter 7058 (FIG. 63-A) optimized for applications with high power density such as the TPS6217X family provided by Texas Instruments. A high switching frequency of typically 2.25 MHz may be employed to allow the use of small inductors and provides fast transient response as well as high output voltage accuracy by utilization of the DCS-Control™ topology.


With a wide operating input voltage range of 3V to 17V, the synchronous step down DC-DC converter 7058 (FIG. 63-A) is well suited for modular motor driven surgical instrument 7000 systems powered from either a Li-Ion or other battery as well as from 12V intermediate power rails. In one aspect, a synchronous step down DC-DC converter 7058 supports up to 0.5 A continuous output current at output voltages between 0.9V and 6V (with 100% duty cycle mode).


Power sequencing is also possible by configuring the Enable and open-drain Power Good pins. In Power Save Mode, the synchronous step down DC-DC converter 7058 (FIG. 63-A) show quiescent current of about 17 μA from VIN. Power Save Mode is entered automatically and seamlessly if load is small and maintains high efficiency over the entire load range. In Shutdown Mode, the synchronous step down DC-DC converter 7058 is turned off and shutdown current consumption is less than 2 μA.


In one aspect, the OLED interface 7042 is an interface to the OLED display 7014. The OLED display 7014 comprises organic light-emitting diodes in which the emissive electroluminescent layer is a film of organic compound which emits light in response to an electric current. This layer of organic semiconductor is situated between two electrodes, where in general at least one of these electrodes is transparent. The OLED display 7014 may include OLEDs from two main families. Those based on small molecules and those employing polymers. Adding mobile ions to an OLED creates a light-emitting electrochemical cell or LEC, which has a slightly different mode of operation. The OLED display 7014 can use either passive-matrix (PMOLED) or active-matrix addressing schemes. Active-matrix OLEDs (AMOLED) require a thin-film transistor backplane to switch each individual pixel on or off, but allow for higher resolution and larger display sizes. In one instance, the OLED display 7014 works without a backlight. Thus, it can display deep black levels and can be thinner and lighter than a liquid crystal display (LCD), making it ideally suitable for use on the handle portion 7002 of the modular motor driven surgical instrument 7000.


In one aspect, the shaft processor 7030 of the electrical subsystem 7008 of the shaft portion 7004 may be implemented as an ultra-low power 16-bit mixed signal MCU, such as the MSP430FR5738 Ultra-low Power MCU provided by Texas Instruments. The shaft processor 7030 is an ultra-low power microcontroller consisting of multiple devices featuring embedded FRAM nonvolatile memory, ultra-low power 16-bit MSP430 CPU, and additional peripherals targeted for various applications. The architecture, FRAM, and peripherals, combined with seven low-power modes, are optimized to achieve extended battery life in portable and wireless sensing applications. FRAM is a new nonvolatile memory that combines the speed, flexibility, and endurance of SRAM with the stability and reliability of flash, all at lower total power consumption. Peripherals include 10-bit A/D converter, 16-channel comparator with voltage reference generation and hysteresis capabilities, three enhanced serial channels capable of I2C, SPI, or UART protocols, internal DMA, hardware multiplier, real-time clock, five 16-bit timers, among other features.


The shaft processor 7030 includes a 16-bit RISC architecture up to 24 MHz clock and operates over a wide supply voltage range of 2 V to 3.6 V and is optimized for ultra-low power modes. The shaft processor 7030 also includes intelligent digital peripherals, an ultra-low power ferroelectric RAM, and up to 16 KB of nonvolatile memory. The embedded microcontroller provides ultra-low power writes, a fast write cycle of 125 ns per word, 16 KB in 1 ms, and includes built in Error Coding and Correction (ECC) and Memory Protection Unit (MPU).


Having described the electrical system, subsystems, and components of the handle and shaft portions 7002, 7004 of the modular motor driven surgical instrument 7000, the functional aspects of the control system will now be described. Accordingly, in operation, the electrical subsystem 7006 of the handle portion 7002 is configured to receive signals from the open switch 7044, close switch 7046, and fire switch 7048 supported on a housing of the handle portion 7002. When a signal is received from the close switch 7046 the handle processor 7024 operates the motor 7038 to initiate closing the clamp arm. Once the clamp is closed, the clamp closed status switch 7052 in the end effector sends a signal to the shaft processor 7030, which communicates the status of the clamp arm to the handle processor 7024 through the communications and power interface 7010.


Once the target tissue has been clamped, the fire switch 7048 may be actuated to generate a signal, which is received by the handle processor 7024. In response, the handle processor 7024 actuates the transmission carriage to its second drive position such that actuation of the motor 7038 will result in the rotation of a second drive shaft, as described in detail above in connection with FIGS. 1-8. Once the cutting member is positioned, the fire begin status switch 7054 located in the end effector sends a signal indicative of the position of the cutting member to the shaft processor 7030, which communicates the position back to the handle processor 7024 through the communications and power interface 7010.


Actuating the first switch 7048 once again sends a signal to the handle processor 7038, which in response actuates the second drive system and the firing system in the end effector to drive the tissue cutting member and wedge sled assembly distally through the surgical staple cartridge. Once the tissue cutting member and wedge sled assembly have been driven to their distal-most positions in the surgical staple cartridge, the fire end switch 7056 sends a signal to the shaft processor 7030 which communicates the position back to the handle processor 7024 through the interface 7010. Now the fire switch 7048 may be activated to send a signal to the handle processor 7024, which operated the motor 7038 in reverse rotation to return the firing system to its starting position.


Actuating the open switch 7044 once again sends a signal to the handle processor 7024, which operates the motor 7038 to open the clamp. Once open, the clamp opened status switch 7050 located in the end effector sends a signal to the shaft processor 7030, which communicates the position of the clamp to the handle processor 7024. The clamp position switch 7034 and the fire position switch 7036 provide signals to the handle processor 7024 that indicate the respective positions of the clamp arm and the cutting member.



FIG. 62 is a table 7060 depicting the total time it takes to complete a stroke and the load current requirements for various operations of various device shafts. The first column 7062 from the left lists circular, contour, and TLC devices/shafts. These devices/shafts are compared over three different operations closing, opening, and firing as shown in the second column 7064. The third column 7066 depicts the total time in seconds required for the device/shaft listed in the first column 7063 to complete one stroke. The fourth column 7068 lists the load current requirements in amperes for the devices/shafts listed in the first column 7062 to complete the operation in the second column 7064 for a complete stroke as indicated in the third column 7066. As indicated in the chart, closing and opening the clamp arm takes about the same time for each of the device/shafts listed in the first column 7062. For the firing operation, the circular device/shaft requires the most load current at 15.69 A and the TLC device/shaft requires the least amount load current at 0.69 A.



FIG. 63-A is a detail diagram of the electrical system in the handle portion 7002 of the modular motor driven surgical instrument 7000. As shown in FIG. 63-A, the voltage regulator 7026 and DC-DC converter 7058 provide the operating voltages for the electrical system. The voltage regulator 7026 regulates the battery 7040 voltage. The handle processor 7024 receives inputs from the accelerometer 7020. The VSS-ON/OFF Logic supply 7086 provides the input voltage to the handle processor 7024 and the VSS input to the DC-DC converter 7058.


A tri-color LED 7072 is electrically coupled to the handle processor 7024. The handle processor 7024 energizes either the red, blue, or green LED 7072 to provide visual feedback.


Three Hall effect sensor 7028 U10, U11, U12 provide three separate Hall effect outputs U1_Hall1, U1_Hall2, U1_Hall3 which are coupled to the handle processor 7024 as shown. The U1_Hall3 output drives an onboard LED 7088. In one aspect, the Hall effect sensor outputs U1_Hall1, U1_Hall2, U1_Hall3, and the ANALOG_CLAMP signal are coupled to the handle processor 7024 to determine the position of the clamp arm and the cutting member at the end effector portion of the modular motor driven surgical instrument 7000, or the positions of other elements of the instrument 7000.


The user switch 7070 is a representative example of the previously described “rocker-trigger” 110 that is pivotally mounted to a pistol grip portion of the handle. The user switch 7070 is operable to actuate a first motor switch 7044 that is operably coupled to the handle processor 7024. The first motor switch 7044 may comprise a pressure switch which is actuated by pivoting the user switch 7070 into contact therewith. Actuation of the first motor switch 7044 will result in actuation of the motor 7038 such that the drive gear rotates in a first rotary direction. A second motor switch 7046 is also coupled to the handle processor 7024 and mounted for selective contact by the user switch 7070. Actuation of the second motor switch 7046 will result in actuation of the motor 7038 such that the drive gear is rotated in a second direction. A fire switch 7048 is coupled to handle processor 7024. Actuation of the fire switch 7048 results in the axial movement of the transmission carriage to advance the cutting element as was described above.


A Joint Test Action Group (JTAG) 7074 input is also coupled to the handle processor 7024. The JTAG 7074 input is the IEEE 1149.1 Standard Test Access Port and Boundary-Scan Architecture devised for integrated circuit (IC) debug ports. The handle processor 7024 implements the JTAG 7074 to perform debugging operations like single stepping and breakpointing.


A UART 7076 is coupled to the handle processor 7024. The UART 7076 translates data between parallel and serial forms. The UART 7076 is commonly used in conjunction with communication standards such as EIA, RS-232, RS-422 or RS-485. The universal designation indicates that the data format and transmission speeds are configurable. The electric signaling levels and methods (such as differential signaling etc.) are handled by a driver circuit external to the UART 7076. The UART 7076 may be an individual (or part of an) integrated circuit used for serial communications over the serial port of the handle processor 1024. The UART 7076 can be included in the handle processor 1024.


A description of the remaining functional and operational aspects of the electrical subsystem 7006 of the handle portion 7002 of the modular motor driven surgical instrument 7000 will now be provided in connection with FIG. 63-B. As shown, the handle processor 7024 provides a signal to drive the solenoid 7032. A shaft module 7078 provides position signals SHAFT_IDO, SHAFT_ID1, CLAMP_HOME, and FIRE_HOME to the handle processor 7024. A gear position module 7080 provides the position of the clamp and the cutting element to the handle processor 7024. The positional information provided by the shaft module 7078 and the gear position module 7080 enable the handle processor 7024 to properly activate the motor 7038 when the user switch 7070 signals are received to open the clamp, close the clamp, and/or fire the cutting element.


The motor controller 7022 receives commands from the handle processor 7024 and provides commands to the MOSFET driver 7084, which drives the 3-phase BLDC motor 7038 (FIG. 61). As previously described, the BLDC motor controller 7022 must direct the rotation of the rotor. Accordingly, the BLDC motor controller/driver 7022 determines the position/orientation of the rotor relative to the stator coils. Accordingly, the rotor part of the BLDC motor 7038 is configured with Hall effect sensors 7028 to directly measure the position of the rotor. The BLDC motor controller 7022 contains 3 bi-directional outputs (i.e., frequency controlled three phase output), which are controlled by a logic circuit.


Accordingly, as described in FIGS. 61, 63-A, 63-B, and 64 a motor control system comprising the motor controller 7022, the motor driver 7084, the motor Hall effect sensors 7028 in combination with the gear position module 7080 and/or the shaft module 7078 is operable to synchronize the gears such that the male couplers in the handle portion smoothly couple with the female couplers in the shaft portion of the surgical instruments described herein. In one instance, for example, although some tolerances may be provided for ease of shifting or keying, the motor control system is configured to track the position of the gears to ensure that the gears do not stop in a position that would prohibit shifting from one to the other or installing the two rotary keyings. In another instance, the motor may be configured to be slowly indexed during installation or shifting to resolve any minor out of synchronization conditions. These same issues may be encountered with the example described in connection with FIG. 6 when the instrument shifts between two drives and not just when installing new end-effectors. This situation may be reso9lved by proper synchronization of the gears employing the motor control system described in connection with FIGS. 61, 63-A, 63-B, and 64. In other instances, encoders may be provided to track the rotations of the gears/gear shafts.



FIG. 64 is block diagram of the electrical system of the handle and shaft portions of the modular motor driven surgical instrument. As shown in FIG. 64, the handle processor 7024 receives inputs from the open switch 7044, close switch 7046, fire switch 7048, clamp position switch 7034, and fire position switch 7036. In addition, the handle processor 7024 receives inputs from a clamp home switch 7090 and a fire home switch 7092 from the shaft module 7078. Using various combinations of these switch inputs, the handle processor 7024 provides the proper commands to the motor 7038 and the solenoid 7032. A battery monitoring circuit 7088 monitors the power input to the handle processor 7024 relative to ground. The handle processor 7024 drives the tri-color LED 7072. The accelerometer 7020 provides three-axis orientation inputs to the handle processor 7024 to determine various parameters such as orientation of the instrument 7000 and whether the instrument 7000 has been dropped. The voltage regulator 7026 provides the regulated power supply for the system. A current sensing module 7094 is provided to sense the current drawn from the power supply.



FIG. 65 illustrates a mechanical switching motion control system 7095 to eliminate microprocessor control of motor functions. In the system described in connection with FIGS. 61-64, a microprocessor such as the handle processor 7024 is employed to control the function of the motor 7038. The handle processor 7024 executes a control algorithm based on the various states of the switches deployed throughout the instrument 7000. This requires the use of the handle processor 7024 and associated identification functions to provide control for different end effectors.


As shown in FIG. 65, however, an alternative technique may be employed to control the motor 7038 that eliminates the need for the handle processor 7024 by placing motion related switched 7096A, 7096B, 7096C, 7096D in the end effector shaft. The switches 7096A-D are then configured to turn on and off specific functions of the motor 7038 or to reverse the direction of the motor 7038 based on where specific end effector components are positioned. In one instance, a switch that indicates full deployment of the cutting member could be employed to switch the functions of the motor 7038 to reverse direction and withdraw the cutting member. In another instance, the switches 7096A-D could be configured to detect pressure or force such that a simple closure of the anvil down on the tissue would provide an on/off signal back to the closure motor 7038 to stop the closure motion.


In various instances, a surgical instrument can include a handle, an electric motor positioned within the handle, a shaft attachable to the handle, and an end effector extending from the shaft, wherein the electric motor is configured to motivate an end effector function at the end effector. In some instances, the surgical instrument can include a control system comprising one or more sensors and a microprocessor which can receive input signals from the sensors, monitor the operation of the surgical instrument, and operate the electric motor to perform the end effector function in view of the sensor input signals. In at least one such instance, the handle of the surgical instrument can be usable with more than one shaft. For instance, a linear stapling shaft or a circular stapling shaft could be assembled to the handle. The handle can include at least one sensor configured to detect the type of shaft that has been assembled thereto and communicate this information to the microprocessor. The microprocessor may operate the electric motor differently in response to the sensor input signals depending on the type of the shaft that has been assembled to the handle. For instance, if the electric motor is configured to operate a closing system of the end effector, the microprocessor will rotate the electric motor in a first direction to close an anvil of the circular stapler shaft and a second, or opposite, direction to close an anvil of the linear stapler shaft. Other control systems are envisioned in which the same operational control of the electric motor can be achieved without the use of a microprocessor. In at least one such instance, the shafts and/or the handle of the surgical instrument can include switches which can operate the surgical instrument differently depending on the type of the shaft that has been assembled to the handle.


In various instances, a surgical instrument system can include a power source, a first motor configured to perform a first end effector function, a second motor configured to perform a second end effector function, and a control system of switches configured to selectively place the power source in communication with the first motor and the second motor in response to the control system of switches. In various instances, such a surgical instrument system may not include a microprocessor. The first motor can comprise a closing motor of a closing system configured to close an anvil of the end effector and the second motor can comprise a firing motor of a firing system configured to fire staples from a staple cartridge of the end effector. The control system of switches can include a closure trigger switch which, when closed, can close a closure power circuit which couples the power source to the closing motor. The control system can further include a closure end-of-stroke switch which can be opened by the closure system when the anvil is in a fully closed position and open the closure power circuit to stop the closing motor and the closure drive. The control system of switches can also include a firing trigger switch which can be part of a firing power circuit which couples the power source to the firing motor. In various circumstances, the default condition of the firing power circuit can be open which can prevent the firing motor from being operated prior to firing power circuit being closed. Thus, closing the firing switch alone may not close the firing power circuit and operate the firing motor. The firing power circuit can further include a second closure end-of-stroke switch which can be closed by the closure system when the anvil is in a fully closed position. Closing the firing switch and the second closure end-of-stroke switch may close the firing power circuit and operate the firing motor. The control system can further include a firing end-of-stroke switch can be opened by the firing drive when the firing drive reaches the end of its firing stroke. The opening of the firing end-of-stroke switch can open the firing power circuit and stop the firing motor. The control system can further include a second firing end-of-stroke switch which can be closed by the firing drive to close a reverse firing power circuit which reverses the polarity of the power applied to the firing motor and operates the firing motor in an opposite direction and retracts the firing drive. Closing the reverse firing power circuit may also require the firing trigger switch to be in a closed condition. When the firing drive reaches its fully-retracted position, it can close a proximal firing switch. The closure of the proximal firing switch can close a reverse closing power circuit which can reverse the polarity of the power applied to the closing motor and operate the closing motor in an opposite direction and open the anvil. Closing the reverse closure power circuit may also require the closure trigger switch to be in a closed condition. When the anvil reaches its fully-open position, the anvil can open a proximal closure switch which can open the reverse closing power circuit and stop the closing motor. This is but one example.


In various instances, as described herein, a handle of a surgical instrument can be used with several different shaft assemblies which can be selectively attached to the handle. In some instances, as also described herein, the handle can be configured to detect the type of shaft that has been assembled to the handle and operate the handle in accordance with a control system contained within the handle. For instance, a handle can include a microprocessor and at least one memory unit which can store and execute a plurality of operating programs, each of which are configured to operate a specific shaft assembly. Other embodiments are envisioned in which the handle does not include a control system; rather, the shaft assemblies can each comprise their own control system. For instance, a first shaft assembly can comprise a first control system and a second shaft assembly can comprise a second control system, and so forth. In various instances, the handle may comprise an electrical motor, a power source, such as a battery and/or an input cable, for example, and an electrical circuit configured to operate the electrical motor based on control inputs from the attached shaft assembly. The handle may further comprise an actuator which, in conjunction with the shaft control system, may control the electrical motor. In various instances, the handle may not comprise additional control logic and/or a microprocessor, for example, for controlling the electrical motor. With the exception of the handle actuator, the control system of the shaft assembly attached to the handle would include the control logic needed to operate the electrical motor. In various instances, the control system of the shaft assembly may include a microprocessor while, in other instances, it may not. In some instances, the first control system of a first shaft assembly can include a first microprocessor and the second control system of a second shaft assembly can include a second microprocessor, and so forth. In various instances, a handle can include a first electrical motor, such as a closing motor, for example, and a second electrical motor, such as a firing motor, for example, wherein the control system of the attached shaft assembly can operate the closing motor and the firing motor. In certain instances, the handle can comprise a closing actuator and a firing actuator. With the exception of the closing actuator and the firing actuator, the control system of the shaft assembly attached to the handle would include the control logic needed to operate the closing motor and the firing motor. In various instances, a handle can include a shaft interface and each shaft assembly can include a handle interface configured to engage the shaft interface. The shaft interface can include an electrical connector configured to engage an electrical connector of the handle interface when a shaft assembly is assembled to the handle. In at least one instance, each connector may comprise only one electrical contact which are mated together such that only one control path is present between the handle and the shaft assembly. In other instances, each connector may comprise only two electrical contacts which form two mated pairs when the shaft assembly is attached to the handle. In such instances, only two control paths may be present between the handle and the shaft assembly. Other embodiments are envisioned in which more than two control paths are present between the handle and the shaft assembly.


In various instances, surgical end effector attachments can be compatible with a surgical instrument handle. For example, a surgical end effector can be coupled to the handle of a surgical instrument and can deliver and/or implement a drive motion that was initiated in the handle of the surgical instrument. Referring to FIGS. 73 and 74, the surgical end effector 8010 can be one of the several surgical end effectors that can be compatible with the handle 8000 of a surgical instrument. Various different surgical end effectors are described throughout the present disclosure and are depicted throughout the associated figures. The reader will appreciate that these various, different surgical end effectors described and depicted herein may be compatible with the same surgical instrument handle and/or can be compatible with more than one type of surgical instrument handle, for example.


The handle 8000 can include drive systems, for example, which can be configured to transfer a drive motion from the handle 8000 of the surgical instrument to a component, assembly and/or system of the end effector 8010. For example, the handle 8000 can include a first drive system 8002a and a second drive system 8004a. In certain instances, one of the drive systems 8002a, 8004a can be configured to deliver a closing drive motion to the jaw assembly of the end effector 8010 (FIG. 73), for example, and one of the drive systems 8002a, 8004a can be configured to deliver a firing drive motion to a firing element in the end effector 8010, for example. The drive systems 8002a, 8004a can be configured to transfer a linear motion, displacement, and/or translation from the handle 8000 to the end effector 8010. In various instances, the first drive system 8002a can include a drive bar 8006, which can be configured to translate and/or be linearly displaced upon activation of the first drive system 8002a. Similarly, the second drive system 8004a can include a drive bar 8008, which can be configured to translate and/or be linearly displaced upon activation of the second drive system 8004a.


In various instances, the end effector assembly 8010 can include a first drive system 8002b, which can correspond to the first drive system 8002a of the handle 8000, for example, and can also include a second drive system 8004b, which can correspond to the second drive system 8004a of the handle 8000, for example. In various instances, the first drive system 8002b in the end effector 8010 can include a drive element 8012, which can be operably and releasably coupled to the drive bar 8006 of the first drive system 8002a of the handle 8000, for example, and can be configured to receive a linear motion from the drive bar 8006, for example. Additionally, the second drive system 8004b of the end effector 8010 can include a drive element 8014, which can be operably and releasably coupled to the drive bar 8008 of the second drive system 8004a of the handle 8000, for example, and can be configured to receive a linear motion from the drive bar 8008, for example.


In various instances, the handle 8000 and/or the end effector 8010 can include a coupling arrangement, which can be configured to releasably couple the drive bar 8006 to the drive element 8012, for example, and/or the drive bar 8008 to the drive element 8014, for example. In other words, the coupling arrangement can couple the first drive system 8002a of the handle 8000 to the first drive system 8002b of the end effector 8010 and the second drive system 8004a of the handle 8000 to the second drive system 8004b of the end effector 8010 such that a drive force initiated in the handle 8000 of the surgical instrument can be transferred to the appropriate drive system 8002b, 8004b of the attached surgical end effector 8010. Though the surgical system depicted in FIGS. 73 and 74 includes a pair of drive systems 8002a, 8004a in the handle 8000 and a corresponding pair of drive system 8002b, 8004b in the end effector 8010, the reader will appreciate that the various coupling arrangements disclosed herein can also be used in a surgical end effector and/or handle comprising a single drive system or more than two drive systems, for example.


In various instances, a coupling arrangement for coupling a drive system in the handle of a surgical instrument to a drive system in an attached end effector can include a latch, which can be configured to retain and secure the connection between the corresponding handle and end effector drive systems. As described in greater detail herein, the latch can be spring-loaded, and can be coupled to a trigger, for example, which can be configured to operably overcome the bias of a spring to unlock, open, and/or release the coupling arrangement, for example. In various instances, the coupling arrangement can include independent and/or discrete coupling mechanisms and/or joints for each drive system 8002b, 8004b in the surgical end effector 8010. In such instances, one of the drive systems 8002b, 8004b can be activated without activating the other drive system 8002b, 8004b. In other instances, the drive systems 8002b, 8004b can be activated simultaneously and/or concurrently, for example.


Referring now to FIGS. 66-72, a coupling arrangement 8100 for use with a surgical end effector is depicted. For example, a surgical end effector can be attached to a handle 8170 (FIGS. 67-69) of a surgical instrument via the coupling arrangement 8100, for example. In various instances, the coupling arrangement 8100 can include a coupler housing or frame 8102, for example. The coupler housing 8102 can be positioned within a proximal attachment portion of the end effector, for example. Additionally, the coupler housing 8102 can include a carriage 8104, for example, which can be configured to move relative to the coupler housing 8102, for example. For example, the coupler housing 8102 can include a channel 8103, which can be dimensioned and structured to receive the slidable and/or shiftable carriage 8104. For example, the carriage 8104 can be restrained by the coupler housing 8102, such that the carriage 8104 is movably held in the channel 8103 and is configured to move and/or slide within the channel 8103. The channel 8103 can guide and/or restrain movement of the carriage 8014 relative to the housing 8102, for example. In certain instances, the carriage 8104 can have a ramped surface, such as a ramp or wedge 8106, for example, which can further guide and/or facilitate movement of the carriage 8104, for example.


In various instances, the coupling arrangement 8100 can include a trigger 8120 in sliding engagement with the ramp 8106 of the carriage 8104. For example, the trigger 8120 can include an inclined surface 8122 that is configured to slide along the ramp 8106 of the carriage 8104 when the trigger 8120 is moved between a first, or unactuated, position (FIG. 68) and a second, or actuated, position (FIGS. 67 and 69), for example. In certain instances, the coupling arrangement 8100 can include a guide, such as guide rails 8110, for example, which can be positioned and structured to guide the trigger 8120 between the first, unactuated position and the second, actuated position, for example. For example, the coupler housing 8102 can include a pair of guide rails 8110, which can define an actuation path for the trigger 8120.


In various instances, when the trigger 8120 is moved along the actuation path defined by at least one guide rail 8110 in a direction D1 (FIGS. 67 and 69) from the unactuated position (FIG. 68) to the actuated position (FIGS. 67 and 69), for example, the carriage 8104 can be shifted downward or in a direction D3 (FIGS. 67 and 69) within the channel 8103 via the inclined surface 8122 of the trigger 8120 and the ramp 8106 of the carriage 8104. Accordingly, activation of the trigger 8120 can shift the carriage 8104 relative to the coupler housing 8102, trigger 8120 and/or various other components, assemblies, and/or systems of the coupling arrangement 8100, for example.


In various instances, when the trigger 8120 is moved along at least one guide rail 8110 in a direction D2 (FIG. 68) from the actuated position (FIGS. 67 and 69) to the unactuated position (FIG. 68), for example, the carriage 8104 can be shifted upward or in a direction D4 (FIG. 68) within the channel 8103 via the inclined surface 8122 of the trigger 8120 and the ramp 8106 of the carriage 8104. Accordingly, actuation of the trigger 8120 can affect movement of the carriage 8104 relative to the coupler housing 8102, for example. In certain instances, a spring and/or other biasing mechanism can be configured to bias the carriage 8104 and/or the trigger 8120 toward a predefined position relative to the channel 8103 and/or the coupler housing 8102, for example.


Referring now to FIG. 66, in various instances, a slot 8112 can be defined in the coupler housing 8102 and/or the end effector. The slot 8112 can be dimensioned to receive a drive member 8172 of the handle 8170 of a surgical instrument, for example. In certain instances, a pair of slots 8112 can be defined in the coupler housing 8102, and each slot 8112 can be configured to receive one of the drive members 8172 of the handle 8170, for example. As described in greater detail herein, the drive members 8172 can be coupled to and/or otherwise driven by a drive system in the handle 8170. For example, each drive member 8172 can be coupled to and/or otherwise driven by a linear actuator of a drive system in the handle 8170, which can be configured to translate and deliver a linear drive motion to the corresponding drive system in the end effector, for example.


In various instances, the carriage 8104 can also be configured to move and/or shift relative to a drive member socket 8130 of the coupling arrangement 8100. The drive member socket 8130 can be configured to receive one of the drive members 8172 from the handle 8170, for example. Referring primarily to FIG. 71, the socket 8103 can include an opening 8136, which can be dimensioned and/or structured to receive a drive system component of the handle 8170. For example, referring primarily to FIG. 67, the opening 8136 can be configured to receive a distal portion of the drive bar 8172. In such instances, when the drive bar 8172 is secured within the opening 8136 in the socket 8130, as described in greater detail herein, the socket 8130 can be configured to transfer a drive force from the handle 8170 to the surgical end effector via the drive bar 8172 and socket 8130 engagement, for example.


Referring still to FIG. 67, the drive bar 8172 can include a bevel 8176 and a groove or divot 8174, for example, which can facilitate engagement and/or locking of the drive bar 8172 to the socket 8130. In various instances, the drive member socket 8130 can be secured and/or fixed within the end effector and/or within the coupler housing 8102, for example, and the carriage 8104 can be configured to move and/or shift relative to and/or around the socket 8130 when the carriage 8104 slides within the channel 8103 in the coupler housing 8102.


Referring primarily to FIG. 71, the socket 8130 can include at least one flexible tab 8132a, 8132b. The flexible tab 8132a, 8132b can be inwardly biased toward the opening 8136 and/or can include an inwardly-biased tooth, for example. In certain instances, the flexible tab 8132a, 8132b can include the tooth 8133, for example, which can be configured to engage the groove 8174 in the drive bar 8172 when the drive bar 8172 is inserted into the opening 8136 in the socket 8130. For example, the bevel 8176 of the drive bar 8172 can pass by the tooth 8133 within the socket opening 8136, and can flex or deflect the tab 8132 outward from the opening 8136. As the drive bar 8172 continues to enter the opening 8136 of the socket 8130, the tooth 8136 of the tab 8132a, 8132b can engage or catch the groove 8174 in the drive bar 8172. In such instances, the tooth 8136-groove 8174 engagement can releasably hold the drive bar 8172 within the socket 8130, for example.


In various instances, the socket 8130 can include a recess 8134, which can be configured to receive a spring 8150, for example. In other instances, the socket 8136 can include more than one recess 8134, and the coupling arrangement 8100 can include more than one spring 8150, for example. Moreover, in certain instances, the socket 8130 can include more than one flexible tab 8132a, 8132b. For example, the socket 8130 can include a pair of laterally-positioned tabs 8132a, 8132b. A first tab 8132a can be positioned on a first lateral side of the socket 8130, for example, and a second tab 8132b can be positioned on a second lateral side of the socket 8130, for example. In certain instances, the tabs 8132a, 8132b can be deflected outward from the opening 8136 to accommodate entry of the drive bar 8172, for example. In other instances, the socket 8130 may not include an inwardly-biased tab and/or can include more than two tabs, for example.


In various instances, the coupling arrangement 8100 can also include a latch or sleeve 8140, which can be movably positioned relative to the socket 8130. For example, the latch 8140 can include an opening 8142 (FIG. 72), which can be dimensioned and structured to at least partially surround at least a portion of the socket 8130. For example, the latch 8140 can be positioned around the socket 8130, and can be movably positioned relative to the tabs 8132a, 8132b of the socket 8130, for example. In various instances, the spring 8150 can be positioned between a portion of the socket 8130 and a portion of the latch 8140, for example, such that the spring 8150 can bias the latch 8140 toward a socket-latching position (FIG. 68). For example, the spring 8150 can bias the latch 8140 into the socket-latching position (FIG. 68) in which the latch 8140 is positioned to surround and/or restrain outward deflection of the tab(s) 8132a, 8132b.


In various instances, when the latch 8140 is positioned to limit and/or prevent outward deflection of the tab(s) 8132a, 8132b, i.e., in the socket-latching position, outward movement of the tab(s) 8132a, 8132b away from the opening 8136 can be limited, such that the tab(s) 8132a, 8132b can block and/or otherwise prevent entry and/or release of the drive bar 8172 relative to the opening 8136 in the socket 8130, for example. Moreover, when the trigger 8120 moves from the unactuated position (FIG. 68) to the actuated position (FIGS. 67 and 69), the latch 8140 can overcome the bias of the spring(s) 8150, for example, and can be moved from the socket-latching position (FIG. 68) to an unlatched position (FIGS. 67 and 69). When in the unlatched position, the latch 8140 can be shifted away from the flexible tab(s) 8132a, 8132b, such that the flexible tab(s) 8132a, 8132b can be deflected outward, for example, and the socket 8130 can receive the drive bar 8172, for example.


In various instances, the latch 8140 can comprise a nub or protrusion 8144. Furthermore, referring primarily to FIG. 70, the carriage 8104 in the coupler housing 8102 can include a biasing member 8108. The biasing member 8108 can include a ramp or angled surface, for example, which can be configured to bias the nub 8144, and thus the latch 8140, between the first or socket-latching position (FIGS. 67 and 69) and the second, or latched, position (FIG. 68), for example. For example, when movement of the trigger 8120 causes the carriage 8104 to shift relative to the coupler housing 8102 and the socket 8130, as described herein, the nub 8144 can slide along the angled surface of the biasing member 8108, such that the latch 8140 moves relative to the flexible tab 8132 of the socket 8130. In such instances, the activation of the trigger 8120 can overcome the bias of the spring 8150 and retract the latch 8140 from the socket-latching position around the flexible tab(s) 8132 of the socket 8130 to the unlatched position. In such instances, when the latch 8140 is retracted, the flexible tab(s) 8132 can be permitted to deflect and/or engage a driving bar 8172. Moreover, when the trigger is unactuated, the spring 8150 can bias the latch 8140 relative to and/or around the flexible tab(s) 8132a, 8132b, such that deflection of the tab(s) 8132a, 8132b, and thus engagement with a drive bar 8172, is limited and/or prevented, for example.


In certain instances, the latch 8140 can include a pair of laterally-opposed nubs 8144, which can slidably engage laterally-opposed biasing members 8108 of the carriage 8104. Furthermore, in instances where the coupling arrangement 8100 couples more than one drive system between the handle 8170 and the surgical end effector, for example, the carriage 8104 can include multiple biasing members 8108, and/or multiple pairs of biasing members 8108. For example, each socket 8130 can include a pair of laterally positioned nubs 8144, and the carriage 8104 can include a biasing member 8108 for each nub 8144, for example.


Referring primarily to FIG. 68, prior to activation of the trigger 8120 and/or upon release of the trigger 8120, the trigger 8120 can be positioned in the distal, unactuated position, the carriage 8104 can be positioned in the lifted position relative to the coupler housing 8102, and the latch 8140 can be positioned in the socket-latching position. In such an arrangement, the latch 8140 can prevent entry and/or engagement of the drive bar 8172 with the socket 8130, for example. In various instances, spring(s) 8150 and/or a different spring and/or biasing member can bias the trigger 8120 into the unactuated position, the carriage 8104 into the lifted position, and/or the latch 8140 into the socket-latching position, for example. To connect and/or attach one of the drive bars 8172 to one of the sockets 8130, referring now to FIG. 67, the trigger 8120 can be moved to the proximal, actuated position, which can shift the carriage 8104 to the lowered position, which can shift the latch 8140 to the unlatched position, for example. In such an arrangement, a drive bar 8172 can be configured to enter and/or be received by the socket 8130, for example.


Thereafter, if the trigger 8120 is released, referring now to FIG. 68, for example, the spring(s) 8150 can bias the trigger 8120 back to the distal, unactuated position, can bias the carriage 8104 back to the lifted position, and can bias the latch 8140 back to a socket-latching position. Accordingly, the drive member 8172 can be locked into engagement with the socket 8130 because the latch 8140 can prevent outward deflection of the flexible tabs 8132a, 8132b, and thus, can secure the drive member 8172 within the socket 8130, for example. Accordingly, referring now to FIG. 69, to decouple the drive member 8172 from the socket 8130, the trigger 8120 can again be moved to the proximal, actuated position, which can shift the carriage 8104 to the lowered position, which can shift the latch 8140 to the unlatched position, for example. In such an arrangement, i.e., when the socket 8130 is unlatched, the drive member 8172 can be removed from the socket 8130, for example.


In various instances, a surgical instrument can include a drive system coupled to a motor. In certain instances, the motor and the drive system can affect various surgical functions. For example, the motor and the drive system can affect opening and/or closing of a surgical end effector, and can affect a cutting and/or firing stroke, for example. In certain instances, the motor and drive system can affect multiple distinct surgical functions. For example, opening and closing of the surgical end effector can be separate and distinct from cutting and/or firing of fasteners from the surgical end effector. In such instances, the drive system can include a transmission and/or clutch assembly, which can shift engagement of the drive system between different output systems, for example.


In various instances, a surgical instrument can include a drive system having multiple output shafts, and a clutch for shifting between the different output shafts. In certain instances, the output shafts can correspond to different surgical functions. For example, a first output shaft can correspond to an end effector closure motion, and a second output shaft can correspond to an end effector firing motion, for example. In various instances, the drive system can switch between engagement with the first output shaft and the second output shaft, for example, such that the surgical functions are separate and distinct and/or independent. For example, an end effector closure motion can be separate and distinct from an end effector firing motion. For example, it may be preferable to initiate a closure motion and, upon completion of the closure motion, initiate a separate firing motion. Moreover, it may be preferable to control and/or drive the independent closure motion and firing motion with a single drive system, which can be coupled to an electric motor, for example. In other instances, the first output shaft and the second output shaft can be operably coupled and the various surgical functions and/or surgical motions can occur simultaneously and/or at least partially simultaneously, for example.


Referring now to FIGS. 75-78, a handle 8600 for a surgical instrument can include a drive system 8602, which can include a first output drive system 8610 and a second output drive system 8620, for example. In various instances, when an end effector is attached to the handle 8600, the first output drive system 8610 can be coupled to a first drive system in the attached end effector, and the second output drive system 8620 can be coupled to a second drive system in the attached end effector. The first output drive system 8610 can affect a first surgical function, such as clamping of the end effector jaws, for example, and the second output drive system 8620 can affect a second surgical function, such as firing of a firing element through the end effector, for example. In other instances, the surgical functions with respect to the first output drive system 8610 and the second output drive system 8620 can be reversed and/or otherwise modified, for example.


In various instances, the drive system 8602 can include a motor assembly, which can include an electric motor 8640 and a motor shaft 8642. A drive gear 8644 can be mounted to the motor shaft 8642, for example, such that the electric motor 8640 drives and/or affects rotation of the drive gear 8644. In various instances, the first output drive system 8610 can include a first drive shaft 8612 and a first driven gear 8612. The first driven gear 8614 can be mounted to the first drive shaft 8612, for example, such that the rotation of the first driven gear 8614 affects the rotation of the first drive shaft 8612. In various instances, a linear actuator 8616 can be threadably positioned on the first drive shaft 8612, and rotation of the first drive shaft 8612 can affect linear displacement of the linear actuator 8616, for example. Moreover, in various instances, the second output drive system 8620 can include a second drive shaft 8622 and a second driven gear 8624. The second driven gear 8624 can be mounted to the second drive shaft 8622, for example, such that the rotation of the second driven gear 8624 affects the rotation of the second drive shaft 8622. In various instances, a linear actuator 8626 can be threadably positioned on the second drive shaft 8624, and rotation of the second drive shaft 8624 can affect linear displacement of the linear actuator 8626, for example.


In various instances, the drive system 8602 can further comprise a transmission or shifter assembly 8648. The shifter assembly 8648 can be configured to shift engagement of the drive gear 8644 between the first output drive system 8610 and the second output drive system 8620, for example. For certain instances, the shifter assembly 8648 can include a shifting gear 8652, which can be in meshing engagement with the drive gear 8644, for example. Additionally, the shifting gear 8652 can be configured to shift or move between a range of positions, for example, and can remain in meshing engagement with the drive gear 8644 as the shifting gear 8652 moves within the range of positions.


For example, the shifting gear 8652 can move into and/or out of engagement with at least one of the first driven gear 8614 and/or the second driven gear 8624. In various instances, the shifting gear 8652 can move into meshing engagement with the second driven gear 8624 of the second output drive system 8620. For example, when in a first position (FIG. 78) of the range of positions, the shifting gear 8652 can be disengaged from the second driven gear 8624, and when in a second position (FIG. 77) of the range of positions, the shifting gear 8652 can be engaged with the second driven gear 8624, for example. In instances when the shifting gear 8652 is engaged with the second driven gear 8624, the shifting gear 8652 can transfer a force from drive gear 8644 to the second driven gear 8624, such that the motor 8640 can affect a surgical function via the second output drive system 8620, for example. Moreover, in instances when the shifting gear 8652 is disengaged from the second driven gear 8624, rotation of the motor 8640 may not be transferred to the second output drive system 8620, for example.


In various instances, the shifter assembly 8648 can further comprise an intermediate and/or transfer gear 8654. The transfer gear 8642 can be configured to transfer a drive force from the shifting gear 8652 to the first driven gear 8614, for example. In various instances, the transfer gear 8654 can be in meshing engagement with the first drive gear 8614, for example, such that the rotation of the transfer gear 8654 is transferred to the first driven gear 8614, for example. Moreover, in various instances the shifting gear 8652 can move into and/or out of engagement with the transfer gear 8654. For example, when in the first position (FIG. 78) of the range of positions, the shifting gear 8652 can be engaged with the transfer gear 8654, and when in the second position (FIG. 77) of the range of positions, the shifting gear 8652 can be disengaged from the transfer gear 8654, for example. In instances when the shifting gear 8652 is engaged with the transfer gear 8654, the shifting gear 8652 can transfer a force from the drive gear 8644 to the first driven gear 8614 via the transfer gear 8654. In such instances, the motor 8640 can affect a surgical function via the first output drive system 8610, for example. Moreover, in instances when the shifting gear 8652 is disengaged from the transfer gear 8654, rotation of the motor 8640 may not be transferred to the first output drive system 8610, for example.


In various instances, the transfer gear 8654 can be rotatably mounted on the second drive shaft 8622 of the second output drive system 8620. For example, the transfer gear 8654 can be configured to rotate relative to the second drive shaft 8622 without affecting rotation of the second drive shaft 8622 and the second driven gear 8624 fixed thereto. In various instances, the shifter assembly 8648 can include a bracket or collar 8650, which can at least partially surround the shifting gear 8652. The bracket 8650 can be positioned around the shifting gear 8652, for example, such that movement of the bracket 8650 can move the shifting gear 8652.


In various instances, the handle 8600 and/or the shifting assembly 8648 can further include a trigger or clutch 8630. The clutch 8630 can be configured to shift the bracket 8650 and/or the shifting gear 8652 within the range of positions. For example, clutch 8630 can comprise a trigger extending from the handle 8600, and can be engaged with the bracket 8650 and/or the shifting gear 8652. In various instances, the bracket 8650 can include a pin 8656, which can extend from the bracket 8640 into an aperture 8638 (FIG. 75) in the clutch 8630. For example, the clutch 8630 can include an arm 8632 and/or a pair of arms 8632 coupled to a pivot point 8634 on the handle 8600. The clutch 8630 can pivot at the pivot point 8634, for example, and pivoting of the arm(s) 8632 can move the pin 8656 of the bracket 8560. Movement of the bracket 8650 can shift the shifting gear 8652 between the first position (FIG. 78) and the second position (FIG. 77), for example.


In various instances, the movement of the bracket 8650 can be constrained such that the shifting gear 8652 moves along a longitudinal axis through its range of positions. Moreover, the pivoting stroke and/or range of movement of the clutch 8630 can be restrained and/or limited, for example, such that the shifting gear 8652 remains within the range of positions as the clutch 8630 pivots. Furthermore, the aperture 8638 (FIG. 75) in the clutch 8630 can be configured and/or structured to maintain and/or hold the shifting gear 8652 within the range of positions and/or in alignment with one of the second driven gear 8624 and/or the transfer gear 8654, for example. In various instances, the handle 8600 can include a spring or other biasing mechanism, to bias the shifting gear 8652 into one of the first position or the second position. In some instances, the handle 8600 can include a bistable complaint mechanism configured to hold the shifting gear 8652 in its first position or its second position. To the extent that the shifting gear 8652 is between the first position and the second position, the bistable compliant mechanism can be dynamically unstable and act to place the shifting gear 8652 in its first position or its second position. Alternatively, the shifting gear 8652 can be biased into an intermediate position, wherein the shifting gear 8652 can be simultaneously engaged with the first output drive system 8610 and the second output drive system 8620, for example. Additionally or alternatively, the handle 8600 can include a lock and/or detent for holding the shifting gear 8652 in one of the first position or the second position, for example.


A surgical instrument can include a rotatable drive shaft configured to operate a closure drive and a firing drive of a surgical instrument. Referring to FIGS. 79-84, a surgical instrument 10000 can include a rotatable drive shaft 10020, a closure drive 10030, and a firing drive 10040. As will be described in greater detail below, the drive shaft 10020 can include a first thread 10024 configured to operate the closure drive 10030 and a second thread 10026 configured to operate the firing drive 10040. In various instances, the instrument 10000 can comprise a circular stapler, for example.


The surgical instrument 10000 can comprise a frame 10002 and means for generating a rotary motion. In certain instances, rotary motion can be created by a manually-driven hand crank, for example, while, in various instances, rotary motion can be created by an electric motor. In either event, the generated rotary motion can be transmitted to a rotary input shaft 10010. Input shaft 10010 can include a proximal bearing portion 10011 and a distal bearing portion 10013 which are rotatably supported by the frame 10002. In various instances, the proximal bearing portion 10011 and/or the distal bearing portion 10013 can be directly supported by the frame 10002 while, in certain instances, the proximal bearing portion 10011 and/or the distal bearing portion 10013 can include a bearing positioned between the input shaft 10010 and the frame 10002. The input shaft 10010 can further include a gear 10012 mounted to and/or keyed to the input shaft 10010 such that, when input shaft 10010 is rotated in direction A (FIG. 79), gear 10012 is also rotated in direction A. Correspondingly, when input shaft 10010 is rotated in an opposite direction, i.e., direction A′ (FIG. 82), the gear 10012 is also rotated in direction A′.


Referring primarily to FIGS. 79 and 80, the drive shaft 10020 can include a proximal end 10021 and a distal end 10023. The proximal end 10021 and the distal end 10023 can be rotatably supported by the frame 10002. In various instances, the proximal end 10021 and/or the distal end 10023 can be directly supported by the frame 10002 while, in certain instances, the proximal end 10021 and/or the distal end 10023 can include a bearing positioned between the drive shaft 10020 and the frame 10002. A gear 10022 can be mounted to and/or keyed to the proximal end 10021 of the drive shaft 10020. The gear 10022 is meshingly engaged with the gear 10012 such that, when the input shaft 10010 is rotated in direction A, the drive shaft 10020 is rotated in direction B. Correspondingly, referring to FIG. 81, when the input shaft 10010 is rotated in direction A′, the drive shaft 10020 is rotated in direction B′.


Referring again to FIG. 79, the closure drive system 10030 can include a closure pin 10032 engaged with the first thread 10024 of the drive shaft 10020. The closure drive system 10030 can further comprise a translatable closure member 10033. The closure pin 10032 is positioned within an aperture defined in the proximal end of the closure member 10033. The closure pin 10032 can include a first end positioned within the groove defined by the first thread 10024. When the drive shaft 10020 is rotated, a sidewall of the groove can contact the first end of the closure pin 10032 and displace the closure pin 10032 proximally or distally, depending on the direction in which the drive shaft 10020 is being rotated. For example, when the drive shaft 10020 is rotated in direction B (FIG. 79), the closure pin 10032 can be displaced, or translated, distally as indicated by direction D. Correspondingly, when the drive shaft 10020 is rotated in direction B′ (FIG. 82), the closure pin 10032 can be displaced, or translated, proximally as indicated by direction P. The closure pin 10032 can be closely received within the aperture defined in the closure member 10033 such that the displacement, or translation, of the closure pin 10032 is transferred to the closure member 10033. As the reader will appreciate, the closure pin 10032 and the closure member 10033 are constrained from rotating relative to the frame 10002 such that the rotation of the drive shaft 10020 is converted to the translation of the closure pin 10032 and the closure member 10033.


Referring primarily to FIG. 80, the first thread 10024 extends along a first length 10025 of the drive shaft 10020. In certain instances, the first thread 10024 may extend along the entire length of the drive shaft 10020 while, in other circumstances, the first thread 10024 may extend along less than the entire length of the drive shaft 10020. The first thread 10024 can include a proximal portion adjacent the proximal end 10021 of the drive shaft 10020 and a distal portion adjacent the distal end 10023 of the drive shaft 10020. When the closure pin 10032 is in the distal portion of the first thread 10024, as illustrated in FIG. 81, the closure member 10033 can position an anvil of the surgical instrument 10000 in an open position. As the drive shaft 10020 is rotated in direction B′, the closure pin 10032 can translate proximally until the closure pin 10032 reaches the proximal portion of the first thread 10024, as illustrated in FIG. 82. As the closure pin 10032 moves proximally, the closure pin 10032 can pull the closure member 10033 and the anvil proximally. When the closure pin 10032 reaches the proximal portion of the first thread 10024, the anvil can be in a fully closed position.


Further to the above, the closure drive 10030 can be operated to move the anvil of the surgical instrument 10000 into a suitable position relative to a staple cartridge. In various instances, the surgical instrument 10000 can include an actuator which can be operated in a first direction to rotate the input shaft 10010 in direction A and the drive shaft 10020 in direction B and a second direction to rotate the input shaft 10010 in direction A′ and the drive shaft 10020 in direction B′. In other instances, the surgical instrument 10000 can include a first actuator configured to rotate the input shaft 10010 in direction A and the drive shaft 10020 in direction B, when operated, and a second actuator configured to rotate the input shaft 10010 in direction A′ and the drive shaft 10020 in direction B′, when operated. In either event, an operator of the surgical instrument 10000 can move the anvil of the surgical instrument 10000 toward and away from the staple cartridge, as needed, in order to create a desired gap between the anvil and the staple cartridge. Such a desired gap may or may not be created when the anvil is in its fully closed position.


Further to the above, the surgical instrument 10000 can include a catch configured to receive and releasably hold the drive pin 10032 when the closure system 10030 has reached its fully closed configuration. Referring primarily to FIGS. 81 and 82, the surgical instrument 10000 can include a catch bar 10073 comprising a catch aperture 10077 defined therein. As the drive pin 10032 is advanced proximally, the drive pin 10032 can become aligned with, and then at least partially enter, the catch aperture 10077. The catch pin 10032 can be biased toward the catch bar 10073 by a spring 10035 positioned intermediate the closure member 10033 and a circumferential head 10037 extending around the catch pin 10032. When the catch pin 10032 is positioned distally with respect to the catch aperture 10077, the spring 10035 can bias the drive pin 10032 against the catch bar 10073. When the catch pin 10032 is moved proximally by the rotation of the drive screw 10020 and becomes aligned with the catch aperture 10077, the spring 10035 can move the drive pin 10032 upwardly into the catch aperture 10077. The drive pin 10032 can be moved upwardly by the spring 10035 until the head of the drive pin 10032 contacts the catch bar 10073. Notably, the movement of the drive pin 10032 toward the catch aperture 10077 can cause the drive pin 10032 to become operably disengaged from the first thread 10024. Thus, the closure system 10030 can become deactivated when the drive pin 10032 reaches the catch aperture 10077 such that subsequent rotation of the drive shaft 10020 does not move the drive pin 10032, the closure member 10033, and the anvil operably engaged therewith, at least until the drive pin 10032 is re-engaged with the first thread 10024 as described in greater detail further below.


As discussed above, the entry of the drive pin 10032 into the catch aperture 10077 of the catch bar 10073 can demarcate the end of the closing stroke of the closure system 10030 and the fully closed position of the anvil. In various instances, the catch bar 10073 may not be movable relative to the frame 10002 and the catch aperture 10077 may demarcate a fixed position. In other instances, the catch bar 10073 may be movable relative to the frame 10002. In such instances, the final, closed position of the anvil will depend on the position of the catch aperture 10077. As a result, the gap between the anvil and the staple cartridge of the surgical instrument 10000 will depend on the position of the catch aperture 10077. Referring generally to FIG. 79, the surgical instrument 10000 can further comprise a gap setting system 10070 configured to move the catch bar 10073. The gap setting system 10070 can comprise a rotatable knob 10072 and a drive gear 10071 engaged with the rotatable knob 10072. The catch bar 10073 can include a rack 10075 extending therefrom which comprises a plurality of teeth. The drive gear 10071 is meshingly engaged with the rack 10075 such that, when the knob 10072 is rotated in a first direction, the rack 10075 can drive the catch bar 10073 distally and, when the knob 10072 is rotated in a second direction opposite the first direction, the rack 10075 can drive the catch bar 10073 proximally. When the catch bar 10073 is moved distally, the catch aperture 10077 can be positioned such that a larger gap between the anvil and the staple cartridge may be present when the closure drive 10030 is in its fully closed position. When the catch bar 10073 is moved proximally, the catch aperture 10077 can be positioned such that a smaller gap between the anvil and the staple cartridge may be present when the closure drive 10030 is in its fully closed position. In various instances, the catch aperture 10077 can be positionable within a range of positions which can accommodate a range of distances between the anvil and the staple cartridge of the surgical instrument 10000.


In various instances, the gap setting system 10070 can comprise a knob lock configured to releasably hold the knob 10072 in position. For instance, the frame 10002 can include a lock projection 10004 extending therefrom which can be received within one or more lock apertures 10074 defined in the knob 10072. The lock apertures 10074 can be positioned along a circumferential path. Each lock aperture 10074 can correspond with a preset position of the closure drive 10030 and a preset gap distance between the anvil and the staple cartridge of the surgical instrument 10000. For instance, when the lock projection 10004 is positioned in a first lock aperture 10074, the closure drive 10030 can be held in a first preset position and, correspondingly, the anvil can be held a first preset distance from the staple cartridge. In order to move the knob 10072 into a second preset position, the knob 10072 can be lifted away from the frame 10002 such that lock projection 10004 is no longer positioned in the first lock aperture 10074, rotated to drive the rack 10075 and the catch bar 10073, and then moved toward the frame 10002 such that the lock projection 10004 enters into a second lock aperture 10074 defined in the knob 10072. When the lock projection 10004 is positioned in the second lock aperture 10074, the closure drive 10030 can be held in a second preset position and, correspondingly, the anvil can be held a second preset distance from the staple cartridge which is different than the first preset distance. In order to move the knob 10072 into a third preset position, the knob 10072 can be lifted away from the frame 10002 such that lock projection 10004 is no longer positioned in the first or second lock aperture 10074, rotated to drive the rack 10075 and the catch bar 10073, and then moved toward the frame 10002 such that the lock projection 10004 enters into a third lock aperture 10074 defined in the knob 10072. When the lock projection 10004 is positioned in the third lock aperture 10074, the closure drive 10030 can be held in a third preset position and, correspondingly, the anvil can be held a third preset distance from the staple cartridge which is different than the first and second preset distances. The gap setting system 10070 can further include a biasing element configured to bias the knob 10072 toward the frame 10002. For instance, the gap setting system 10070 can include a spring 10076 positioned intermediate the housing 10002 and the drive gear 10071, for example, configured to bias a lock aperture 10074 into engagement with the lock projection 10004.


In certain instances, an operator of the surgical instrument 10000 may be able to discern the position of the closure system 10030 by observing the position of the anvil. In some instances, however, the anvil may not be visible in a surgical field. Referring primarily to FIG. 79, the surgical instrument 10000 can further comprise an anvil position indicator system 10050 configured to indicate the position of the anvil. The anvil position indicator system 10050 can include a window 10058 defined in the frame 10002 and a pivotable member 10051 observable through the window 10058. The pivotable member 10051 can include a pivot 10052 rotatably mounted to the frame 10002, a drive end 10054, and a display end 10056. The pivotable member 10051 can be movable between a first position (FIG. 81) which indicates that the anvil is in a fully open position, a second position (FIG. 82) which indicates that the anvil is in a fully closed position, and a range of positions between the first position and the second position which represent a range of positions of the anvil. The closure system 10030 can be configured to contact the drive end 10054 of the pivotable member 10051 to move the pivotable member 10051. When the drive pin 10032 is moved proximally by the drive shaft 10020, referring primarily to FIG. 82, the drive pin 10032 can pull the closure member 10033 proximally such that a shoulder 10036 defined on the closure member 10033 can contact the drive end 10054 of the pivotable member 10051 and rotate the pivotable member 10051 about the pivot 10052. The rotation of the pivotable member 10051 can move the display end 10056 within the window 10058 to indicate the position of the anvil. To facilitate this observation, the frame 10002 and/or the window 10058 can include one or more demarcations 10059 which can indicate the position of the anvil. For instance, when the display end 10056 of the pivotable member 10051 is aligned with a proximal demarcation 10059 (FIG. 81), the operator can determine that the anvil is in an open position and, when the display end 10056 is aligned with a distal demarcation 10059 (FIG. 82), the operator can determine that the anvil is in a closed position. If the display end 10056 is positioned intermediate the proximal and distal demarcations 10059, the operator can assume that the anvil is in a position between its open position and its closed position. Additional demarcations 10059 between the proximal and distal demarcations 10059 can be utilized to indicate additional positions of the anvil. When the closure member 10033 is moved distally to open the anvil (FIG. 84), the pivotable member 10051 can rotate back into its first position and become aligned with the proximal demarcation 10059 once again. The position indicator system 10050 can further include a biasing member, such as a spring, for example, configured to bias the pivotable member 10051 into its first position.


As discussed above, the closure system 10030 of the surgical instrument 10000 can be operated to position the anvil of the surgical instrument 10000 relative to the staple cartridge. During the operation of the closure system 10030, the firing system 10040 may not be operated. The firing system 10040 may not be operably engaged with the drive shaft 10020 until after the closure drive 10030 has reached its fully closed position. The surgical instrument 10000 can include a switch, such as switch 10060, for example, configured to switch the surgical instrument between an anvil closure operating mode and a staple firing operating mode. The closure drive 10030 can further comprise a switch pin 10031 extending from the proximal end of the closure member 10033. Upon comparing FIGS. 81 and 82, the reader will appreciate that the switch pin 10031 comes into contact with the switch 10060 as the closure pin 10032 is being advanced proximally to close the anvil. The switch 10060 can be pivotably mounted to the frame 10002 about a pivot 10062 and can include one or more arms 10064 extending therefrom. The switch pin 10031 can contact the arms 10064 and rotate the switch 10060 about the pivot 10062 when the drive pin 10032 reaches its fully closed position. The switch 10060 can further comprise an arm 10066 extending therefrom which can be configured to push a firing nut 10042 of the firing drive 10040 into operative engagement with the drive shaft 10020 when the switch 10060 is rotated about pivot 10062. More particularly, in at least one circumstance, the arm 10066 can be configured to displace a push bar 10044 distally which can, in turn, push the firing nut 10042 onto the second thread 10026. At such point, the drive pin 10032 and the closure system 10030 may be disengaged from the first thread 10024, as a result of the catch aperture 10077 described above, and the firing nut 10042 and the firing system 10040 can be engaged with the second thread 10026.


Further to the above, the firing nut 10042 can comprise a threaded aperture 10041 defined therein which can be threadably engaged with the second thread 10026. When the closure drive 10030 is being operated, further to the above, the firing nut 10042 may be positioned proximally with respect to the second thread 10026 such that the threaded aperture 10041 is not threadably engaged with the second thread 10026. In such circumstances, the firing nut 10042 may sit idle while the drive shaft 10020 is rotated to operate the closure system 10030. When the firing nut 10042 is displaced distally, further to the above, the threaded aperture 10041 can become threadably engaged with the second thread 10026. Once the firing nut 10042 is threadably engaged with the second thread 10026, rotation of the drive shaft 10020 in direction B′ (FIG. 82) will displace the firing nut 10042 distally. The firing nut 10042 can include one or more anti-rotation features, such as flanges 10043, for example, which can be slidably engaged with the frame 10002 to prevent the firing nut 10042 from rotating with the drive shaft 10020. The firing drive 10040 can further include a firing member coupled to the firing nut 10042 which can be pushed distally by the firing nut 10042. The firing member can be configured to eject staples from the staple cartridge. When the firing nut 10042 reaches the distal end of the second thread 10026, the firing nut 10042 may become threadably disengaged from the second thread 10026 wherein additional rotation of the drive shaft 10020 in direction B′ may no longer advance the firing nut 10042.


Referring primarily to FIGS. 82 and 83, the surgical instrument 10000 can further comprise a reverse activator 10047 positioned at the distal end of the second thread 10026. The firing nut 10042 can be configured to contact the reverse actuator 10047 and displace the reverse actuator 10047 distally when the firing nut 10042 reaches the distal end of the second thread 10026. A biasing member, such as spring 10048, for example, can be positioned intermediate the reverse actuator 10047 and the frame 10002 which can be configured to resist the distal movement of the reverse actuator 10047. The distal movement of the reverse actuator 10047 can compress the spring 10048, as illustrated in FIG. 83, and apply a proximal biasing force to the firing nut 10042. When the drive shaft 10020 is rotated in direction B, the proximal biasing force applied to firing nut 10042 can re-engage the threaded aperture 10041 of the firing nut 10042 with the second thread 10026 and the firing nut 10042 can be moved proximally, as illustrated in FIG. 84. The proximal movement of the firing nut 10042 can move the firing member proximally. When moving proximally, the firing nut 10042 can displace the push bar 10044 such that the push bar 10044 contacts the arm 10066 of the switch 10060 and rotates the switch 10060 in an opposite direction back into its unswitched position. At such point, the firing nut 10042 may become threadably disengaged from the second thread 10026 and further rotation of drive shaft 10020 in direction B may no longer displace the firing nut 10042 proximally. At such point, the firing nut 10042 will have resumed its idle position.


When the switch 10060 is rotated back into its original position, further to the above, the arms 10064 of the switch 10060 can push the switch pin 10031 and the closure member 10033 distally. The distal movement of the switch pin 10031 and the closure member 10033 can displace the drive pin 10032 from the catch aperture 10077 defined in the catch bar 10073. As the drive pin 10032 exits the catch aperture 10077, the drive pin 10032 can move downwardly against the biasing force of the spring 10035 in order to slide under the catch bar 10073. The downward movement of the drive pin 10032 can re-engage the drive pin 10032 with the first thread 10024. Further rotation of the drive shaft 10020 in direction B will displace the drive pin 10032 and the closure member 10033 distally to open the anvil of the surgical instrument 10000. At such point, the surgical instrument 10000 will have been reset for a subsequent use thereof. In various instances, the staple cartridge can be replaced and/or reloaded and the surgical instrument 10000 can be used once again.


As the reader will appreciate from the above, the drive screw 10020 can displace the drive pin 10032 to operate the closure drive 10030 and the firing nut 10042 to operate the firing drive 10040. Further to the above, the drive screw 10020 can displace the drive pin 10032 along a first length 10025 of the drive screw 10020. Similarly, the drive screw 10020 can displace the firing nut 10042 along a second length 10027 of the drive screw 10020. The first length 10025 can define a closure stroke of the closure system 10030 and the second length 10027 can define a firing stroke of the firing stroke 10040. The first length 10025 can be longer than the second length 10027, although the second length 10027 could be longer than the first length 10025 in certain circumstances. In use, the closure pin 10032 can pass by the firing nut 10042. For instance, when the closure pin 10032 is moved proximally to close the anvil, the closure pin 10032 can pass by the firing nut 10042 when the firing nut 10042 is in its idle position. Similarly, the closure pin 10032 can pass by the firing nut 10042 in its idle position when the closure pin 10032 is moved distally to open the anvil. In order to facilitate this relative movement, the firing nut 10042 can include an opening, such as slot 10046, for example, defined therein through which the closure pin 10032 can pass as the closure pin 10032 moves relative to the firing nut 10042. Such an opening defined in the firing nut 10042 could also permit the firing nut 10042 to slide by the closure pin 10032 in various other embodiments.


Further to the above, the first length 10025 and the second length 10027 can at least partially overlap. Moreover, the first thread 10024 and the second thread 10026 can at least partially overlap. The first thread 10024 and the second thread 10026 can be defined on the same portion of the drive screw 10020. The first thread 10024 and the second thread 10026 can be sufficiently dissimilar such that the closure pin 10032 does not follow the second thread 10026 and such that the firing nut 10042 does not follow the first thread 10024. For instance, the first thread 10024 can include a first thread pitch and the second thread 10026 can include a second thread pitch which is different than the first thread pitch. The first thread pitch of the first thread 10024 may or may not be constant. In the event that the first thread pitch is constant, the closure pin 10032 and the anvil operably engaged with the first thread 10024 will move at a constant speed throughout the closure stroke for a given rotational speed of the drive shaft 10020. In the event that the first thread pitch is not constant, the closure pin 10032 and the anvil will move at different speeds during the closure stroke for a given rotational speed of the drive shaft 10020. For instance, the distal portion of the first thread 10024 can include a thread pitch which is greater than the thread pitch of the proximal portion of the first thread 10024. In such circumstances, the anvil will move quickly away from its open position and move slower once it nears its closed position for a given rotational speed of the drive shaft 10020. Such an arrangement would permit the anvil to be moved quickly into position against tissue positioned intermediate the anvil and the staple cartridge and then slower once the anvil was engaged with the tissue in order to mitigate the possibility of over-compressing the tissue. In various other instances, the distal portion of the first thread 10024 can include a thread pitch which is less than the thread pitch of the proximal portion of the first thread 10024. In either event, the thread pitch can change between the ends of the first thread 10024. This change can be linear and/or non-linear.


Further to the above, the second thread pitch of the second thread 10026 may or may not be constant. In the event that the second thread pitch is constant, the firing nut 10042 and the firing member operably engaged with the second thread 10026 will move at a constant speed throughout the closure stroke for a given rotational speed of the drive shaft 10020. In the event that the second thread pitch is not constant, the firing nut 10042 and the firing member will move at different speeds during the firing stroke for a given rotational speed of the drive shaft 10020. For instance, the distal portion of the second thread 10026 can include a thread pitch which is less than the thread pitch of the proximal portion of the second thread 10026. In such circumstances, the firing member will move slower at the end of its firing stroke for a given rotational speed of the drive shaft 10020. Such an arrangement would slow the firing member down as it reached the end of the staple forming process. Moreover, such an arrangement could generate a larger amount of torque at the end of the firing stroke which correlates with the completion of the staple forming process. In various other instances, the distal portion of the second thread 10026 can include a thread pitch which is greater than the thread pitch of the proximal portion of the second thread 10026. In either event, the thread pitch can change between the ends of the second thread 10026. This change can be linear and/or non-linear.


Turning now to FIGS. 86-93, a surgical instrument 10500 can include a shaft 10504 and an end effector 10505. The end effector 10505 can include a staple cartridge 10506 and a movable anvil 10508. The surgical instrument 10500 can include a closure drive including a closure member operably engageable with the anvil 10504 and a firing drive including a firing member configured to deploy staples from the staple cartridge 10506. The surgical instrument 10500 can include means for generating a rotary motion such as a hand crank and/or an electric motor, for example. The rotary motion can be transmitted to an input shaft 10510. The surgical instrument 10500 can include a transmission 10502 which is configured to selectively transmit the rotation of the input shaft 10510 to the closure drive and to the firing drive, as discussed in greater detail further below.


The input shaft 10510 can include a input gear 10512 mounted and/or keyed thereto which rotates with the input shaft 10510. The input shaft 10510 can be rotatably supported by a frame of the surgical instrument 10500 by a proximal end 10511 and a distal end 10519. The input gear 10512 can be meshingly engaged with an intermediate gear 10522 mounted and/or keyed to an intermediate shaft 10520. Thus, when input shaft 10510 and input gear 10512 are rotated in direction A (FIG. 89), intermediate shaft 10520 and intermediate gear 10522 are rotated in direction B (FIG. 89). Similar to the above, the intermediate shaft 10520 can be rotatably supported by the surgical instrument frame by a proximal end 10521 and a distal end 10529. The intermediate shaft 10520 can further include a threaded portion 10524 which can be threadably engaged with a shifter block 10526. Referring primarily to FIG. 87, the shifter block 10526 can include one or more threaded apertures 10527 threadably engaged with the threaded portion 10524. When the intermediate shaft 10520 is rotated in direction B, referring primarily to FIG. 89, the intermediate shaft 10520 can displace the shifter block 10526 proximally.


Further to the above, the shifter block 10526 can include a gear slot 10528 defined therein. The input shaft 10510 can further include a slider gear 10516 slidably mounted thereto which is positioned in the gear slot 10528. When the shifter block 10526 is moved proximally by the intermediate shaft 10520, as discussed above, the shifter block 10526 can push the slider gear 10516 proximally along a keyed input shaft portion 10514. Referring primarily to FIG. 87, the slider gear 10516 can include an aperture 10517 defined therein including one or more flat surfaces, for example, which are aligned with corresponding flat surfaces on the keyed input shaft portion 10514. The flat surfaces of the aperture 10517 and the keyed input shaft portion 10514 can permit the slider gear 10516 to be slid longitudinally along the input shaft 10510 and, in addition, co-operate to transmit rotational motion between the slider gear 10516 and the input shaft 10510. As will be described in greater detail below, the shifter block 10526 can slide the slider gear 10516 through a first range of positions in which the slider gear 10516 is engaged with a closure shaft 10530, a second range of positions in which the slider gear 10516 is engaged with a firing shaft 10540, and a null position, or a range of null positions, intermediate the first range and the second range of positions in which the slider gear 10516 is not engaged with either the closure shaft 10530 or the firing shaft 10540.


Further to the above, FIG. 85 depicts the anvil 10508 of the end effector 10505 in a fully closed position and a firing driver 10548 in an unfired position. FIG. 86 depicts the transmission 10502 in a configuration which is consistent with the configuration of the end effector 10505 depicted in FIG. 85. More particularly, the slider gear 10516 is in its null, or idle, position and is not operably engaged with a closure shaft 10530 of the closure drive or a firing shaft 10540 of the firing drive. When the slider gear 10516 is in its idle position, the slider gear 10516 is positioned intermediate a closure gear 10532 mounted and/or keyed to the closure shaft 10530 and a firing gear 10542 mounted and/or keyed to the firing shaft 10540. Moreover, the slider gear 10516 is not engaged with the closure gear 10532 or the firing gear 10542 when the slider gear 10516 is in its idle position. In order to move the anvil 10508 into its open position, and/or detach the anvil 10508 from the end effector 10505, as illustrated in FIG. 88, the input shaft 10510 can be rotated in direction A, as illustrated in FIG. 89. As discussed above, the rotation of input shaft 10510 in direction A can rotate the intermediate shaft 10520 in direction B and move shifter block 10526 proximally. When the shifter block 10526 moves proximally, the shifter block 10526 can push the slider gear 10516 into operative engagement with the closure gear 10532. At such point, the continued rotation of input shaft 10510 in direction A can be transmitted to the closure shaft 10530 via the meshingly engaged slider gear 10516 and closure gear 10532. When the slider gear 10516 is meshingly engaged with the closure gear 10532, the rotation of the input shaft 10510 in direction A will rotate the output shaft 10530 in direction C, as illustrated in FIG. 89. The closure drive can further include a closure nut 10536 comprising a threaded aperture 10537 defined therein which is threadably engaged with a threaded portion 10534 of the closure shaft 10530. The closure nut 10536 can include one or more anti-rotation features slidably engaged with the frame of the surgical instrument, for example, which can prevent the closure nut 10536 from rotating with the closure shaft 10530 such that the rotational movement of the closure shaft 10530 can be converted to longitudinal movement of the closure nut 10536. The closure system can further include a closure member 10538 extending from the closure nut 10536 which can be engaged with the anvil 10508. When the closure shaft 10530 is rotated in direction C, referring again to FIG. 89, the closure nut 10536 and the closure member 10538 can be advanced distally to move the anvil 10508 into an open position.


Further to the above, FIG. 89 depicts the transmission 10502 in a closure configuration, i.e., a configuration in which the anvil 10508 can be opened and closed. When the slider gear 10516 is meshingly engaged with the closure gear 10532, the input shaft 10510 will directly drive the closure shaft 10530. Concurrently, the input shaft 10510 will directly drive the intermediate shaft 10520 owing to the meshing engagement between the input gear 10512 and the intermediate gear 10522. Also, when the slider gear 10516 is meshingly engaged with the closure gear 10532, the slider gear 10516 is not meshingly engaged with the firing gear 10542 and, as such, the input shaft 10510 will not drive the firing shaft 10540 when the transmission 10502 is in the closure configuration.


Once the anvil 10508 has been moved into an open position and/or detached from the closure member 10538, further to the above, tissue can be positioned intermediate the anvil 10508 and the staple cartridge 10506. Thereafter, referring to FIGS. 90 and 91, the anvil 10508 can be moved into its closed position by rotating the input shaft 10510 in an opposite direction, i.e., direction A′, which will rotate the closure shaft 10530 in an opposite direction, i.e., direction C′, in order to move the closure nut 10536, the closure member 10538, and the anvil 10508 proximally. The input shaft 10510 will also rotate intermediate shaft 10520 in an opposite direction, i.e., direction B′, when the input shaft 10510 is rotated in direction A′. When the intermediate shaft 10520 is rotated in direction B′, the intermediate shaft 10520 will displace the shifter block 10526 and the slider gear 10516 distally. The shifter block 10526 can push the slider gear 10516 distally until the slider gear 10516 is no longer meshingly engaged with the closure gear 10532 and the slider gear 10516 has been returned to its idle position. Additional rotation of the intermediate shaft 10520 in direction B′ will cause the shifter block 10526 to displace the slider gear 10516 distally until the slider gear 10516 is meshingly engaged with the firing gear 10542. At such point, referring to FIGS. 92 and 93, the input shaft 10510 can directly drive the firing shaft 10540. Thereafter, the input shaft 10510 can rotate the firing shaft 10540 in direction D′ when the input shaft 10510 is rotated in direction A′. The firing system can further comprise a firing nut 10546 including a threaded aperture 10547 which is threadably engaged with a threaded portion 10544 of the firing shaft 10540. When the firing shaft 10410 is rotated in direction A′, the firing shaft 10540 can advance the firing nut 10546 distally. The firing nut 10546 can include one or more anti-rotation features which can be slidably engaged with the frame of the surgical instrument such that the firing nut 10546 does not rotate with the firing shaft 10540 and such that rotational movement of the firing shaft 10540 can be converted to longitudinal movement of the firing nut 10546. The firing drive can further include a firing member 10548 extending from the firing nut 10546 which is advanced distally to eject staples from the staple cartridge 10506. Throughout the firing stroke of the firing system, the shifter block 10526 can continue to advance the slider gear 10516 distally. The firing stroke can be completed when the shifter block 10526 advances slider gear 10516 distally to the point in which the slider gear 10516 is no longer threadably engaged with the firing gear 10542. At such point, the firing member 10548 may be in its fully fired position.


Further to the above, FIG. 93 depicts the transmission 10502 in a firing configuration, i.e., a configuration in which the firing member 10548 can be advanced or retracted. When the slider gear 10516 is meshingly engaged with the firing gear 10542, the input shaft 10510 will directly drive the firing shaft 10540. Concurrently, the input shaft 10510 will directly drive the intermediate shaft 10520 owing to the meshing engagement between the input gear 10512 and the intermediate gear 10522. Also, when the slider gear 10516 is meshingly engaged with the firing gear 10542, the slider gear 10516 is not meshingly engaged with the closure gear 10532 and, as such, the input shaft 10510 will not drive the closure shaft 10530 when the transmission 10502 is in the firing configuration.


In order to retract the firing member 10548, the input shaft 10510 can be rotated in direction A to rotate intermediate shaft 10520 in direction B, displace the shifter block 10526 proximally, and re-engage the slider gear 10516 with the firing gear 10542. At such point, the continued rotation of input shaft 10510 in direction A will rotate the firing shaft 10540 in an opposite direction to direction D′, displace the firing nut 10546 proximally, and retract the firing member 10548. As the slider gear 10516 is rotating the firing gear 10542, the shifter block 10526 can continue to pull the slider gear 10516 proximally until the slider gear 10516 is no longer meshingly engaged with the firing gear 10542 and the slider gear 10516 reaches its idle position. At such point, the continued rotation of input shaft 10510 in direction A will continue to displace the shifter block 10526 and the slider gear 10516 proximally and re-engage the slider gear 10516 with the closure gear 10532 in order to re-open the anvil 10508.



FIGS. 94-98 illustrates a surgical instrument 11010 configured to staple and/or incise tissue. Surgical instrument 11010 can include a pistol-grip shaped handle 11015. Handle 11015 includes a first handle portion 11020 defining a longitudinal axis 11030 from which jaws 11070 and 11090 can extend. Handle 11015 includes a second handle portion, i.e., handle grip 11040, which defines a second portion axis 11050. Second portion axis 11050 defines an angle 11060 with longitudinal axis 11030. In various instances, angle 11060 can comprise any suitable angle, such as about 120 degrees, for example. The jaw 11070 can comprise a cartridge channel including an opening configured to removably receive a staple cartridge 11080. The staple cartridge 11080 can include a plurality of staples removably stored within staple cavities arranged in at least two longitudinal rows, one on either side of a channel in which a knife for transecting tissue can travel, as described in greater detail below. In at least on instance, three longitudinal rows of staple cavities can be arranged on a first side of the knife channel while three longitudinal rows of staple cavities can be arranged on a second side of the knife channel. The jaw 11090 can comprise an anvil rotatable to a position in opposition to and alignment with the staple cartridge 11080 so that anvil pockets defined in the anvil 11090 can receive and form staples ejected from the staple cartridge 11080. FIG. 98 depicts the anvil 11090 in an open position while FIG. 94 depicts the anvil 11090 in a closed position. Although not illustrated, other embodiments are envisioned in which the jaw including the staple cartridge 11080 is rotatable relative to the anvil 11090. In any event, as will be described in greater detail below, the handle 11015 can further include a closure button 11065 (FIG. 98) configured to operate a closure system which moves the anvil 11090 between its open and closed positions and a firing button 11055 configured to operate a firing system which ejects the staples from the staple cartridge 11080. The closure button 11065 can be positioned and arranged on the handle 11015 such that it can be easily accessed by the thumb of the operator's hand which is supporting the handle 11015, for example, while the firing button 11055 can be positioned and arranged such that it can be easily accessed by the index finger of the operator's handle which is supporting the handle 11015.


Further to the above, the anvil 11090 can be moved toward and away from the staple cartridge 11080 during use. In various instances, the closure button 11065 can include a bi-directional switch. When the closure button 11065 is depressed in a first direction, the closure system of the surgical instrument 11010 can move the anvil 11090 toward the staple cartridge 11080 and, when the closure button 11065 is depressed in a second direction, the closure system can move the anvil 11090 away from the staple cartridge 11080. Referring primarily to FIGS. 95 and 97, the closure system can include a closure motor 11110 configured to move the anvil 11090. The closure motor 11110 can include a rotatable closure shaft 11130 extending therefrom to which a first closure gear 11140 can be affixed. The closure motor 11110 can rotate the closure shaft 11130 and the closure shaft 11130 can rotate the first closure gear 11140. The first closure gear 11140 can be meshingly engaged with an idler gear 11150 which, in turn, can be meshingly engaged with a closure lead screw drive gear 11160. Closure lead screw drive gear 11160 is affixed to a closure lead screw 11170. When the first closure gear 11140 is rotated by the closure shaft 11130, the first closure gear 11140 can rotate the idler gear 11150, the idler gear 11150 can rotate the closure lead screw drive gear 11160, and the closure lead screw drive gear 11160 can rotate the closure lead screw 11170.


Referring primarily to FIG. 97, the closure shaft 11130, the first closure gear 11140, the idler gear 11150, and the closure lead screw drive gear 11160 can be rotatably supported by a motor block 11125 supported within the handle portion 11120. The closure lead screw 11170 can include a first end which is also rotatably supported by the motor block 11125 and/or a second end which is rotatably supported by the housing of the handle 11015. The closure lead screw 11170 can further comprise a threaded portion intermediate the first end and the second end. The closure system can further comprise a closure block 11175 (FIG. 96) which can include a threaded aperture 11176 which is threadably engaged with the threaded portion of the closure lead screw 11170. The closure block 11175 can be constrained from rotating with the closure lead screw 11170 such that, when the closure lead screw 11170 is rotated, the closure lead screw 11170 can displace the closure block 11175 proximally or distally, depending on the direction in which the closure lead screw 11170 is being rotated. For instance, if the closure lead screw 11170 is rotated in a first direction, the closure lead screw 11170 can displace the closure block 11175 distally and, when the closure lead screw 11170 is rotated in a second, or opposite, direction, the closure lead screw 11170 can displace the closure block 11175 proximally. Referring primarily to FIG. 96, the closure block 11175 can be mounted to a latch member in the form of closure channel 11180, which translates along the outside of cartridge channel 11170. In various instances, the closure channel 11180 can be enclosed within the handle portion 11120 while, in some instances, the closure channel 11180 can protrude from the handle portion 11120. Closure channel 11180 can comprise an approximately “U” shaped channel when viewed from the end and can include opposing sidewalls 11182. Each sidewall 11182 can include a cam slot 11190 defined therein. As described in greater detail further below, the cam slots 11190 can be configured to engage the anvil 11090 and move the anvil 11090 relative to the staple cartridge 11080.


Further to the above, the closure channel 11180 fits around the cartridge channel 11070 so that cartridge channel 11070 nests inside the “U” shape of the closure channel 11180. Referring primarily to FIG. 96, the cartridge channel 11070 can include elongated slots 11195 defined therein and the closure channel 11180 can include pins which extend inwardly into the elongated slots 11195. The closure channel pins and the elongated slots 11195 can constrain the movement of the closure channel 11180 such that closure channel 11180 translates relative to the cartridge channel 11070 along a longitudinal path. The translational movement of the closure channel 11180 can rotate the anvil 11090. The anvil 11090 can be connected to the closure channel 11180 via a distal closure pin 11210 which extends through anvil cam holes 11211 defined in the anvil 11090 and the cam slots 11190 defined in the closure channel 11180. Each cam slot 11190 can include a first, or distal, end 11191 and a second, or proximal, end 11192. Each cam slot 11190 can further include a first, or proximal, drive surface 11193 and a second, or distal, drive surface 11194. When the closure system is in its open configuration and the anvil 11090 is in its open position, the closure channel 11180 can be in its first, or unadvanced, position and the distal closure pin 11210 can be in the first, or distal, ends 11191 of the cam slots 11190. When the closure channel 11180 is advanced distally to move the anvil 11090 toward the staple cartridge 11080, the first drive surface 11193 can contact the distal closure pin 11210 and push the distal closure pin 11210 downwardly toward the staple cartridge 11080. When the closure system is in its closed configuration and the anvil 11090 is in its closed position opposite the staple cartridge 11080, the closure channel 11180 can be in its second, or completely advanced, position and the distal closure pin 11210 can be in the second, proximal ends 11192 of the cam slots 11190.


Each cam slot 11190 can comprise a curved, or arcuate, path. The first drive surface 11193 can comprise a first arcuate surface and the second drive surface 11194 can comprise a second arcuate surface. In various instances, each cam slot 11190 can include at least one curved portion and at least linear portion. In at least one instance, each first drive surface 11193 can comprise a flat surface in a distal end 11191 of a cam slot 11190. The flat surface can comprise a vertical surface which is perpendicular to, or at least substantially perpendicular to, the longitudinal axis 11030 of the instrument 11010. Such a flat surface can act as a detent which would require an initial amount of force to displace the closure pin 11210 into the arcuate portion of the cam slot 11190. In certain instances, each first drive surface 11193 can comprise a flat surface 11196 in a proximal end 11192 of a cam slot 11190. Each flat surface 11196 can comprise a horizontal surface which is parallel to, or at least substantially parallel to, the longitudinal axis 11030. The flat surfaces 11196 can provide a large mechanical advantage between the closure channel 11180 and the anvil 11090. In various instances, the first drive surfaces 11193 can apply very little mechanical advantage to the closure pin 11210 when the closure pin 11210 is in the distal ends 11191 of the slots 11190; however, as the closure pin 11210 slides through the cam slots 11190 toward the proximal ends 11192, the mechanical advantage applied to the closure pin 11210 by the first drive surfaces 11193 can increase. When the closure pin 11210 enters into the proximal ends 11192, the mechanical advantage applied by the first drive surfaces 11193 can be at its greatest, and certainly larger than the mechanical advantage applied by the first drive surfaces 11193 when the closure pin 11210 is in the distal ends 11191 of the cam slots 11190. That said, where the distal ends 11191 may apply a lower mechanical advantage to the closure pin 11210, the distal ends 11191 may quickly displace the closure pin 11210 relative to the cartridge 11080. As the closure channel 11180 is advanced distally and the mechanical advantage applied to the closure pin 11210 increases, as discussed above, the first drive surfaces 11193 may move the anvil 11090 more slowly for a given speed of the closure channel 11180.


As illustrated in FIG. 96, the cartridge channel 11070 can further include distal closure slots 11215 defined therein which can be configured to receive the distal closure pin 11210 as the anvil 11090 approaches its closed position. Distal closure slots 11215 are substantially vertical and can include open ends at the top of the cartridge channel 11070 and closed ends at the opposite ends thereof. The slots 11215 may be wider at their open ends than their closed ends. In various instances, the closure pin 11210 can contact the closed ends of the closure slots 11215 when the anvil 11090 reaches its closed position. In such instances, the closed ends of the closure slots 11215 can stop the movement of the anvil 11090. In certain instances, the anvil 11090 can contact the staple cartridge 11080 when the anvil 11090 is in its closed position. In at least one instance, the anvil 11090 can be rotated about the pivot pin 11200 until a distal end 11091 of the anvil 11090 contacts a distal end 11081 of the staple cartridge 11080. As illustrated in FIG. 98, the distal closure pin 11210 which moves the anvil 11090 is positioned distally with respect to the pivot pin 11220. Thus, the closure force applied to the anvil 11090 by the closure drive is applied distally with respect to the pivot which rotatably connects the anvil 11090 to the cartridge channel 11070. Similarly, the opening force applied to the anvil 11090 by the closure drive is applied distally with respect to the pivot which rotatably connects the anvil 11090 to the cartridge channel 11070.


As discussed above, the handle 11015 can include a closure button 11065 configured to operate the closure system of the surgical instrument 11010. The movement of the closure button 11065 can be detected by a sensor or a switch, for example. When the closure button 11065 is pressed, a closure switch 11285 can be activated, or closed, which causes power to flow to the closure motor 11110. In such instances, the switch 11285 can close a power circuit which can supply electrical power to the closure motor 11110. In certain instances, the surgical instrument 11010 can include a microprocessor, for example. In such instances, the closure switch 11285 can be in signal communication with the microprocessor and, when the closure switch 11285 has been closed, the microprocessor can operably connect a power supply to the closure motor 11110. In any event, a first voltage polarity can be applied to the closure motor 11110 to rotate the closure output shaft 11130 in a first direction and close the anvil 11090 and, in addition, a second, or opposite, voltage polarity can be applied to closure motor 11110 to rotate the closure output shaft 11130 in a second, or opposite, direction and open the anvil 11090.


In various instances, the surgical instrument 11010 may be configured such that the operator of the surgical instrument 11010 is required to hold the closure button 11065 in a depressed state until the closure drive has reached its fully closed configuration. In the event that the closure button 11065 is released, the microprocessor can stop the closure motor 11110. Alternatively, the microprocessor can reverse the direction of the closure motor 11110 if the closure button 11065 is released prior to the closure drive reaching its fully closed configuration. After the closure drive has reached its fully closed configuration, the microprocessor may stop the closure motor 11110. In various instances, as described in greater detail below, the surgical instrument 11010 can comprise a closure sensor 11300 (FIGS. 96 and 98) configured to detect when the closure system has reached its fully closed configuration. The closure sensor 11300 can be in signal communication with the microprocessor which can disconnect the power supply from the closure motor 11110 when the microprocessor receives a signal from the closure sensor 11300 that the anvil 11090 has been closed. In various instances, re-pressing the closure button 11065 after the closure system has been placed in its closed configuration, but before the firing system has been operated, can cause the microprocessor to reverse the direction of the closure motor 11110 and re-open the anvil 11090. In certain instances, the microprocessor can re-open the anvil 11090 to its fully open position while, in other instances, the microprocessor can re-open the anvil 11090 to a partially open position.


Once the anvil 11090 has been sufficiently closed, the firing system of the surgical instrument 11010 can be operated. Referring primarily to FIGS. 95 and 97, the firing system can include a firing motor 11120. The firing motor 11120 can be positioned adjacent to the closure motor 11110. The closure motor 11110 can extend along a first longitudinal motor axis and the firing motor 11120 can extend along a second longitudinal motor axis which is parallel, or at least substantially parallel to the first motor axis. The first longitudinal motor axis and the second longitudinal motor axis can be parallel to the longitudinal axis 11030 of the surgical instrument 11010. The closure motor 11110 can be positioned on a first side of the longitudinal axis 11030 and the firing motor 11120 can be positioned on a second side of the longitudinal axis 11030. In such instances, the first longitudinal motor axis can extend along a first side of the longitudinal axis 11030 and the second longitudinal motor axis can extend along a second side of the longitudinal axis 11030. In various instances, the first longitudinal motor axis can extend through the center of the closure shaft 11130. Similar to the above, the firing motor 11120 can include a rotatable firing shaft 11230 extending therefrom. Also similar to the above, the second longitudinal motor axis can extend through the center of the firing shaft 11230.


Further to the above, a first firing gear 11240 can be mounted to the firing shaft 11230. The first firing gear 11240 is meshingly engaged with a firing lead screw drive gear 11250 which is mounted to a firing lead screw 11260. When the firing shaft 11230 is rotated by the motor 11120, the firing shaft 11230 can rotate the first firing gear 11240, the first firing gear 11240 can rotate the firing lead screw drive gear 11250, and the firing lead screw drive gear 11250 can rotate the firing lead screw 11260. Referring primarily to FIG. 97, the firing shaft 11230, the first firing gear 11240, the firing lead screw drive gear 11250, and/or the firing lead screw 11260 can be rotatably supported by the motor block 11125. The first firing gear 11240 and the firing lead screw drive gear 11250 can be positioned intermediate the motor block 11125 and a first block plate 11126. The first block plate 11126 can be mounted to the motor block 11125 and can also rotatably support the firing shaft 11230, the first firing gear 11240, the firing lead screw drive gear 11250, and/or the firing lead screw 11260. In various instances, the surgical instrument 11010 can further comprise a second block plate 11127 which can be mounted to the first block plate 11126. Similar to the above, the first closure gear 11140, the idler gear 11150, and the closure lead screw drive gear 11160 can be positioned intermediate the first block plate 11126 and the second block plate 11127. In various instances, the first block plate 11126 and/or the second block plate 11127 can rotatably support the closure shaft 11130, the first closure gear 11140, the idler gear 11150, the closure lead screw drive gear 11160, and/or the closure lead screw 11170.


The motor and gear arrangement described above can aid in conserving space within the handle 11015 of surgical instrument 11010. As described above, and referring primarily to FIG. 97, the closure motor 11110 and the firing motor 11120 are located on the motor block 11125. The closure motor 11110 is located on one side and slightly proximally of the firing motor 11120. Offsetting one motor proximally from another creates space for two gear trains with one gear train behind the other. For example, the closure gear train comprising the first closure gear 11140, the closure idler gear 11150, and the closure lead screw drive gear 11160 is proximal to the firing gear train comprising the first firing gear 11240 and the firing lead screw drive gear 11250. Having motor shafts extend proximally away from the jaws, with the main body of the motor extending distally toward the jaws, creates room in the handle 11015 and allows a shorter handle 11015 by having the main body of the motors 11110 and 11120 aligned parallel alongside other parts within the handle 11015.


Further to the above, the closure and firing gear trains are designed for space conservation. In the embodiment depicted in FIG. 97, the closure motor 11110 drives three gears, while the firing motor 11120 drives two gears; however, the closure gear train and the firing gear train can include any suitable number of gears. The addition of a third gear, i.e., the closure idler gear 11150, to the closure gear train permits the closure lead screw 11170 to be shifted downwardly with respect to the firing lead screw 11260 so that the separate lead screws can rotate about different axes. Moreover, the third gear eliminates the need for larger diameter gears to shift the axes of the lead screws so that the overall diameter of the space required by the gear trains, and the volume of the handle 11015, can be reduced.


Referring primarily to FIG. 98, the closure lead screw 11170 can extend along a first longitudinal shaft axis and the firing lead screw 11260 can extend along a second longitudinal shaft axis. The first longitudinal shaft axis and the second longitudinal shaft axis can be parallel to the longitudinal axis 11030 of the surgical instrument 11010. The first longitudinal shaft axis or the second longitudinal shaft axis can be collinear with the longitudinal axis 11030. In various instances, the firing lead screw 11260 can extend along the longitudinal axis 11030 and the second longitudinal shaft axis can be collinear with the longitudinal axis 11030. In such instances, the closing lead screw 11170 and the first longitudinal shaft axis can be offset with respect to the longitudinal axis 11030.


Further to the above, the firing lead screw 11260 can include a first end rotatably supported by the motor block 11125, for example, a second end rotatably supported by the handle 11015, and a threaded portion extending between the first end and the second end. The firing lead screw 11260 can reside within the “U” shape of the cartridge channel 11070 and above the closure lead screw 11170. Referring primarily to FIG. 95, the firing drive can further comprise a firing block 11265 which can include a threaded aperture 11266 threadably engaged with the threaded portion of the firing lead screw 11260. The firing block 11265 can be constrained from rotating with the firing lead screw 11260 such that the rotation of the firing lead screw 11260 can translate the firing block 11265 proximally or distally depending on the direction that the firing lead screw 11260 is rotated by the firing motor 11120. For instance, when the firing lead screw 11260 is rotated in a first direction, the firing lead screw 11260 can displace the firing block 11265 distally and, when the firing lead screw 11260 is rotated in a second direction, the firing lead screw 11260 can displace the firing block 11265 proximally. As described in greater detail below, the firing block 11265 can be advanced distally to deploy staples removably stored in the staple cartridge 11080 and/or incise tissue captured between the staple cartridge 11080 and the anvil 11090.


Further to the above, the firing block 11265 can be affixed to a pusher block 11270 such that the pusher block 11270 translates with the firing block 11265. The firing system can further include firing wedges 11280 which are attached to and extend distally from the pusher block 11270. The firing wedges 11280 can each include at least one cam surface at a distal end thereof which can be configured to eject staples from the staple cartridge 11080. The firing system can further comprise a knife block 11281 slidably disposed along the firing wedges 11280. In various instances, the initial distal movement of the firing block 11265 may not be transferred to the knife block 11281; however, as the firing block 11265 is advanced distally, the pusher block 11270, for example, can contact the knife block 11281 and push the knife block 11281 and a knife 11282 mounted thereto distally. In other instances, the knife block 11281 can be mounted to the firing wedges 11280 such that the knife block 11281 and the knife 11282 move with the firing wedges 11280 throughout the movement of the firing wedges 11280. The firing block 11265, the pusher block 11270, the firing wedges 11280, the knife block 11281, and the knife 11282 can form a pusher block and knife assembly. In any event, the firing wedges 11280 and the knife 11282 can be moved distally to simultaneously fire the staples stored within the staple cartridge 11080 and incise the tissue captured between the staple cartridge 11080 and the anvil 11090. The cam surfaces of the firing wedges 11280 can be positioned distally with respect to the cutting surface of the knife 11282 such that the tissue captured between the staple cartridge 11080 and the anvil 11090 can be stapled before it's incised.


As discussed above, the closure button 11065, when pushed, contacts the closure switch 11285 to energize closure motor 11110. Similarly, the firing button 11055, when pushed, contacts a firing switch 11290 to energize the firing motor 11120. In various instances, the firing switch 11290 can close a power circuit which can supply electrical power to the firing motor 11120. In certain instances, the firing switch 11290 can be in signal communication with the microprocessor of the surgical instrument 11010 and, when the firing switch 11290 has been closed, the microprocessor can operably connect a power supply to the firing motor 11120. In either event, a first voltage polarity can be applied to the firing motor 11120 to rotate the firing output shaft 11230 in a first direction and advance the firing assembly distally and a second, or opposite, voltage polarity can be applied to firing motor 11120 to rotate the firing output shaft 11230 in a second, or opposite, direction and retract the firing assembly. In various instances, the firing button 11055 can include a bi-directional switch configured to operate the firing motor 11120 in its first direction when the firing button 11055 is pushed in a first direction and in its second direction when the firing button 11055 is pushed in a second direction.


As discussed above, the firing system can be actuated after the closure system has sufficiently closed the anvil 11090. In various instances, the anvil 11090 may be sufficiently closed when it has reached its fully closed position. The surgical instrument 11010 can be configured to detect when the anvil 11090 has reached its fully closed position. Referring primarily to FIG. 98, the surgical instrument 11010 can include a closure sensor 11300 configured to detect when the closure channel 11180 has reached the end of its closure stroke and, thus, detect when the anvil 11090 is in its closed position. The closure sensor 11300 can be positioned at or adjacent to the distal end of the closure lead screw 11170. In at least one instance, the closure sensor 11300 can comprise a proximity sensor configured to sense when the closure channel 11180 is adjacent to and/or in contact with the closure sensor 11300. Similar to the above, the closure sensor 11300 can be in signal communication with the microprocessor of the surgical instrument 11010. When the microprocessor receives a signal from the closure sensor 11300 that the closure channel 11180 has reached its fully advanced position and the anvil 11090 is in a closed position, the microprocessor can permit the firing system to be actuated. Moreover, the microprocessor can prevent the firing system from being actuated until the microprocessor receives such a signal from the closure sensor 11300. In such instances, the microprocessor can selectively apply power from a power source to the firing motor 11120, or selectively control the power being applied to the firing motor 11120, based on the input from the closure sensor 11300. Ultimately, in these embodiments, the firing switch 11290 cannot initiate the firing stroke until the instrument is closed.


Certain embodiments are envisioned in which the firing system of the surgical instrument 11010 can be operated even though the closure system is in a partially closed configuration and the anvil 11090 is in a partial closed position. In at least one embodiment, the firing assembly of the surgical instrument 11010 can be configured to contact the anvil 11090 and move the anvil 11090 into its fully closed position as the firing assembly is advanced distally to fire the staples stored in the staple cartridge 11080. For instance, the knife 11282 can include a camming member configured to engage the anvil 11090 as the knife 11282 is advanced distally which can move the anvil 11090 into its fully closed position. The knife 11282 can also include a second camming member configured to engage the cartridge channel 11070. The camming members can be configured to position the anvil 11090 relative to the staple cartridge 11080 and set a tissue gap distance therebetween. In at least one instance, the knife 11282 can comprise an I-beam which is displaced distally to set the tissue gap, eject the staples from the staple cartridge 11080, and incise the tissue.


The surgical instrument 11010 can a sensor configured to detect when the firing system has completed its firing stroke. In at least one instance, the surgical instrument 11010 can include a sensor, such as an encoder, for example, which can be configured to detect and count the rotations of the firing lead screw 11260. Such a sensor can be in signal communication with the microprocessor of the surgical instrument 11010. The microprocessor can be configured to count the rotations of the firing lead screw 11260 and, after the firing lead screw 11260 has been rotated a sufficient number of times to fire all of the staples from the staple cartridge 11080, the microprocessor can interrupt the power supplied to the firing motor 11120 to stop the firing lead screw 11260. In certain instances, the microprocessor can reverse the voltage polarity applied to the firing motor 11120 to automatically retract the firing assembly once the firing assembly has fired all of the staples.


As discussed above, the surgical instrument 11010 can include a power supply. The power supply can include a power supply located external to the handle 11015 and a cable which can extend into the handle 11015, for example. The power supply can include at least one battery contained within handle 11015. A battery can be positioned in the first handle portion 11020 and/or the handle grip 11040. It is envisioned that the batteries, gears, motors, and rotating shafts may all be combined in one unit separable from the rest of handle 11015. Such a unit may be cleanable and sterilizable.


In various instances, the surgical instrument 11010 can include one or more indicators configured to indicate the state of the surgical instrument 11010. In at least one embodiment, the surgical instrument 11010 can include an LED 11100, for example. To communicate the state of the surgical instrument to the user, the LED 11100 can glow in different colors during different operating states of surgical instrument 11010. For example, the LED 11100 can glow a first color when the surgical instrument 11010 is powered and an unspent staple cartridge 11080 is not positioned in the cartridge channel 11070. The surgical instrument 11010 can include one or more sensors which can be configured to detect whether a staple cartridge 11080 is present in the cartridge channel 11070 and whether staples have been ejected from the staple cartridge 11080. The LED 11100 can glow a second color when the surgical instrument 11010 is powered and an unspent staple cartridge 11080 is positioned in the cartridge channel 11070. The LED 11010 can glow a third color when the instrument 11010 is powered, an unspent staple cartridge 11080 is loaded into the cartridge channel 11070, and the anvil 11090 is in a closed position. Such a third color can indicate that the surgical instrument 11010 is ready to fire the staples from the staple cartridge 11080. The LED 11100 can glow a fourth color after the firing process has begun. The LED can glow a fifth color after the firing process has been completed. This is but one exemplary embodiment. Any suitable number of colors could be utilized to indicate any suitable number of states of the surgical instrument 11010. While one or more LEDs may be utilized to communicate the state of the surgical instrument, other indicators could be utilized.


In use, a user of the surgical instrument 11010 may first load the surgical instrument 11010 with a staple cartridge 11080 by placing the staple cartridge 11080 into the cartridge channel 11070. Loading the cartridge 11080 into the cartridge channel 11070 may cause the LED 11100 to change from a first color to a second color. The user may grasp the handle grip 11040 and use the thumb activated closure switch 11065 to open the anvil 11090 of the surgical instrument 11010 in order to place the staple cartridge 11080 within the cartridge channel 11070. The user could then position the staple cartridge 11080 on one side of the tissue to be stapled and transected and the anvil 11090 on the opposite side of the tissue. Holding closure button 11065 with their thumb, the user may close surgical instrument 11010. Release of the closure button 11065 before the closing stroke is completed can reopen the anvil 11090 and allow the user to reposition the surgical instrument 11010, if necessary. The user may enjoy the advantage of being able to use an open linear cutter with pivotable jaws without the necessity of assembling linear cutter portions. The user may further enjoy the advantage of a pistol-grip feel.


As the anvil 11090 is being moved into its fully closed position, the closure channel 11080 can contact the closure sensor 11300, and the closure sensor 11300 can signal the microprocessor to arm firing switch 11290. At such point, the LED 11100 may glow a third color to show a loaded, closed, and ready-to-fire surgical instrument 11010. The user can then press the firing button 11055 which contacts the firing switch 11290 and causes the firing switch 11290 to energize the firing motor 11120. Energizing the firing motor 11120 rotates the firing shaft 11230 which, in turn, rotates the first firing gear 11240 and the firing lead screw drive gear 11250. The firing lead screw drive gear 11250 rotates the firing lead screw 11260. Threads of the firing lead screw 11260 engage and apply a force against internal threads defined in the firing block 11265 to move the firing block 11265 distally. The firing block 11265 moves pusher block 11270 distally, carrying firing wedges 11280 distally. The cam surfaces 11305 at the distal end of the firing wedges 11280 cam staples stored within the staple cartridge 11080 toward the anvil 11090, and the anvil 11090 can form the staples to fasten the tissue. The pusher block 11270 engages the knife block 11281 to push the knife block 11281 and the knife 11282 distally to transect the stapled tissue. After the firing stroke has been completed, the firing motor 11120 can be reversed to return the pusher block 11270, the knife block 11281, the firing wedges 11280, and the knife 11282. The surgical instrument 11010 can include a button and/or switch which automatically instructs the microprocessor to retract the firing assembly even though the firing stroke has not yet been completed. In some instances, the firing assembly may not need to be retracted. In any event, the user can open the surgical instrument 11010 by pressing the closure button 11065. The closure button 11065 can contact the closure switch 11285 and energize the closure motor 11110. The closure motor 11110 can be operated in a reverse direction to retract the closure channel 11180 proximally to reopen the anvil 11090 of the surgical instrument 11010. The LED 11100 may glow a fourth color designating a fired cartridge, and a complete procedure.


A surgical stapling instrument 12010 is depicted in FIGS. 99-106. The instrument 12010 can include a handle 12015, a closure drive including a closure latch 12050 configured to compress tissue between a staple cartridge 12080 and an anvil 12090, and a firing drive configured to eject staples from the staple cartridge 12080 and incise the tissue. FIG. 99 depicts the instrument 12010 in an open, unlatched condition. When the instrument 12010 is in its open, unlatched condition, the anvil 12090 is pivoted away from the staple cartridge 12080. In various instances, the anvil 12090 can be pivoted relative to the staple cartridge 12080 through a wide angle so that the anvil 12090 and the staple cartridge 12080 may be easily positioned on opposite sides of the tissue. FIG. 100 depicts the instrument 12010 in a closed, unlatched condition. When the instrument 12010 is in its closed, unlatched condition, the anvil 12090 has been rotated toward the staple cartridge 12080 into a closed position opposite the staple cartridge 12080. In various instances, the closed position of the anvil 12090 may depend on the thickness of the tissue positioned intermediate the anvil 12090 and the staple cartridge 12080. For instance, the anvil 12090 may reach a closed position which is further away from the staple cartridge 12080 when the tissue positioned intermediate the anvil 12090 and the staple cartridge 12080 is thicker as compared to when the tissue is thinner. FIG. 101 depicts the instrument 12010 in a closed, latched condition. When the instrument 12010 is in its closed, latched condition, the closure latch 12050 has been rotated to engage the anvil 12090 and position the anvil 12090 relative to the staple cartridge 12080. At such point, as described in greater detail further below, the firing drive of the surgical instrument 12010 can be actuated to fire the staples from the staple cartridge 12080 and incise the tissue.


Referring primarily to FIG. 106, the surgical instrument 12010 can include a frame 12020 extending from the handle 12015. The frame 12020 can include a frame channel 12022 defined therein which can be configured to receive and/or support a cartridge channel 12070. The cartridge channel 12070 can include a proximal end and a distal end. The proximal end of the cartridge channel 12070 can be connected to the frame 12020. The distal end of the cartridge channel 12070 can be configured to removably receive a staple cartridge 12080 therein. The frame channel 12022 can include pivot apertures 12207 defined in opposite sides thereof. A pivot pin 12205 can be supported within the pivot apertures 12207 and can extend between the sides of the channel 12022. The closure latch 12050 can include a latch frame 12051 comprising latch bars 12052. The latch bars 12052 can be rotatably mounted to the frame 12020 via the pivot pin 12205 which can extend through pivot apertures 12206 defined in the latch bars 12052. In various instances, the pivot apertures 12206, 12207 and the pivot pin 12205 can define a fixed axis 12208 about which the closure latch 12050 can rotate. The closure latch 12050 can further include a latch housing 12057 mounted to the latch bars 12052. When the latch housing 12057 is moved by the user of the surgical instrument 12010, the latch housing 12057 can move the latch bars 12052. The operation of the closure latch 12050 is described in greater detail further below.


Further to the above, the anvil 12090 can include a proximal end and a distal end. The distal end of the anvil 12090 can include a plurality of staple forming pockets which are alignable, or registerable, with staple cavities defined in the staple cartridge 12080 when the anvil 12090 is in its closed position. The proximal end of the anvil 12090 can be pivotably connected to the frame 12020. The anvil 12090 can include a pivot aperture 12201 which can be aligned with pivot apertures 12202 defined in the cartridge channel 12207 and a pivot aperture 12203 defined in the frame 12020. A pivot pin 12200 can extend through the pivot apertures 12201, 12202, and 12203 and can rotatably connect the anvil 12090 to the cartridge channel 12207. In various instances, the pivot apertures 12201, 12202, and 12203 and the pivot pin 12200 can define a fixed axis about the anvil 12090 can rotate. In certain instances, the pivot apertures 12201, 12202 and/or 12203 can be longitudinally elongate, for example, such that the pivot pin 12200 can slide within the pivot apertures 12201, 12202 and/or 12203. In such instances, the anvil 12090 can rotate about an axis relative to the cartridge channel 12070 and, in addition, translate relative to the cartridge channel 12070. The anvil 12090 can further include an anvil housing 12097 mounted thereto. When the anvil housing 12097 is moved by the user of the surgical instrument 12010, the anvil housing 12097 can move the anvil 12090 such that the anvil 12090 can be rotated between an open position (FIG. 99) and a closed position (FIG. 100).


Further to the above, the anvil 12090 can further include a latch pin 12210. The anvil 12090 can include latch pin apertures 12211 and the anvil housing 12097 can include latch pin apertures 12212 which are configured to receive and support the latch pin 12210. When the anvil 12090 has been moved into its closed position, or a position adjacent to its closed position, the latch 12050 can engage the latch pin 12210 and pull the anvil 12090 toward the staple cartridge 12080. In various instances, the latch bars 12052 of the latch 12050 can each include a latch arm 12053 configured to engage the latch pin 12210. The latch 12050 can be rotated between an unlatched position (FIG. 100) in which the latch arms 12053 are not engaged with the latch pin 12210 and a latched position (FIG. 101). When the latch 12050 is moved between its unlatched position and its latched position, the latch arms 12053 can engage the latch pin 12210 and move the anvil 12090 toward the staple cartridge 12080. Each latch arm 12053 can include a camming surface configured to contact the latch pin 12210. The camming surfaces can be configured to push and guide the latch pin 12210 toward the staple cartridge 12080. When the latch 12050 has reached its latched position, the latch pin 12210 can be captured within latch slots 12054 defined in the latch bars 12052. The latch slots 12054 can be at least partially defined by the latch arms 12053. The opposite sides of the latch slots 12054 can include lift surfaces which can be configured to engage the latch pin 12210 and lift the anvil 12090 away from the staple cartridge 12080 when the latch 12050 is rotated between its latched position and its unlatched position to open the instrument 12010, as discussed in greater detail further below.


As discussed above, the anvil 12090 can be moved toward the staple cartridge 12080. In various instances, the movement of the anvil 12090 toward the staple cartridge 12080 can be stopped when a distal end of the anvil 12090 contacts a distal end of the staple cartridge 12080. In certain instances, the movement of the anvil 12090 can be stopped when the latch pin 12210 contacts the cartridge channel 12070. The cartridge channel 12070 can include slots 12215 defined therein which are configured to receive the latch pin 12210. Each slot 12215 can include an upwardly-facing open end through which the latch pin 12210 can enter the slot 12215 and, in addition, a closed end. In various instances, the latch pin 12210 can contact the closed ends of the slots 12215 when the anvil 12090 reaches its closed position. In certain instances, the latch pin 12210 may not contact the closed ends of the slots 12215 if thick tissue is positioned between the anvil 12090 and the staple cartridge 12080. In at least one instance, the anvil 12090 can further include a stop pin 12095. The stop pin 12095 can be mounted to and supported by the anvil 12090 via pin apertures 12096 defined therein. The stop pin 12095 can be configured to contact the cartridge channel 12070 and stop the movement of the anvil 12090 toward the staple cartridge 12080. Similar to the above, the cartridge channel 12070 can further include stop slots 12075 defined therein which can be configured to receive the stop pin 12095. Each stop slot 12075 can include an upwardly-facing open end through which the stop pin 12095 can enter the stop slot 12275 and, in addition, a closed end. In various instances, the stop pin 12095 can contact the closed ends of the stop slots 12075 when the anvil 12090 reaches its closed position. In certain instances, the stop pin 12095 may not contact the closed ends of the stop slots 12075 if thick tissue is positioned between the anvil 12090 and the staple cartridge 12080.


As discussed above, the cartridge channel 12070 can be mounted to the frame 12020. In various instances, the cartridge channel 12070 can be rigidly and fixedly mounted to the frame 12020. In such instances, the cartridge channel 12070 may not be movable relative to the frame 12020 and/or the handle 12015. In certain instances, the cartridge channel 12070 can be pivotably coupled to the frame 12020. In at least one such instance, the cartridge channel 12070 can include pivot apertures 12202 defined therein which can be configured to receive the pivot pin 12200. In such circumstances, both the anvil 12090 and the cartridge channel 12070 may be rotatable relative to the frame 12020 about the pivot pin 12200. The latch 12050 can hold the anvil 12090 and the cartridge channel 12070 in position when the latch 12050 is engaged with the latch pin 12210.


In certain instances, further to the above, the instrument 12010 can include one or more sensors configured to detect whether the anvil 12090 is in its closed position. In at least one instance, the instrument 12010 can include a pressure sensor positioned intermediate the frame 12020 and the cartridge channel 12070. The pressure sensor can be mounted to the frame channel 12022 or the bottom of the cartridge channel 12070, for example. When the pressure sensor is mounted to the bottom of the cartridge channel 12070, the pressure sensor can contact the frame channel 12022 when the cartridge channel 12070 is moved toward the frame channel 12022. The cartridge channel 12070 can be moved toward the frame channel 12022 if the cartridge channel 12070 is rotatable relative to the frame channel 12022, as discussed above. In addition to or in lieu of the above, the cartridge channel 12070 can be moved toward the frame channel 12022 if the cartridge channel 12070 flexes toward the frame channel 12022. The cartridge channel 12070 can flex toward the frame channel 12022 when a compressive load is generated between the anvil 12090 and the cartridge channel 12070. A compressive load between the anvil 12090 and the cartridge channel 12070 can be generated when the anvil 12090 is moved into its closed position and/or when the anvil 12090 is moved toward the cartridge channel 12070 by the latch 12050. When the anvil 12090 is pushed toward the cartridge channel 12070 and/or when the latch 12050 is used to pull the anvil 12090 toward the cartridge channel 12070, the cartridge channel 12070 can bear against the pivot pin 12205. In various instances, the cartridge channel 12070 can include a slot or groove 12209 defined therein which can be configured to receive the pivot pin 12205. In any event, the pressure sensor can be configured to detect the pressure or force being applied to the cartridge channel 12070. The pressure sensor can be in signal communication with a microprocessor of the surgical instrument 12010. When the pressure or force detected by the pressure sensor exceeds a threshold value, the microprocessor can permit the firing system of the instrument 12010 to be operated. Prior to the pressure or force exceeding the threshold value, the microprocessor can warn the user of the surgical instrument 12010 that the anvil 12090 may not be closed, or sufficiently closed, when the user attempts to operate the firing system. In addition to or in lieu of such a warning, the microprocessor can prevent the firing system of the instrument 12010 from being operated if the pressure or force detected by the pressure sensor has not exceeded the threshold value.


In certain instances, further to the above, the instrument 12010 can include one or more sensors configured to detect whether the latch 12050 is in its latched position. In at least one instance, the instrument 12010 can include a sensor 12025 positioned intermediate the frame 12020 and the cartridge channel 12070. The sensor 12025 can be mounted to the frame channel 12022 or the bottom of the cartridge channel 12070, for example. When the sensor 12025 is mounted to the bottom of the cartridge channel 12070, the latch 12050 can contact the sensor 12025 when the latch 12050 is moved from its unlatched position to its latched position. The sensor 12025 can be in signal communication with the microprocessor of the surgical instrument 12010. When the sensor 12025 detects that the latch 12050 is in its latched position, the microprocessor can permit the firing system of the instrument 12010 to be operated. Prior to the sensor 12025 sensing that the latch 12050 is in its latched position, the microprocessor can warn the user of the surgical instrument 12010 that the anvil 12090 may not be closed, or sufficiently closed, when the user attempts to operate the firing system. In addition to or in lieu of such a warning, the microprocessor can prevent the firing system of the instrument 12010 from being operated if the latch 12050 is not detected in its latched position. In various instances, the sensor 12025 can comprise a proximity sensor, for example. In certain instances, the sensor 12025 can comprise a Hall Effect sensor, for example. In at least one such instance, the latch 12050 can include at least one magnetic element, such as a permanent magnet, for example, which can be detected by the Hall Effect sensor. In various instances, the sensor 12025 can be held in position by a bracket 12026, for example.


Referring primarily to FIG. 105, the firing system of the surgical instrument 12010 can include a firing motor 12120 configured to rotate a firing shaft 12230. The firing motor 12120 can be mounted to a motor frame 12125 within the handle 12015 of the surgical instrument 12010 such that the firing shaft 12230 extends distally. The firing system can further comprise a gear train including, one, a first firing gear 12240 mounted to the closure shaft 12230 and, two, a lead screw gear 12250 mounted to a lead screw 12260. The first firing gear 12240 can be meshingly engaged with the lead screw gear 12250 such that, when the first firing fear 12240 is rotated by the firing shaft 12230, the first firing gear 12240 can rotate the lead screw gear 12250 and the lead screw gear 12250 can rotate the lead screw 12260. Referring primarily to FIG. 104, the lead screw 12260 can comprise a first end 12261 rotatably 12250 mounted within an aperture defined in the motor block 12125 and a second end 12263 rotatably supported within a bearing mounted to a bearing portion 12264 of the handle 12015. The lead screw 12260 can further include a threaded portion 12262 extending between the first end 12261 and the second end 12263. The firing system can further comprise a firing nut 12265 threadably engaged with the threaded portion 12262 of the lead screw 12260. The firing nut 12265 can be constrained from rotating with the lead screw 12260 such that, when the lead screw 12260 is rotated in a first direction by the firing motor 12120, the lead screw 12260 can advance the firing nut 12265 distally and, correspondingly, when the lead screw 12260 is rotated in a second, or opposite, direction by the firing motor 12120, the lead screw 12260 can retract the firing nut 12265 proximally.


Further to the above, the firing nut 12265 can be mounted to a firing block 12270 which can translate with the firing nut 12265. In various instances, the firing nut 12265 and the firing block 12270 can be integrally formed. Similar to the above, the firing system can further include firing bars 12280 extending therefrom which translate with the firing nut 12265 and the firing block 12270. In various instances, the firing nut 12265, the firing block 12270, and the firing bars 12280 can comprise a firing assembly that is translated proximally and/or distally by the lead screw 12160. When the firing assembly is advanced distally by the lead screw 12260, the firing bars 12280 can enter into the staple cartridge 12080 and eject the staples therefrom. The firing system can further comprise a knife block 12281 and a knife bar 12282 mounted to and extending from the knife block 12281. As the firing block 12270 is advanced distally, the firing bars 12280 can engage the knife block 12281 and advance the knife block 12281 and the knife bar 12282 distally. In various instances, the firing block 12270 can move relative to the knife block 12281 during the initial portion of the firing stroke and then move together during the final portion of the firing stroke. In at least one such instance, the firing bars 12280 can slide through slots defined in the knife block 12281 until one or more raised surfaces extending from the firing bars 12280 contact the knife block 12281 and push the knife block 12281 distally with the firing bars 12280. In various instances, the firing assembly can further include the knife block 12281 and the knife bar 12282 which can move concurrently with the firing block 12270 and the firing bars 12280. In either event, as the knife bar 12282 is advanced distally, a cutting edge 12283 of the knife bar 12282 can incise tissue captured between the anvil 12090 and the staple cartridge 12080. The disclosure of U.S. Pat. No. 4,633,874, entitled SURGICAL STAPLING INSTRUMENT WITH JAW LATCHING MECHANISM AND DISPOSABLE LOADING CARTRIDGE, which issued on Jan. 6, 1987, is incorporated by reference herein in its entirety.


Referring primarily to FIG. 106, the firing system of the surgical instrument 12010 can include a firing button 12055 and a firing switch 12290. When the user of the surgical instrument 12010 depresses the firing button 12055, the firing button 12055 can contact the firing switch 12290 and close a firing circuit which can operate the firing motor 12120. When the user of the surgical instrument 12010 releases the firing button 12055, the firing circuit can be opened and the power supplied to the firing motor 12120 can be interrupted. The firing button 12055 can be pushed once again to operate the firing motor 12120 once again. In certain instances, the firing button 12055 can comprise a bi-directional switch which, when pushed in a first direction, can operate the firing motor 12120 in a first direction and, when pushed in a second direction, can operate the firing motor 12120 in a second, or opposite, direction. The firing switch 12090 and/or any suitable arrangement of firing switches can be in signal communication with the microprocessor of the surgical instrument 12010 which can be configured to control the power supplied to the firing motor 12120. In certain instances, further to the above, the microprocessor may ignore signals from the firing button 12055 until the sensor 12025 has detected that the latch 12050 has been closed. In any event, the firing button 12055 can be pushed in its first direction to advance the firing bars 12280 and the knife 12282 distally and its second direction to retract the firing bars 12280 and the knife 12282 proximally. In certain instances, the surgical instrument 12010 can include a firing button and switch configured to operate the firing motor 12120 in its first direction and a retraction button and switch configured to operate the firing motor 12120 in its second direction. After the firing bars 12280 and the knife 12282 have been retracted, the latch 12050 can be moved from its latched position to its unlatched position to disengage the latch arms 12053 from the latch pin 12210. Thereafter, the anvil 12090 can be pivoted away from the staple cartridge 12080 to return the surgical instrument 12010 to an open, unlatched condition. Similar to the above, the surgical instrument 12010 can include one or more indicators, such as LED 12100, for example, configured to indicate the status of the surgical instrument 12010. The LED 12100 can be in signal communication with the microprocessor of the surgical instrument 12010 and can operate in a similar manner to that described in connection with the LED 11100, for example. The LED 12100 can be held in position by a bracket 12101, for example.


In various instances, the instrument 12010 can include a firing lockout system which can block the advancement of the knife 12282 and/or the firing bars 12280 if the anvil 12090 is not in a closed, or a sufficiently closed, position. Referring to FIGS. 104 and 106, the instrument 12010 can comprise a biasing member 12400 mounted to the cartridge channel 12070, for example, which can bias the knife 12282 into engagement with a lock portion of the handle 12015. When the anvil 12090 is rotated into its closed position, the anvil 12090 can push the knife 12282 downwardly away from the lock portion against the biasing force of the biasing member 12400. At such point, the knife 12282 can be advanced distally. Similarly, the instrument 12010 can include a biasing member which can bias the firing bars 12280 into engagement with a lock portion of the handle 12015 wherein the anvil 12090 can disengage the firing bars 12280 from the lock portion when the anvil 12090 is moved into its closed position.


The surgical instrument 12010 can comprise a manually driven closure system and a motor driven staple firing system. A portion 12040 of the handle 12015 can be gripped by one hand of the user of the surgical instrument 12010 and the anvil 12090 and the latch 12050 can be manipulated by their other hand. As part of closing the latch 12050, in at least one embodiment, the user can move one of their hands in the general direction of their other hand which can reduce the incidental and accidental movement of the surgical instrument 12010. The surgical instrument 12010 can be powered by any suitable power source. For instance, an electrical cable can extend from an external power source and into the handle 12015. In certain instances, a battery can be stored in the handle 12015, for example.


A surgical stapling instrument 13010 is illustrated in FIGS. 107-110. FIG. 107 is a side view of the surgical instrument 13010 illustrated with some components removed and others shown in cross-section. The instrument 13010 can comprise a handle 13015, a first actuator 13020, a second actuator 13030, a shaft assembly 13040, and an end effector 13012 including an anvil 13050 and a staple cartridge 13055. The shaft portion 13040 and the anvil 13050 can operate as shown and discussed in U.S. Pat. No. 5,704,534, entitled ARTICULATION ASSEMBLY FOR SURGICAL INSTRUMENTS, which issued on Jan. 6, 1998. The disclosure of U.S. Pat. No. 5,704,534, entitled ARTICULATION ASSEMBLY FOR SURGICAL INSTRUMENTS, which issued on Jan. 6, 1998, is incorporated herein by reference by its entirety. An electrical input cable 13018 can connect the instrument 13010 to an external power source. In at least one instance, the external power source can comprise a generator, such as the GEN11 generator manufactured by Ethicon Energy, Cincinnati, Ohio, for example. In various instances, the external power source can comprise an AC to DC adaptor. In certain instances, the instrument 13010 can be powered by an internal battery, such as the batteries shown and discussed in U.S. Pat. No. 8,210,411, entitled MOTOR-DRIVEN SURGICAL CUTTING INSTRUMENT, which issued on Jul. 3, 2012, for example. The disclosure of U.S. Pat. No. 8,210,411, entitled MOTOR-DRIVEN SURGICAL CUTTING INSTRUMENT, which issued on Jul. 3, 2012, is incorporated herein by reference in its entirety.


In various instances, referring primarily to FIG. 107, the anvil 13050 of the end effector 13012 can be movable between an open position, as illustrated in FIG. 107, and a closed position in which the anvil 13050 is positioned adjacent to, or in contact with, the staple cartridge 13055, as described in greater detail further below. In at least one such instance, the staple cartridge 13055 may not be pivotable relative to the anvil 13050. In certain instances, although not illustrated, the staple cartridge 13055 can be pivotable relative to the anvil 13050. In at least one such instance, the anvil 13050 may not be pivotable relative to the staple cartridge 13055. In any event, the user of the instrument 13010 can manipulate the end effector 13012 in order to position tissue T between the anvil 13050 and the cartridge 13055. Once the tissue T has been suitably positioned between the anvil 13050 and the staple cartridge 13055, the user can then pull the first actuator 13020 to actuate the closure system of the instrument 13010. The closure system can move the anvil 13050 relative to the staple cartridge 13055. For example, the first actuator 13020 can be pulled toward a pistol grip portion 13016 of the handle 13015 to close the anvil 13050, as described in greater detail further below.


The closure drive can include a closure motor 13105 (FIG. 110) configured to move the anvil 13050. The closure motor 13105 can be mounted to the handle 13015 via a motor bracket 13101, for example. Squeezing the first actuator 13020 from its open position (FIG. 108) to its closed position (FIG. 109) can energize the closure motor 13105. Referring primarily to FIG. 110, the closure motor 13105 can include a rotatable output shaft which is operably engaged with a closure lead screw 13110. When the closure motor 13105 rotates the output shaft in a first direction, the output shaft can rotate the closure lead screw 13110 in the first direction. The closure lead screw 13110 can be rotatably supported within the handle 13015 and can include a threaded portion. The closure drive can further comprise a closure nut threadably engaged with the threaded portion of the closure lead screw 13110. The closure nut can be constrained from rotating with the closure lead screw 13110 such that the rotational motion of the closure lead screw 13110 can translate the closure nut. The closure nut can be engaged with or integrally formed with a closure yoke 13120. When the closure motor 13015 is rotated in its first direction, the closure lead screw 13110 can advance the closure yoke 13120 distally. In various instances, the closure yoke 13120 can be slidably supported within the handle 13015 by rails 13122 extending from the handle 13015 which can constrain the movement of the closure yoke 13120 to a path defined along a longitudinal axis. Such an axis can be parallel to, substantially parallel to, collinear with, or substantially collinear with a longitudinal axis defined by the shaft assembly 13040. The closure drive can further comprise a closure tube 13125 extending distally from the closure yoke 13120. The closure tube 13125 can also be part of the shaft assembly 13040 and can translate relative to a frame of the shaft assembly 13040. When the closure yoke 13120 is advanced distally by the closure lead screw 13110, the closure yoke 13120 can advance the closure tube 13125 distally. A distal end of the closure tube 13125 can be operably engaged with the anvil 13050 such that, when the closure tube 13125 is advanced distally, the closure tube 13125 can push the anvil 13050 from its open position toward its closed position. U.S. Pat. No. 5,704,534, entitled ARTICULATION ASSEMBLY FOR SURGICAL INSTRUMENTS, which issued on Jan. 6, 1998, discloses a manually-driven closure system.


In at least one form, the instrument 13010 can include a closure system switch positioned in the handle 13015 which can be closed when the first actuator 13020 is moved from its open position (FIG. 108) toward its closed position (FIG. 109). In certain instances, the closure system switch can be closed when the first actuator 13020 is in its closed position (FIG. 109). In either event, when the closure system switch is closed, a closure system power circuit can be closed to supply electrical power to the closure motor 13105 in order to rotate the closure motor 13105 in its first direction, as discussed above. In certain instances, the surgical instrument 13010 can include a microprocessor and, similar to the above, the closure system switch can be in signal communication with the microprocessor. When the closure system switch sends a signal to the microprocessor indicating that the first actuator 13020 has been closed, the microprocessor can permit power to be supplied the closure motor 13105 to operate the closure motor 13105 in its first direction and move the anvil 13050 toward its closed position. In various instances, the closure motor 13105 can move the anvil 13050 toward its closed position so long as the first actuator 13020 is at least partially actuated and the closure system switch is in a closed state. In the event that the user releases the first actuator 13020 and the first actuator 13020 is returned to its unactuated position, the closure system switch can be opened and the power supplied to the closure motor 13105 can be interrupted. Such instances may leave the anvil 13050 in a partially closed position. When the first actuator 13020 is actuated once again and the closure system switch has been closed, power can be supplied to the closure motor 13105 once again to move the anvil 13050 toward its closed position. In view of the above, the user of the surgical instrument 13010 can actuate the first actuator 13020 and wait for the closure motor 13105 to position the anvil 13050 in its fully closed position.


In at least one form, the movement of the first actuator 13020 can be proportional to the movement of the anvil 13050. The first actuator 13020 can move through a first, or actuator, range of motion when it is moved between its open position (FIG. 108) and its closed position (FIG. 109). Similarly, the anvil 13050 can move through a second, or anvil, range of motion when it is moved between its open position (FIG. 107) and its closed position. The actuator range of motion can correspond to the anvil range of motion. By way of example, the actuator range of motion can be equal to the anvil range of motion. For instance, the actuator range of motion can comprise about 30 degrees and the anvil range of motion can comprise about 30 degrees. In such instances, the anvil 13050 can be in its fully open position when the first actuator 13020 is in its fully open position, the anvil 13050 can be rotated 10 degrees toward its closed position when the first actuator 13020 is rotated 10 degrees toward its closed position, the anvil 13050 can be rotated 20 degrees toward its closed position when the first actuator 13020 is rotated 20 degrees toward its closed position, and so forth. This directly proportional movement between the first actuator 13020 and the anvil 13050 can give the user of the instrument 13010 a sense of the anvil position 13050 relative to the staple cartridge 13055 in the event that the anvil 13050 is obstructed from view in the surgical site.


Further to the above, the anvil 13050 can be responsive to both closing and opening motions of the first actuator 13020. For example, when the first actuator 13020 is moved 10 degrees toward the pistol grip 13016, the anvil 13050 can be moved 10 degrees toward the staple cartridge 13055 and, when the first actuator 13020 is moved 10 degrees away from the pistol grip 13016, the anvil 13050 can be moved 10 degrees away from the staple cartridge 13055. While the movement of the first actuator 13020 and the movement of the anvil 13050 can be directly proportional according to a 1:1 ratio, other ratios are possible. For instance, the movement of the first actuator 13020 and the movement of the anvil 13050 can be directly proportional according to a 2:1 ratio, for example. In such instances, the anvil 13050 will move 1 degree relative to the staple cartridge 13055 when the first actuator 13020 is moved 2 degrees relative to the pistol grip 13016. Moreover, in such instances, the range of motion of the first actuator 13020 may be twice the range of motion of the anvil 13050. In another instance, the movement of the first actuator 13020 and the movement of the anvil 13050 can be directly proportional according to a 1:2 ratio, for example. In such instances, the anvil 13050 will move 2 degrees relative to the staple cartridge 13055 when the first actuator 13020 is moved 1 degree relative to the pistol grip 13016. Moreover, in such instances, the range of motion of the first actuator 13020 may be half the range of motion of the anvil 13050. In various instances, the motion of the first actuator 13020 may be linearly proportional to the motion of the anvil 13050. In other instances, the motion of the first actuator 13020 may be non-linearly proportional to the motion of the anvil 13050. Regardless of the ratio that is used, such embodiments can be possible through the use of a potentiometer, for example, which can evaluate the rotation of the first actuator 13020, as will be discussed in greater detail further below.


Further to the above, referring to FIGS. 108-110, the closure system of the instrument 13010 can comprise a slide potentiometer 13090 which can detect the movement of the first actuator 13020. The first actuator 13020 can be pivotably mounted to the handle 13015 via a pivot 13021. The first actuator 13020 can comprise a gear portion 13070 comprising a plurality of gear teeth extending circumferentially about the pivot 13021. When the first actuator 13020 is rotated proximally toward the pistol grip 13016, further to the above, the gear portion 13070 can be rotated distally. Correspondingly, when the first actuator 13020 is rotated distally away from the pistol grip 13016, the gear portion 13070 can be rotated proximally. The closure system can further comprise a closure yoke rack 13080 which is slidably supported within the handle 13015. The closure yoke rack 13080 can comprise a longitudinal array of teeth extending along a bottom surface thereof which faces the gear portion 13070 of the first actuator 13020. The gear portion 13070 of the first actuator 13020 can be meshingly engaged with the array of teeth defined on the closure yoke rack 13080 such that, when the first actuator 13020 is rotated about the pivot 13021, the first actuator 13020 can displace the closure yoke rack 13080 proximally or distally, depending on the direction in which the first actuator 13020 is rotated. For instance, when the first actuator 13020 is rotated toward the pistol grip 13016, the first actuator 13020 can displace the closure yoke rack 13080 distally. Correspondingly, when the first actuator 13020 is rotated away from the pistol grip 13016, the first actuator 13020 can displace the closure yoke rack 13080 proximally. The handle 13015 can include a guide slot defined therein which can be configured to slidably support the closure yoke rack 13080 and constrain the movement of the closure yoke rack 13080 to a path defined along a longitudinal axis. This longitudinal axis can be parallel to, substantially parallel to, collinear with, or substantially collinear with a longitudinal axis of the shaft assembly 13040.


The closure yoke rack 13080 can include a detectable element 13081 mounted thereon. The detectable element 13081 can comprise a magnetic element, such as a permanent magnet, for example. The detectable element 13081 can be configured to translate within a longitudinal slot 13091 defined in the slide potentiometer 13090 when the closure rack 13080 is translated within the handle 13015. The slide potentiometer 13090 can be configured to detect the position of the detectable element 13081 within the longitudinal slot 13091 and convey that position to the microprocessor of the surgical instrument 13010. For example, when the first actuator 13020 is in its open, or unactuated, position (FIG. 108), the detectable element 13081 can be positioned at the proximal end of the longitudinal slot 13091 and the potentiometer 13090 can transmit a signal to the microprocessor that can indicate to the microprocessor that the first actuator 13020 is in its open position. With this information, the microprocessor can maintain the anvil 13050 in its open position. As the first actuator 13020 is rotated toward the pistol grip 13016, the detectable element 13081 can slide distally within the longitudinal slot 13091. The potentiometer 13090 can transmit a signal, or a plurality of signals, to the microprocessor that can indicate the position of the first actuator 13020. In response to such a signal, or a plurality of signals, the microprocessor can operate the closure motor 13105 to move the anvil 13055 to a position which corresponds to the position of the first actuator 13020. When the first actuator 13020 is in its closed, or fully actuated, position (FIG. 109), the detectable element 13081 can be positioned at the distal end of the longitudinal slot 13091 and the potentiometer 13090 can transmit a signal to the microprocessor that can indicate to the microprocessor that the first actuator 13020 is in its closed position. With this information, the microprocessor can move the anvil 13050 into its closed position.


When the first actuator 13020 is pulled such that it is substantially adjacent to the pistol grip 13016 of the handle 13015, as discussed above, the closure yoke rack 13080 is moved to its most distal position. When the closure yoke rack 13080 is in its most distal position, a closure release button 13140 can engage the closure yoke rack 13080 to releasably hold the closure yoke rack 13080 in its distal most position and, as a result, releasably hold the anvil 13050 in its closed position. Referring primarily to FIG. 108, the closure release button 13140 can be pivotably mounted to the handle 13015 about a pivot 13141. The closure release button 13140 can include a lock arm 13142 extending therefrom. When the first actuator 13120 is in its unactuated position and the closure yoke rack 13080 is in its proximal-most position, the lock arm 13142 may be positioned above and/or against a top surface of the closure yoke rack 13080. In such a position, the closure yoke rack 13080 can slide relative to the lock arm 13142. In some circumstances, the lock arm 13142 can be biased against the top surface of the closure yoke rack 13080. As will be described in greater detail further below, the instrument 13010 can further comprise a lock 13290 configured to releasably hold the first actuator 13020 and the second actuator 13030 in the unactuated configuration depicted in FIG. 108. A spring 13150 can be positioned intermediate the lock 13290 and the firing button 13140 which can rotatably bias the closure release button 13140 about the pivot 13141 and position the lock arm 13142 against the top surface of the closure yoke rack 13080. In various instances, the lock 13290 can include a proximal projection 13296 and the closure release button 13140 can include a distal projection 13146 which can be configured to hold and align the spring 13150 in position between the lock 13290 and the closure release button 13140. When the first actuator 13020 is rotated into its actuated position, as illustrated in FIG. 109, the closure yoke rack 13080 can be in its distal-most position and the lock arm 13142 can be biased into, or drop into, a notch 13082 defined in the proximal end of the closure yoke rack 13080. Moreover, when the first actuator 13020 is moved into its closed, or actuated, position illustrated in FIGS. 109 and 110, the first actuator 13020 can push the lock 13290 proximally and rotate the lock 13290 about pivot 13214. In at least one instance, the first actuator 13020 can include an actuator projection 13025 extending therefrom configured to engage a distal projection 13295 extending from the lock 13290. Such movement of the lock 13290 can compress the spring 13150 between the lock 13290 and the closure release button 13140 and increase the biasing force applied to the closure release button 13140. Once the lock arm 13142 is engaged with the notch 13082, the closure yoke rack 13080 may not be movable, or at least substantially movable, in the proximal direction or the distal direction.


As discussed above, the first actuator 13020 and the second actuator 13030 can be releasably held in and/or biased into their unactuated positions illustrated in FIG. 108. The instrument 13010 can include a return spring 13210 including a first end coupled to the pivot 13214 and a second end coupled to a spring mount 13034 extending from the second actuator 13030. The second actuator 13030 can be rotatably mounted to the handle 13015 about the pivot 13021 and the return spring 13210 can apply a biasing force to the second actuator 13030 to rotate the second actuator 13030 about the pivot 13021. The lock 13290 can stop the rotation of the second actuator 13030 about the pivot 13021. More specifically, the spring 13150, which acts to bias the closure return button 13140 into engagement with the closure yoke rack 13080, can also act to push the lock 13290 distally such that a lock arm 13292 of the lock 13290 is positioned behind a shoulder 13032 defined on the second actuator 13030 which can limit the rotation of the second actuator 13030 and hold the second actuator 13030 in its unactuated position as illustrated in FIG. 108. Referring primarily to FIG. 110, the second actuator 13030 can comprise a shoulder 13031 which can be configured to abut the gear portion 13070 of the first actuator 13020 and bias the first actuator 13020 into its unactuated position (FIG. 108). When the first actuator 13020 is rotated toward its actuated position (FIG. 109), the first actuator 13020 can at least partially rotate the second actuator 13030 toward the pistol grip 13016 against the biasing force supplied by the spring 13210. In fact, the actuation of the first actuator 13020 can make the second actuator 13030 accessible to the user of the surgical instrument 13010. Prior to the actuation of the first actuator 13020, the second actuator 13030 may be inaccessible to the user. In any event, the reader will recall that the actuation of the first actuator 13020 pushes the lock 13295 proximally. Such proximal movement of the lock 13295 can displace the lock 13295 from behind the shoulder 13032 defined on the second actuator 13030.


Once the first actuator 13020 has been moved and locked into its fully actuated position (FIG. 109) and the anvil 13050 has been moved into its closed position, as discussed above, the instrument 13010 can be used to staple the tissue positioned intermediate the anvil 13050 and the staple cartridge 13055. In the event that the user is unsatisfied with the position of the tissue between the anvil 13050 and the staple cartridge 13055, the user can unlock the anvil 13050 by depressing the closure release button 13140. When the closure release button 13140 is depressed, the lock arm 13142 of the closure release button 13140 can be pivoted upwardly out of the notch 13082 which can permit the closure yoke rack 13080 to move proximally. Moreover, the return spring 13210 can return the first actuator 13120 and the second actuator 13130 to their unactuated positions illustrated in FIG. 109 and, owing to the meshed engagement between the gear portion 13070 and the closure yoke rack 13080, the return spring 13210 can return the closure yoke rack 13080 back into its proximal position. Such movement of the closure yoke rack 13080 can be detected by the slide potentiometer 13090 which can transmit a signal to the microprocessor of the instrument 13010 that the first actuator 13020 has been returned to its unactuated position and that the anvil 13050 should be returned to its open position. In response thereto, the microprocessor can instruct the closure motor 13105 to rotate in its second direction to drive the closure nut of the closing system proximally and retract the closure tube 13125 proximally which will return the anvil 13050 back to its open position. The user can then reposition the anvil 13050 and the staple cartridge 13055 and re-close the anvil 13050 by actuating the first actuator 13020 once again. In various instances, the microprocessor of the instrument 13010 can be configured to ignore input signals from the second actuator 13030 until the potentiometer 13090 detects that the anvil 13050 is in a closed, or a sufficiently closed, position.


Once the user is satisfied with the position of the anvil 13050 and the staple cartridge 13055, further to the above, the user can pull the second actuator 13030 to a closed, or actuated, position such that it is in close proximity to the first actuator 13020. The actuation of the second actuator 13030 can depress or close a firing switch 13180 in the handle 13015. In various instances, the firing switch 13180 can be supported by a motor mount 13102 which can also be configured to support the closure motor 13105 and/or a firing motor 13100. The closure of the firing switch 13180 can operate the firing motor 13100. In certain instances, the firing switch 13180 can be in signal communication with the microprocessor of the surgical instrument 13010. When the microprocessor receives a signal from the firing switch 13180 that the second actuator 13030 has been sufficiently actuated, the microprocessor can supply power to the firing motor 13100. In various embodiments, the closure of the firing switch 13180 can connect the firing motor 13100 directly to a DC or AC power source to operate the firing motor 13100. In at least one instance, the firing switch 13180 can be arranged such that the firing switch 13180 is not closed until the second actuator 13030 has reached its fully closed position. Referring primarily to FIG. 110, the rotation of the second actuator 13030 can be stopped in its fully closed position when it comes into contact with the first actuator 13020. In at least one such instance, the first actuator 13020 can comprise a stop depression 13023 configured to receive a stop projection 13033 extending from the second actuator 13030 when the second actuator 13030 reaches its closed position.


The firing motor 13100 can include a rotatable output shaft which is operably engaged with a firing lead screw 13190 of the firing system. When the firing motor 13100 is operated to rotate its output shaft in a first direction, the output shaft can rotate the firing lead screw 13190 in the first direction. When the firing motor 13100 is operated to rotate its output shaft in a second, or opposite, direction, the output shaft can rotate the firing lead screw 13190 in the second direction. The firing system can further comprise a firing nut which is threadably engaged with a threaded portion of the firing lead screw 13190. The firing nut can be constrained from rotating with the firing lead screw 13190 such that the rotation of the firing lead screw 13190 can translate the firing nut proximally or distally depending on the direction in which the firing lead screw 13190 is rotated. The firing system can further comprise a firing shaft 13220 operatively connected to the firing nut which can be displaced with the firing nut. The firing system can also comprise a knife bar 13200 and staple deploying firing bands which extend distally from the firing shaft 13220. When the firing motor 13020 is rotated in its first direction, the firing lead screw 13190 can displace the firing nut, the firing shaft 13220, the knife bar 13200, and the firing bands distally to eject the staples from the staple cartridge 13055 and incise the tissue positioned intermediate the anvil 13050 and the staple cartridge 13055. Once the knife 13200 and the firing bands reach their end of travel, the microprocessor can rotate the firing motor 13100 in its second, or opposite, direction to bring the knife 13200 and the bands back to their original position. In various instances, the instrument 13010 can include an end of travel sensor in signal communication with the microprocessor which can signal to the microprocessor that the firing drive has reached the end of its firing stroke and that the firing stroke should be retracted. Such an end of travel sensor can be positioned in the anvil 13050 and/or the staple cartridge 13055, for example. In certain instances, an encoder operably coupled to the firing motor 13100 can determine that the firing motor 13100 has been rotated a sufficient number of rotations for the knife 13200 and firing bands to reach their end of travel and signal to the microprocessor that the firing system should be retracted.


Once the second actuator 13030 has been actuated, however, the instrument 13010 is in its firing state and the microprocessor can be configured to ignore any inputs from the first actuator 13020 and/or the slide potentiometer 13090 until the firing system has been returned it to its original position. In various instances, the instrument 13010 can include an abort button which, when depressed, can signal to the microprocessor that the firing assembly should be immediately retracted. In at least one such instance, the firing sequence can be halted when the closure release button 13140 is depressed. As discussed above, pressing the closure release button 13140 moves the closure yoke rack 13080 proximally which, in turn, moves the detectable element 13081 proximally. The proximal movement of the detectable element 13081 can be detected by the slide potentiometer 13090 which can signal to the microprocessor to reverse the rotation of the firing motor 13100 to retract the firing assembly and/or operate the closure motor 13105 to open the anvil 13050.


The instrument 13010 can also include one or more indicators, such as LED 13300, for example, which can be configured to indicate the operating state of the instrument 13010. In various instances, the LED 13300 can operate in a manner similar to that of LED 11100, for example. The instrument 13010 also incorporates the ability to articulate the end effector 13012. This is done through the articulation knob 13240 as discussed in U.S. Pat. No. 5,704,534. Manual rotation of the shaft assembly 13040 is also discussed in U.S. Pat. No. 5,704,534.


In a modular concept of the instrument 13010, the shaft assembly 13040 and the end effector 13012 could be disposable, and attached to a reusable handle 13015. In another embodiment, the anvil 13050 and the staple cartridge 13055 are disposable and the shaft assembly 13040 and the handle 13015 are reusable. In various embodiments, the end effector 13012, including the anvil 13015, the shaft assembly 13040, and the handle 13015 may be reusable and the staple cartridge 13055 may be replaceable.



FIG. 111 is a perspective view of a surgical stapling instrument 14010. The instrument 14010 can comprise an actuator, or handle, 14020, a shaft portion 14030, a tubular cartridge casing 14040, and an anvil 14050. The instrument 14010 can further include a closure system configured to move the anvil 14050 between an open position and a closed position. The actuator 14020 can comprise a rotating closure knob 14075 which can operate the closure system as described in greater detail further below. The instrument 14010 can further include a firing system configured to eject staples which are removably stored in the cartridge casing 14040. The actuator 14020 can further comprise a firing activation trigger 14070 which can operate the firing system as described in greater detail further below. Shaft portion 14030, cartridge casing 14040, and anvil 14050 can operate in a manner similar to that shown and discussed in U.S. Pat. No. 5,292,053, entitled SURGICAL ANASTOMOSIS STAPLING INSTRUMENT, which issued on Mar. 8, 1994. The disclosure of U.S. Pat. No. 5,292,053, entitled SURGICAL ANASTOMOSIS STAPLING INSTRUMENT, which issued on Mar. 8, 1994, is incorporated herein by reference in its entirety.


Further to the above, the actuator 14020 can include a transmission 14000 and a slider button 14060 configured to operate the transmission 14000. The slider button 14060 is movable between a distal position (FIG. 115), which is closer to the cartridge casing 14040, and a proximal position (FIG. 114), which is further away from the cartridge casing 14040. When the slider button 14060 is in its proximal position, the actuator 14020 is in a first operating mode, or closure mode, and can move the anvil 14050 toward and away from the cartridge casing 14040. When the slider button 14060 is in its distal position, the actuator 14020 is in a second operating mode, or firing mode, and can eject staples from the cartridge casing 14040 toward the anvil 14050. When the actuator 14020 is in its closure mode, the rotating closure knob 14075 can be rotated about a longitudinal axis extending through the actuator 14020 in order to move the anvil 14050 proximally or distally depending on the direction in which the closure knob 14075 is rotated. When the actuator 14020 is in its firing mode, the firing activation trigger 14070 can be rotated proximally to eject the staples from the cartridge casing 14040. The closure system and the firing system are discussed in greater detail further below.


The actuator 14020 can comprise an electric motor, such as motor 14090 (FIGS. 113-115), for example, which can operate the closure drive and the firing drive via the transmission 14000. The motor 14090 can be supported within an actuator housing 14080 of the actuator 14020. Referring primarily to FIG. 113, the actuator housing 14080 can comprise two halves, an actuator housing right half 14080a and an actuator housing left half 14080b. Actuator housing halves 14080a and 14080b can be held together by screws, although any suitable fastening and/or adhesive methods could be used to assemble actuator housing 14080. The motor 14090 can be supported between the actuator housing halves 14080a and 14080b and can include a rotatable shaft 14100 extending distally therefrom. In certain instances, the actuator 14020 can comprise a motor support 14101 positioned in the housing 14080 configured to support the housing of the motor 14100 and constrain the motor housing from rotating relative to the actuator housing 14080. In various instances, the rotatable shaft 14100 can comprise an extender portion 14110 affixed thereto. The shaft 14100 and the extender portion 14110 can be rotatably coupled such that they rotate together.


Further to the above, referring primarily to FIG. 116, the extender portion 14110 can comprise a cylindrical, or an at least substantially cylindrical, body 14111 and a flat portion 14120 defined in a distal end 14113 of the extender portion 14110. The cylindrical body 14111 of the extender portion 14110 can be rotatably supported within the actuator housing 14080 by a bearing 14105. The distal end 14113 of the extender portion 14110 can be positioned within a slider aperture 14114 defined in a slider 14115. The slider 14115, as will be discussed in greater detail further below, is part of the transmission 14000 and can be shifted between a proximal position (FIG. 114) in which the slider 14115 transmits the rotary motion of the motor 14090 to the closure system and a distal position (FIG. 115) in which the slider 14115 transmits the rotary motion of the motor 14090 to the firing system. When the slider 14115 is shifted between its proximal position (FIG. 114) and its distal position (FIG. 115), the slider 14115 can slide relative to the extender portion 14110. The slider aperture 14114 defined in the slider 14115 can define a perimeter which matches, or at least substantially matches, the perimeter of the distal end 14113 of the extender portion 14110 such that, one, the extender portion 14110 and the slider 14115 are rotationally coupled together and, two, the slider 14115 can translate relative to the extender portion 14110. In at least one instance, the slider aperture 14114 comprises a cylindrical portion 14116 which matches the cylindrical body 14111 of the extender portion 14110 and a flat portion 14117 which matches the flat portion 14120 defined in the distal end 14113 of the slider 14115.


Further to the above, the slider 14115 can comprise a tubular, or a generally tubular, structure. The slider 14115 can comprise a distal end 14118 and a plurality of outer circumferential splines 14130 extending around an outer surface of the distal end 14118 which can be operably engaged with the firing drive, as illustrated in FIG. 115. The slider 14115 can further comprise a plurality of internal circumferential splines 14140 defined in the distal end of the slider aperture 14114 which can be operably engaged with the closure drive, as illustrated in FIG. 114. The slider 14115 can be part of a slider assembly 14150. Referring primarily to FIG. 116, the slider assembly 14150 can further comprise an upper journal bearing 14160, a lower journal bearing 14170, the slider button 14060, and a slider spring 14180. The upper journal bearing 14160 and the lower journal bearing 14170 combine to form a journal bearing which can, one, support the slider 14115 loosely enough so that the slider 14115 may rotate within the journal bearing and, two, displace the slider 14115 proximally and distally. Referring primarily to FIG. 116, the slider 14115 can comprise a distal flange 14121 and a proximal flange 14122 extending therefrom which can define a recess 14123 therebetween which is configured to closely receive the journal bearing. When the slider button 14060 is pushed distally, the journal bearing can bear against the distal flange 14121 to push the slider 14115 distally. Correspondingly, when the slider button 14060 is pushed proximally, the journal bearing can bear against the proximal flange 14122 to push the slider 14115 proximally.


The slider assembly 14150 can comprise a lock configured to releasably hold the slider 14115 in position. Referring primarily to FIG. 116, the slider button 14060 can comprise a flange 14181 that can selectively fit into a first depression defined at a first, or proximal, end of a longitudinal slot defined in the actuator housing 14080 and a second depression defined at a second, or distal, end of the longitudinal slot. When the flange 14181 is engaged with the proximal depression, the flange 14181 can hold the slider assembly 14150 in its proximal position which operably engages the slider 14115 and the closure drive with the motor 14090. When the flange 14181 is engaged with the distal depression, the flange 14181 can hold the slider assembly 14150 in its distal position which operably engages the slider 14115 and the firing drive with the motor 14090. The upper journal bearing 14160 can include a journal aperture 14161 configured to slidably receive a shaft 14061 of the button 14060. The button 14060 can be pushed downwardly within the journal aperture 14161 to disengage the flange 14181 from the actuator housing 14080. Once the flange 14181 has been disengaged from the actuator housing 14080, the button 14060 can be slid within the longitudinal slot defined in the actuator housing 14080 to move the slider 14115 between its proximal and distal positions. The spring 14180 can be configured to bias the flange 14181 toward the actuator housing 14080 and, when the user of the surgical instrument 14010 releases the button 14060, the spring 14180 can bias the button 14060 upwardly into engagement with the actuator housing 14080 once again.


When the slider assembly 14150 is in its proximal position, further to the above, the slider 14115 is engaged with a closing nut 14190 of the closure drive. The closing nut 14190 comprises an elongate tubular structure including closing nut external splines 14200 defined at the proximal end thereof. When the slider 14115 is in its proximal position, the internal splines 14140 of the slider 14115 are meshingly engaged with the external splines 14200 of the closing nut 14190 such that, when the slider 14115 is rotated by the motor 14090, the closing nut 14190 is rotated by the slider 14115. The closing nut 14190 can be rotatably supported within the actuator housing 14080 by one or more bearings, such as bushing 14220, for example, which rotatably supports the distal end of the closing nut 14190. The closing nut bushing 14220 may be comprised of Delrin, Nylon, copper, brass, bronze, and/or carbon, for example. In certain instances, the closing nut bushing 14220 can comprise a ball bearing or roller bearing, for example. In various instances, the closing nut bushing 14220 may be an integral portion of the actuator housing 14080.


The closing nut 14190 can comprise a longitudinal aperture 14191 defined therein. The closure system can further comprise a closing rod 14230 which can be at least partially positioned within the longitudinal aperture 14191. The closing rod 14230 can comprise a thread 14231 defined thereon which is threadably engaged with a closing nut thread 14210 defined in the longitudinal aperture 14191. The closing rod 14230 can be constrained from rotating with the closing nut 14190 such that, when the closing nut 14190 is rotated in a first direction by the motor 14090, the closing rod 14230 can be translated proximally by the closing nut 14190. As illustrated in FIG. 115, the closing rod 14230 can move proximally within the longitudinal aperture 14191 of the closing nut 14190. Similarly, when the closing nut 14190 is rotated in an opposite, or second, direction by the motor 14090, the closing rod 14230 can be translated distally by the closing nut 14190. As will be described in greater detail further below, the closing rod 14230 can be operably engaged with the anvil 14050 such that, when the closing rod 14230 is pulled proximally, the anvil 14050 can be moved toward the cartridge casing 14040. Correspondingly, when the closing rod 14230 is pushed distally, the anvil 14050 can be moved away from the cartridge casing 14040. In various instances, a closure stroke length of the closure system can be measured between the open position and the closed position of the anvil 14050. The closing rod 14230 can be at least as long as the closure stroke length to accommodate the same.


As discussed above, the button 14060 of the actuator 14020 is movable between a proximal position (FIG. 114) in which the transmission 14000 is engaged with the closure drive and a distal position (FIG. 115) in which the transmission 14000 is engaged with the firing drive. In this way, the transmission 14000 can be used to selectively couple the closure drive and the firing drive with the motor 14090. When the user of the surgical instrument 14010 is satisfied with the position of the anvil 14050 relative to the cartridge casing 14040, the user can displace the button 14060 distally, as illustrated in FIG. 115, to disengage the slider 14115 from the closing drive and engage the slider 14115 with the firing drive. When the slider 14115 is slid distally, the internal splines 14140 of the slider 14115 are disengaged from the external splines 14200 of the closing nut 14190 such that the subsequent rotation of the slider 14115 is no longer transmitted to the closing nut 14190 and the closure system. Concurrent with the disengagement of the slider from the closure system, the slider 14115 can become engaged with the firing system. Alternatively, the slider 14115 can become disengaged from the closure system as the slider 14115 is displaced distally and, owing to additional distal displacement of the slider 14115, the slider 14115 can become engaged with the firing system. In such circumstances, the transmission 14000 may not operably engage the closure drive and the firing drive with the motor 14090 at the same time. In any event, the firing system can include a firing nut 14260 which can be engaged by the slider 14115 when the slider 14115 is moved distally.


Further to the above, referring primarily to FIG. 116, the firing nut 14260 can include an aperture 14261 defined therein which can be configured to receive the distal end 14118 of the slider 14115 therein when the slider 14115 is advanced into its distal position (FIG. 115). The firing nut aperture 14261 can include firing nut splines 14270 defined around an inner circumference thereof which can intermesh with the outer circumferential splines 14130 of the slider 14115. When the outer circumferential splines 14130 of the slider 14115 are engaged with the firing nut splines 14270 of the firing nut 14260, the slider 14115 can be rotatably coupled with the firing nut 14260 such that the rotation of the slider 14115 is transmitted to the firing nut 14260. The actuator 14020 can further comprise a firing nut bushing 14275 that rotatably supports the firing nut 14260. The firing nut bushing 14275 may comprise a needle bearing, a Delrin, Nylon, and/or other plastic bushing, a metal bushing, or an integral part of the actuator housing 14080, for example. The firing nut 14260 can further comprise internal threads 14272 defined in a distal interior surface of the firing nut aperture 14261. The firing system can further comprise a firing tube 14280 threadably engaged with the internal threads 14272 of the firing nut 14260.


In various instances, further to the above, the firing tube 14280 can include a thread 14281 defined on an outer surface thereof which is threadably engaged with the internal threads 14272. The firing tube 14280 can be constrained from rotating with the firing nut 14260 such that, when the firing nut 14260 is rotated by the motor 14090 and the slider 14115, the firing nut 14260 can translate the firing tube 14280. For instance, when the firing nut 14260 is rotated in a first direction, the firing tube 14280 can be displaced distally by the firing nut 14260 and, when the firing nut 14260 is rotated in a second, or opposite, direction, the firing tube 14280 can be displaced proximally by the firing nut 14260. At least a portion of the firing tube 14280 can be positioned within the aperture 14261 defined in the firing nut 14260. When the firing tube 14280 is displaced proximally, the firing tube 14280 can move proximally within the aperture 14261. When the firing tube 14280 is displaced distally, the firing tube 14280 can move distally within the aperture 14261. As will be described in greater detail below, the firing tube 14280 can be operably connected with a firing member which can eject the staples from the cartridge housing 14040 when the firing tube 14280 is advanced distally. The firing tube 14280 can retract the firing member when the firing tube 14280 is moved proximally. The firing tube 14280 can be long enough to accommodate the firing stroke of the firing member when the firing member is moved between an unfired position and a fired position. In various instances, the threaded portion of the firing tube 14280 is shorter than the threaded portion of the closure rod 14230. In such circumstances, the firing stroke can be shorter than the closure stroke. In other instances, the threaded portion of the firing tube 14280 can be the same length as the threaded portion of the closure rod 14230. In such instances, the firing stroke can be the same length as the closure stroke. In certain instances, the threaded portion of the firing tube 14280 is longer than the threaded portion of the closure rod 14230. In such circumstances, the firing stroke can be longer than the closure stroke.


Further to the above, the actuator 14020 and the shaft portion 14030 can comprise an integral system. In various instances, the actuator 14020 and the shaft portion 14030 can comprise a unitary assembly. In certain instances, the actuator 14020 can be disassembled from the shaft portion 14030. FIG. 34 is a perspective view of the surgical stapling instrument 14010 depicting the actuator 14020 disassembled from the shaft portion 14030. The instrument 14010 can comprise one or more locks or latches configured to releasably hold the shaft portion 14030 to the actuator 14020. For instance, the actuator 14020 can include latches 14025 on opposite sides thereof which are configured to releasably hold the shaft portion 14030 to the actuator 14020. The latches 14025 can be slid between a first position in which they are engaged with the shaft portion 14030 and a second position in which they have been disengaged from the shaft portion 14030. As described in greater detail below, the actuator 14020 and the shaft portion 14030 can comprise portions of the closure system which are operably assembled together when the shaft portion 14030 is assembled to the actuator 14020. Similarly, the actuator 14020 and the shaft portion 14030 can comprise portions of the firing system which are operably assembled together when the shaft portion 14030 is assembled to the actuator 14020.


Further to the above, referring primarily to FIG. 113, the closure system can further comprise a closing fixture piece 14240 affixed to the distal end of the closing rod 14230. In various instances, a screw can lock the closing fixture piece 14240 to the closing rod 14230 such that the closing fixture piece 14240 is translated distally when the closing rod 14230 is translated distally and, correspondingly, translated proximally when the closing rod 14230 is translated proximally. The closing fixture piece 14240 can comprise one or more lateral extensions that can fit into grooves in the actuator housing 14080 to align the closing fixture piece 14240 and the closing rod 14230. The lateral extensions can also prevent the closing rod 14230 and the closing fixture piece 14240 from rotating when the closing rod 14230 is driven by the closing nut 14190, as discussed above. The closing fixture piece 14240 may comprise a closing drive output of the actuator 14020 and can be attached to a closure drive input of the shaft portion 14030. The closure drive input of the shaft portion 14030 can comprise a second fixture piece 14250 which can be attached to the closing fixture piece 14240 when the shaft portion 14030 is assembled to the actuator 14020. The closing fixture piece 14240 can push the second fixture piece 14250 distally when the closing fixture piece 14240 is advanced distally by the closing rod 14230; correspondingly, the closing fixture piece 14240 can pull the second fixture piece 14250 proximally when the closing fixture piece 14240 is retracted proximally by the closing rod 14230.


The closing drive portion of the shaft portion 14030 can further comprise one or more tension bands 14252 and 14253 mounted to and extending from the second fixture piece 14250. The tension bands 14252 and 14253 can be fastened to the second fixture piece 14250 such that the second fixture piece 14250 can push the tension bands 14252, 14253 distally when the second fixture piece 14250 is advanced distally by the closing fixture piece 14240 and, correspondingly, such that the second fixture piece 14250 can pull the tension bands 14252, 14253 proximally when the second fixture piece 14250 is retracted proximally by the closing fixture piece 14240. In various instances, the shaft portion 14030 can be curved and, in at least one instance, can include a curved shaft housing 14031 extending from a proximal housing mount 14032. In certain instances, the tension bands 14252 and 14253 can be flexible to accommodate a curved path of the closing drive portion of the shaft portion 14030. The closing drive portion of the shaft portion 14030 can further comprise an attachment portion, or trocar, 14258 attached to the tension bands 14253 and 14253. The trocar 14258 can be fastened to the tension bands 14252, 14253 such that the trocar 14258 is advanced and retracted with the tension bands 14252, 14253. The trocar 14258 can comprise a distal end which can be releasably engaged with the anvil 14050 such that the anvil 14050 is advanced and retracted with the trocar 14258 when the anvil 14050 is assembled to the trocar 14258. U.S. Pat. No. 5,292,503, referenced above, discusses this in greater detail.


Further to the above, referring primarily to FIG. 113, the firing system can further comprise a firing fixture piece 14290 affixed to a distal end of the firing tube 14280. In various instances, a screw can lock the firing fixture piece 14290 to the firing tube 14280 such that the firing fixture piece 14290 is translated distally when the firing tube 14280 is translated distally and, correspondingly, translated proximally when the firing tube 14280 is translated proximally. The firing fixture piece 14290 can comprise one or more lateral extensions that can fit into grooves in the actuator housing 14080 to align the firing fixture piece 14290 and the firing tube 14280. The lateral extensions can also prevent the firing tube 14280 and the firing fixture piece 14290 from rotating when the firing tube 14280 is driven by the firing nut 14260, as discussed above. The firing fixture piece 14290 may comprise a firing drive output of the actuator 14020 and can be attached to a firing drive input of the shaft portion 14030. The firing drive input of the shaft portion 14030 can comprise a second fixture piece 14300 which can be attached to the firing fixture piece 14290 when the shaft portion 14030 is assembled to the actuator 14020. The firing fixture piece 14290 can mate in a tongue-in-groove manner with the secondary firing fixture piece 14300. When assembled, the firing fixture piece 14290 can push the second fixture piece 14300 distally when the firing fixture piece 14290 is advanced distally by the firing tube 14280; correspondingly, the firing fixture piece 14290 can pull the second fixture piece 14300 proximally when the firing fixture piece 14290 is retracted proximally by the firing tube 14280.


The firing drive can further comprise a staple driver 14310 coupled to the second fixture piece 14300 such that the staple driver 14310 moves proximally and distally with the second fixture piece 14300. When the staple driver 14310 is moved distally by the second fixture piece 14300, the staple driver 14310 can eject the staples from the cartridge housing 14040. In various instances, the second fixture piece 14300 can advance a knife 14320 distally with the staple driver 14310 to incise tissue captured between the anvil 14050 and the cartridge housing 14040. The second fixture piece 14300 can retract the staple driver 14310 and the knife 14320 proximally when the second fixture piece 14300 is retracted proximally by the firing fixture piece 14290.


Further to the above, it can be noted that portions of the closing system comprising the closing nut 14190 and the closing rod 14230 and portions of the firing system comprising the firing nut 14260 and the firing tube 14280 can be concentric and nested. The firing nut 14260 and the firing tube 14280 may be considered an outer mechanism while the closing nut 14190 and the closing rod 14230 may be considered an inner mechanism. Together with the slider 14115, the closing nut 14190, the closing rod 14230, the firing nut 14260, and the firing tube 14280 can comprise the transmission 14000. The concentric and nested arrangement of the transmission 14000 can reduce the space required by the closing and firing systems in order to create a smaller and more easily held actuator 14020. This arrangement also allows the outer mechanism to serve as support and provide bearing surfaces for moving parts of the inner mechanism. In the embodiment shown, the translation members of the inner mechanism are shown longer than the translation members of the outer mechanism. The closing rod 14230 may be, for example, of the order of two inches while the firing tube 14280 is of the order of one inch, for example; however, any suitable lengths can be used. Longer translation members are useful when longer translation distances are needed. In the embodiment shown, the inner mechanism, or closure drive, can drive a load a longer distance than the outer mechanism, or firing drive. That said, the firing drive could drive a load a longer distance than the firing drive.


As discussed above, the actuator 14020 and the shaft portion 14030 are designed for easy assembly. The firing fixture piece 14290 comprises a semi-circular lip at the end of a distally extending flange. This semi-circular lip fits into a semi-circular groove at a proximal end of the second firing fixture piece 14300. Because the fit is about a semicircular surface, it is possible to connect firing fixture piece 14290 with the second firing fixture piece 14300 by translating the firing fixture piece 14290 toward the second firing fixture piece 14300 in a direction transverse or orthogonal to a general longitudinal axis of the pieces. Connection of the closure assembly pieces is also facilitated generally in the same manner. For instance, the closing fixture piece 14240 can comprise a distally extending flange. At a distal end of this flange is a semi-circular lip extending from a substantially semi-cylindrical portion of the closing fixture piece 14240. A circumferential groove on a proximal portion of the second fixture piece 14250 receives this semi-circular lip to attach the closing fixture piece 14240 to the second fixture piece 14250. Because of the semi-circular nature of closing fixture piece 14240, the closing fixture piece 14240 and the second fixture piece 14250 may be assembled and disassembled by translation transverse or orthogonal to the general longitudinal axis of the pieces, thus facilitating quick connection and disconnection of the shaft portion 14030 and the actuator 14020.


Referring generally to FIG. 113, the firing trigger 14070 and the closing knob 14075 are further displayed in exploded view to better see their interaction with adjacent parts. The closing knob 14075 is rotatable in a first, or clockwise, direction and a second, or counterclockwise, direction. When the closing knob 14075 is rotated in the first direction, the closing knob 14075 can contact and close a first switch and, when the closing knob 14075 is rotated in the second direction, the closing knob 14075 can contact and close a second switch. When the first switch is closed by the closing knob 14075, the motor 14090 can be energized and operated in a first direction and, when the second switch is closed by the closing knob, the motor 14090 can be energized and operated in a second direction. When the motor 14090 is operated in its first direction, the motor 14090 can drive the closing rod 14230 distally to move the anvil 14050 away from the cartridge casing 14040 and, when the motor 14090 is operated in its second direction, the motor 14090 can drive the closing rod 14230 proximally to move the anvil 14050 toward the cartridge casing 14040. The closing knob 14075 can be positionable in a center, or neutral, position in which neither the first switch nor the second switch are closed and the motor 14090 is not responsive to the closing knob 14075. In various instances, the instrument 14010 can comprise at least one spring, such as spring 14076, for example, configured to bias the closing knob 14075 into its neutral position, for example.


Turning now to the firing trigger 14070, the firing trigger 14070 is rotatably pinned to the actuator housing 14080 and is spring-loaded by a torsion spring 14071 that forces the firing trigger 14070 to a position which is rotated away from the actuator housing 14080. A firing switch 14305 located near the firing trigger 14070 is in a position to be contacted by the firing trigger 14070 when the firing trigger 14070 is rotated toward the actuator housing 14080 against the biasing force of the torsion spring 14071. The firing trigger 14070 can close the firing switch 14305 when the firing trigger 14070 is actuated. When the firing switch 14305 is closed, the motor 14090 can be operated in a first direction to advance the firing tube 14280 and the staple driver 14310 distally. When the firing trigger 14070 is released, the torsion spring 14071 can move the firing trigger 14070 back to its unactuated position and out of contact with the firing switch 14305. At such point, the firing switch 14305 may be in an open condition and the motor 14090 may not be responsive to the firing trigger 14070. In various instances, the instrument 14010 can further comprise a safety latch 14320 rotatably pinned to the actuator housing 14080 which is rotatable between a locked position which blocks the firing trigger 14070 from being actuated and a second position in which the firing trigger 14070 can be actuated to close the firing switch 14035. In any event, the motor 14090 can be operated in a second direction to retract the firing tube 14280 and the staple driver 14310. In certain instances, the motor 14090 can be switched between the first direction and the second direction when the firing system has reached the end of its firing stroke. In some instances, the actuator 14020 can further comprise a reversing button and switch which can be operated to operate the motor 14090 in its second direction.


In view of the above, a method of using the instrument 14010 is provided below, although any suitable method could be used. Moreover, it has been described above that the actuator 14020 is capable of providing two outputs and the shaft portion 14030 is capable of receiving two inputs to perform two functions. Such functions have been described as closing functions and firing functions, but the invention is not so limited. The functions could include any suitable functions, such as an articulation function, for example. To use the actuator 14020, in various instances, a user can first assemble the actuator 14020 to the shaft portion 14030 by moving the actuator 14020 toward the shaft portion 14030 perpendicular to the longitudinal axis of the actuator 14020, as seen in FIG. 112. The user can align the open side of the proximal end of the shaft portion 14030 toward the open side of the distal portion of the actuator 14020 and assemble the pieces together. Such assembly can connect the closing and firing fixture pieces as discussed above. As also discussed above, the latches 14025 on the actuator 14020 can grip ledges on the shaft portion housing 14032 to releasably hold the actuator 14020 and the shaft portion 14030 together. After assembling the actuator 14020 and the shaft portion 14030, a user can place the slider assembly 14150 in its first position to use the first desired function of the surgical tool of the attached portion. As discussed above, the button 14060 can be utilized to position the slider assembly 14150 in its first portion.


Referring generally to FIG. 114, the inner splines 14140 on the slider 14115 can engage the external splines 14200 on the closing nut 14190 when the slider assembly 14150 is in its first position. The user would then rotate closing knob 14075 to position the anvil 14050 relative to the cartridge housing 14040. As discussed above, the closing knob 14075 can be rotated in its first direction to close the first closure switch and move the anvil 14050 away from the cartridge housing 14040 and its second direction to close the second closure switch and move the anvil 14050 toward the cartridge housing 14040. In certain instances, the closure of the first closure switch can close a circuit which operates the motor 14090 in its first direction and, correspondingly, the closure of the second closure switch can close a circuit which operates the motor 14090 in its second direction. In certain instances, the first closure switch and the second closure switch can be in communication with a microprocessor of the surgical instrument 14010 which can control the electrical power supplied, including the polarity of the electrical power supplied, to the motor 14090 based on the input from the first closure switch and the second closure switch. As discussed above, the motor 14090 can rotate the rotatable shaft 14100, the extender portion 14110, the slider 14115, and owing to the configuration of the transmission 14000, the closing nut 14190. As discussed above, the closing nut 14190 is threadably engaged with the closing rod 14230 which displaces the anvil 14050 proximally and distally. Alternatively, the closing rod 14230 could perform some other function.


When the slider assembly 14150 is in its first, or proximal, position, as illustrated in FIG. 114, the motor 14090 may be responsive to the closing knob 14075 and not the firing trigger 14070. In at least one instance, the lower journal bearing 14170 of the slider assembly 14150 can contact and close a first transmission switch 14340 when the slider assembly 14150 is in its first position. In various instances, the first transmission switch 14340 can be in communication with the microprocessor of the surgical instrument 14010 which can be configured to ignore input from the firing switch 14305 when the first transmission switch 14340 has been closed. In such circumstances, the user of the surgical instrument 14010 may depress the firing trigger 14070 and the motor 14090 will not be responsive thereto. Rather, in such circumstances, the motor 14090 is responsive to the first and second closure switches which are actuated by the closing knob 14075 to move the anvil 14050. When the slider assembly 14150 is moved toward its second, or distal, position, as illustrated in FIG. 115, the lower journal bearing 14170 is disengaged from the first transmission switch 14340 and the first transmission switch 14340 will return to an open condition. When the slider assembly 14150 is moved into its second, or distal, position, the lower journal bearing 14170 can contact and close a second transmission switch 14350. In various instances, the second transmission switch 14350 can be in communication with the microprocessor of the surgical instrument 14010 which can be configured to ignore input from the closure knob 14075 when the second transmission switch 14350 has been closed. In such circumstances, the user of the surgical instrument 14010 may rotate the closing knob 14075 and the motor 14090 will not be responsive thereto. Rather, in such circumstances, the motor 14090 is responsive to the firing switch 14305 which is actuated by the firing trigger 14070.


In order to move the slider assembly 14150 from its first position to its second position, as discussed above, the user can depress the slider button 14060 to release the slider button 14060 from its detent and move the slider assembly 14150 distally to its second position. In such circumstances, the slider 14115 can be disengaged from the closing nut 14160 and engaged with the firing nut 14260. More particularly, the inner splines 14140 on the slider 14115 can become disengaged from the external splines 14200 on the closing nut 14190 and, furthermore, the outer splines 14130 of the slider 14150 can become engaged with the inner splines 14270 of the firing nut 14260. At such point, the user can rotate the safety latch 14320 to its unlocked position to ready the firing trigger 14070 for firing. The user can fire the firing system by rotating the firing trigger 14070 counterclockwise as depicted in FIG. 115 toward actuator housing 14080. As discussed above, the firing trigger 14070 can contact a firing switch 14305 which can electrically energize the motor 14090. Similar to the first configuration of the transmission 14000, the motor 14090 can rotate the rotatable shaft 14100, the extender portion 14110, and the slider 14115; however, in the second configuration of the transmission 14000, the slider 14115 rotates the firing nut 14260 to translate the firing tube 14280.


In various instances, power can be supplied to the instrument 14010 by an external power source. In certain instances, one or more batteries positioned within the actuator 14020 could be utilized. The batteries could be, for example, lithium rechargeable batteries. In some instances, the batteries and the motor 14090 could be positioned in a sealed, removable housing that is cleanable, sterilizable, and reusable.


After the actuator 14020 has been used during a surgical procedure, the user may disassemble the actuator 14020 from the shaft portion 14030. The user may depress the latches 14025 to disassemble the actuator 14020 from the shaft portion 14030. Thereafter, the actuator 14020 can be cleaned, sterilized, and reused or disposed of. Similarly, the shaft portion 14030 can be cleaned, sterilized, and reused or disposed of. When the shaft portion 14030 is reused, staples can be reloaded into the cartridge housing 14040. In certain instances, the cartridge housing 14040 can include a replaceable cartridge which can be used to reload the staples. In various instances, various portions of the actuator 14020 may also be combined in a sealed, compartmentalized module which can be easily inserted into and removed from the actuator housing 14080. For example, the motor 14090, the rotatable shaft 14100, the extender portion 14110, the slider assembly 14150, the closing nut 14190, the closing rod 14230, the firing nut 14260, and the firing tube 14280 may be combined into a modular assembly removable from the actuator housing 14080. Furthermore, portions of the actuator 14020 may be part of separate assembleable modules. For example, electronic portions of the actuator 14020, such as the motor 14090 and a battery, may comprise one module, while mechanical assemblies containing rotating and/or translating parts may comprise a second module. In such circumstances, the first module may be sterilized by different methods than the second module. Such circumstances can facilitate the use of, for example, gamma radiation for the second module which may be inappropriate for sterilizing the first module.


Various additions to the actuator 14020 are envisioned. For example, microprocessing may be utilized to detect the end-of-stroke positions of the closing system and/or the firing system and to signal the motor 14090 when to stop the closing stroke and/or the firing stroke. Microprocessing could also be utilized to determine the type of shaft assembly that is attached to the actuator 14020. For instance, the actuator 14020 can include a sensor in signal communication with the microprocessor in the actuator 14020 that a circular stapler shaft assembly is attached the actuator 14020 or that a linear cutter shaft assembly is attached to the actuator 14020. It is envisioned that the actuator 14020 can power many types of surgical tools requiring at least one and perhaps two or more longitudinal motion inputs, for example. In various instances, the actuator 14020 can power a circular stapler, a liner stapler, a right-angle stapler, scissors, graspers, and/or other types of surgical instruments, for example.


Further modifications of the actuator 14020 include utilizing multiple motors so that the number of functions employable by the actuator 14020 can be increased. Certain modifications of the actuator 14020 include performing more than two functions with the same motor. For example, a third position of the slider assembly 14150 is envisioned wherein a third function is driven by a third nested mechanism. In some instances, further to the above, the slider assembly 14150 may have a third position which is an idler or neutral position wherein no function is driven by the motor 14090.


Further modifications may include the use of electrical and/or magnetic means to translate the slider 14115 from one position to another. For example, a solenoid may be used to move the slider 14115 from one position to another. A spring may preload the slider 14115 into a default position, and energizing the solenoid may move the slider 14115 from the default position to a second position.


A surgical stapling instrument 15010 is illustrated in FIGS. 117 and 118. Similar to the above, the instrument 15010 can comprise a handle, a closure system configured to move an anvil 15090 between an open position (FIG. 117) and a closed position (FIG. 118) relative to a staple cartridge 15080 and, in addition, a firing system configured to deploy staples from the staple cartridge 15080 and incise tissue captured between the anvil 15090 and the staple cartridge 15080. The housing of the surgical instrument handle has been removed from FIGS. 117 and 118 for the purposes of illustrating various components contained therein. Also similar to the above, the closure system of the instrument 15010 can comprise a closing motor 15110, a closing gear train including closure drive screw gear 15160 operably coupled to the closing motor 15110, and a closure drive screw 15170 operably coupled to the closure drive screw gear 15160. In various instances, the closing motor 15110 can be supported by a motor frame 15125 which can, in addition, rotatably support the closure drive screw gear 15160 and the closure drive lead screw 15170. The closure system can further include a closure button 15065 configured to contact and close a closure switch 15285 which, when closed, can operate the closing motor 15110. In some instances, further to the above, the closure button 15065 can be configured to contact a closure switch configured to operate the closure motor 15110 in a first direction and close the anvil 15090 and an opening switch configured to operate the closure motor 15110 in a second direction and open the anvil 15090.


Further to the above, the closure system can further comprise a carriage 15180 configured to engage the anvil 15090 and move the anvil 15090 between its open position (FIG. 117) and its closed position (FIG. 118). The carriage 15180 can include a threaded nut portion 15175 which is threadably engaged with a threaded portion of the closure drive lead screw 15170. The carriage 15180 can be constrained from rotating with the closure drive lead screw 15170 such that the rotation of the closure drive lead screw 15170 can translate the carriage 15180 proximally and distally, depending on the direction in which the closure drive lead screw 15170 is rotated. When the closure drive lead screw 15170 is rotated in a first direction by the closing motor 15110, the closure drive lead screw 15170 can displace the carriage 15180 distally to close the anvil 15090. Correspondingly, when the closure drive lead screw 15170 is rotated in a second, or opposite, direction, by the closing motor 15110, the closure drive lead screw 15170 can displace the carriage 15180 proximally to open the anvil 15090. The carriage 15180 can be at least partially disposed around a cartridge channel 15070 and, in various instances, can be slidably retained to the cartridge channel 15070. Referring primarily to FIG. 118, the cartridge channel 15070 can include one or more slots 15195 defined in opposite sides thereof which are configured to slidably receive one or more projections 15185 extending inwardly from the carriage 15080. In other circumstances, the channel 15070 can comprise the projections 15185 and the carriage 15080 can comprise the slots 15195. In either event, the slots 15195 and the projections 15185 can be configured to constrain the movement of the carriage 15180 to a longitudinal, or substantially longitudinal, path, for example.


The carriage 15080 is movable from a first, or proximal, position (FIG. 117) to a second, or distal, position (FIG. 118) to close the anvil 15090. The carriage 15080 can include a crossbar 15081 which is configured to contact and move the anvil 15090 when the carriage 15080 is moved relative to the anvil 15090. In various instances, the anvil 15090 can be pivotably coupled to the cartridge channel 15070 about a pivot 15200 and the anvil 15090 can be rotated about the pivot 15200 by the carriage crossbar 15081. More specifically, the carriage crossbar 15181 can be configured to contact a top, or cam, surface 15092 of the anvil 15090 and slide across the top surface 15092 as the carriage 15080 is moved distally to rotate the anvil 15090 toward the cartridge 15080 positioned in the cartridge channel 15070. In some instances, the distal end 15091 of the anvil 15090 can contact the distal end 15081 of the cartridge 15080 when the anvil 15090 reaches its fully closed position. The carriage 15180 can be advanced distally until it reaches its distal-most position and/or the anvil 15090 is in its fully closed position, which is illustrated in FIG. 118. In various circumstances, the carriage 15180 can contact and close an end-of-stroke sensor when the carriage 15180 reaches its distal-most position. In certain instances, the end-of-stroke sensor can be in signal communication with a microprocessor of the surgical instrument 15010. When the end-of-stroke sensor is closed by the carriage 15180, the microprocessor can interrupt the power supplied to the closing motor 15110 and stop the advancement of the carriage 15180.


As discussed above, the crossbar 15181 of the carriage 15180 can cam the anvil 15090 toward the staple cartridge 15080 by pushing the cam surface 15092 downwardly. The anvil 15090 can further comprise a latch pin 15210 extending from the sides thereof which can be received in slots 15215 defined in the sides of the cartridge channel 15070 when the anvil 15090 is rotated toward the staple cartridge 15080. In various instances, the latch pin 15210 can contact the closed ends of the slots 15215 when the anvil 15090 reaches its closed position, for example. In some instances, the anvil 15090 may be in a closed position and the latch pin 15210 may not be in contact with the closed ends of the slots 15215. In certain instances, the closure system can comprise one or more latches 15190 configured to engage the latch pin 15210 and/or move the anvil 15090 closer to the staple cartridge 15080. The latches 15190 can be rotatably coupled to the cartridge channel 15070 by a pivot pin 15191 and can be rotated about a pivot axis to engage the latch pin 15210. In some instances, the latches 15190 can engage the latch pin 15210 and position the latch pin 15210 against the closed ends of the slots 15215. Each latch 15190 can comprise a latch arm 15192 which can slide over the latch pin 15210 and push the latch pin 15210 downwardly as the latch 15190 is rotated distally into its closed position. Each latch arm 15192 can at least partially define a latch slot 15193 which can be configured to receive the latch pin 15210 as the latches 15190 are moved into their actuated positions. The latch arms 15192 and the closed ends of the slots 15215 can co-operate to trap and/or hold the latch pin 15210 in position.


Further to the above, the latches 15190 can be moved between an unlatched position (FIG. 117) and a latched position (FIG. 118) by the carriage 15180 when the carriage 15180 is advanced distally. To the extent that the anvil 15090 is not moved into its fully closed position by the crossbar 15181, the latches 15190 can move the anvil 15090 into its fully closed position. In various instances, the carriage 15180 can include distal cam surfaces 15182 defined thereon which can engage the latches 15190 when the carriage 15180 is advanced distally. In at least one such instance, each cam surface 15182 can comprise a sloped or angled surface, for example. When the closure drive lead screw 15170 is rotated in its second direction and the carriage 15180 is retracted proximally by the closure drive lead screw 15170, the latches 15190 can be returned to their unactuated positions. In various instances, the instrument 15010 can further comprise one or more biasing springs 15195, for example, which can be configured to rotate the latches 15190 proximally when the distal cam surfaces 15182 are retracted away from the latches 15190. Each latch 15190 can include an aperture 15194 defined therein configured to receive a first end of a spring 15195. A second end of each spring 15195 can be engaged with a spring post 15079 extending from the cartridge channel 15070. When the latches 15190 are rotated distally from their unlatched positions to the their latched positions by the carriage 15180, as discussed above, the springs 15195 can be resiliently stretched such that, when the carriage 15180 is retracted, the springs 15195 can elastically return to their original condition thereby applying a force to the latches 15090 via the apertures 15194, for example. In any event, when the latches 15190 have been returned to their unlatched positions, the anvil 15090 can be moved relative to the staple cartridge 15080 once again.


As discussed above, the crossbar 15181 of the carriage 15180 can contact the cam surface 15092 of the anvil 15090 to rotate the anvil 15090 toward the staple cartridge 15080. The carriage 15180 can also be configured to rotate the anvil 15090 away from the staple cartridge 15080. In at least one such instance, the anvil 15090 can comprise a second cam surface 15093 defined thereon which can be contacted by the crossbar 15181 of the carriage 15080 as the carriage 15080 is moved proximally by the closure drive lead screw 15170. As the reader will appreciate, the closing cam surface 15092 can be defined on a first side of the pivot pin 15200 and the opening cam surface 15093 can be defined on a second, or opposite, side of the pivot pin 15200. The opening cam surface 15093 can extend at an angle with respect to the closing cam surface 15092. In various instances, the crossbar 15181 can contact and slide relative to the opening cam surface 15093 as the carriage 15180 is retracted. The opening cam surface 15093 can be configured such that the degree, or amount, in which the anvil 15090 is opened relative to the staple cartridge 15080 is dependent upon the distance in which the crossbar 15181 is retracted proximally. For instance, if the crossbar 15181 is retracted a first distance proximal to the pivot 15200, the crossbar 15181 can pivot the anvil 15090 upwardly away from the staple cartridge 15080 a first degree and, if the crossbar 15181 is retracted a second distance proximal to the pivot 14200 which is larger than the first distance, the crossbar 15181 can pivot the anvil 15090 upwardly away from the staple cartridge 15080 a second degree which is larger than the first degree.


The closing system discussed above can permit the user of the surgical instrument to pivot the anvil 15090 between an open and a closed position without having to manipulate the anvil 15090 by hand. The closing system discussed above can also latch or lock the anvil 15090 in its closed position automatically without requiring the use of a separate actuator. To the extent that the user is unsatisfied with the positioning of the tissue between the anvil 15090 and the staple cartridge 15080 when the anvil 15090 is in its closed position, the user can reopen the anvil 15090, reposition the anvil 15090 and the staple cartridge 15080 relative to the tissue, and then close the anvil 15090 once again. The user can open and close the anvil 15090 as many times as needed prior to actuating the firing system of the instrument 15010. The firing system can comprise a firing motor 15120 mounted to the motor frame 15125, a firing drive gear train operably coupled to the firing motor 15120 including a firing gear 15240, a firing lead screw gear 15250, and a firing drive lead screw 15260. Similar to the above, the firing drive gear train and/or the firing drive lead screw 15260 can be rotatably supported by the motor frame 15125. The firing drive can further comprise a firing trigger 15055 configured to close a firing switch 15290 when the firing trigger 15055 is depressed to operate the firing motor 15120. When the firing motor 15120 is operated in a first direction to rotate the firing drive lead screw 15260 in a first direction, the firing drive can deploy the staples removably stored in the staple cartridge 15080 and incise the tissue captured between the anvil 15090 and the staple cartridge 15080. When the firing motor 15120 is operated in a second direction to rotate the firing drive lead screw 15260 in a second, or opposite, direction, the firing drive can be retracted. Thereafter, the anvil 15090 can be reopened to remove the tissue from between the anvil 15090 and the staple cartridge 15080. In some instances, the firing drive may not need to be retracted to open the anvil 15090. In such instances, the firing drive may not engage the anvil 15090 as it is advanced distally. In at least one such instance, the firing drive can enter into the staple cartridge 15080 to eject the staples therefrom and a knife edge may travel between the staple cartridge 15080 and the anvil 15090 to incise the tissue. The firing drive may not lock the anvil 15090 in its closed position, although embodiments are envisioned in which the firing drive could lock the anvil 15090 in its closed position. Such embodiments could utilize an I-beam, for example, which can engage the anvil 15090 and the staple cartridge 15080 and hold them in position relative to each other as the I-beam is advanced distally.


The instrument 15010 can be powered by an external power source and/or an internal power source. A cable can enter into the actuator housing 15080 to supply power from an external power source, for example. One or more batteries, such as battery 15400, for example, can be positioned within the handle of the instrument 15010 to supply power from an internal power source, for example. The instrument 15010 can further comprise one or more indicators, such as LED indicator 15100, for example, which can indicate the operating state of the instrument 15010, for example. The LED indicator 15100 can operate the same manner as or a similar manner to the LED indicator 11100 described above, for example. The LED indicator 15100 can be in signal communication with the microcontroller of the instrument 15010 which can be positioned on a printed circuit board 15500, for example.


Previous surgical instruments have utilized a manually-driven closure system configured to move an anvil between an open position and a closed position. Various embodiments disclosed herein utilize a motor-driven closure system configured to move an anvil between an open position and a closed position relative to a fixed staple cartridge. Other embodiments are envisioned in which an anvil can be fixed and a motor-driven closure system could move a staple cartridge between an open position and a closed position. In either event, the motor of the closure system can set the tissue gap between the anvil and the staple cartridge. In various instances, the closure system of the surgical instrument is separate and distinct from the firing system. In other instances, the closure system and the firing system can be integral. When the closure system and the firing system are separate and distinct, the user of the surgical instrument can evaluate the position of the anvil and the staple cartridge relative to the tissue that is to be stapled and incised before operating the firing system.


As discussed above, an end effector of a surgical instrument, such as end effector 1000, for example, can be configured to clamp tissue between an anvil jaw 1040 and a staple cartridge 1060 thereof. When the anvil jaw 1040 is in its closed position, a tissue gap can be defined between the anvil jaw 1040 and the staple cartridge 1060. In certain instances, the end effector 1000 may be suitable for use with thin tissue, thick tissue, and tissue having a thickness intermediate the thin tissue and the thick tissue. The thinnest tissue and the thickest tissue in which the end effector 1000 can be suitably used to staple can define a tissue thickness range for the end effector 1000. In various instances, a surgical instrument system can include a handle and a plurality of end effectors which can be assembled to the handle, wherein one or more of the end effectors can have different tissue thickness ranges. For instance, a first end effector can have a first tissue thickness range and a second end effector can have a second tissue thickness range which is different than the first tissue thickness range. In some instances, the first tissue thickness range and the second tissue thickness range can be discrete while, in other instances, the first tissue thickness range and the second tissue thickness range can partially overlap. Surgical instrument systems can utilize any suitable number of end effectors having different tissue thickness ranges where some of the tissue thickness ranges may at least partially overlap and other tissue thickness ranges may not overlap at all.


In various instances, further to the above, a staple cartridge of an end effector, such as staple cartridge 1060 of end effector 1000, for example, can be replaceable. In various instances, the staple cartridge 1060 can be removably locked into position within the lower jaw 1020 of the end effector 1000. Once locked into position, the deck, or tissue contacting, surface of the staple cartridge 1060 may not move, or at least substantially move, relative to the lower jaw 1020. Thus, when the anvil jaw 1040 is moved into its closed position, a fixed distance, or tissue gap, can be defined between the anvil jaw 1040 and the deck surface of the staple cartridge 1060. To change this fixed distance, the staple cartridge 1060 can be removed from the lower jaw 1020 and a different staple cartridge can be removably locked within the lower jaw 1020. The deck surface of the different staple cartridge can be configured to provide a different tissue gap than the tissue gap provided by the staple cartridge 1060. Embodiments are envisioned in which a surgical instrument system includes a handle, a plurality of end effectors which can be assembled to the handle, and a plurality of staple cartridges which can be replaceably inserted into the end effectors. Such an embodiment can allow a user to select an end effector capable of being used with a range of tissue thicknesses and the staple cartridge selected for use with the end effector can adjust or fine tune the range of tissue thicknesses that can be stapled by the end effector. In certain instances, a first staple cartridge of the surgical instrument system can include a first type of staple and a second staple cartridge can include a second type of staple. For example, the first staple cartridge can include staples having a first unformed, or unfired, height, and the second staple cartridge can include staples having a second unformed, or unfired, height which is different that the first height.


The entire disclosures of:


U.S. Pat. No. 5,403,312, entitled ELECTROSURGICAL HEMOSTATIC DEVICE, which issued on Apr. 4, 1995;


U.S. Pat. No. 7,000,818, entitled SURGICAL STAPLING INSTRUMENT HAVING SEPARATE DISTINCT CLOSING AND FIRING SYSTEMS, which issued on Feb. 21, 2006;


U.S. Pat. No. 7,422,139, entitled MOTOR-DRIVEN SURGICAL CUTTING AND FASTENING INSTRUMENT WITH TACTILE POSITION FEEDBACK, which issued on Sep. 9, 2008;


U.S. Pat. No. 7,464,849, entitled ELECTRO-MECHANICAL SURGICAL INSTRUMENT WITH CLOSURE SYSTEM AND ANVIL ALIGNMENT COMPONENTS, which issued on Dec. 16, 2008;


U.S. Pat. No. 7,670,334, entitled SURGICAL INSTRUMENT HAVING AN ARTICULATING END EFFECTOR, which issued on Mar. 2, 2010;


U.S. Pat. No. 7,753,245, entitled SURGICAL STAPLING INSTRUMENTS, which issued on Jul. 13, 2010;


U.S. Pat. No. 8,393,514, entitled SELECTIVELY ORIENTABLE IMPLANTABLE FASTENER CARTRIDGE, which issued on Mar. 12, 2013;


U.S. patent application Ser. No. 11/343,803, entitled SURGICAL INSTRUMENT HAVING RECORDING CAPABILITIES, filed Jan. 31, 2006, now U.S. Pat. No. 7,845,537;


U.S. patent application Ser. No. 12/031,573, entitled SURGICAL CUTTING AND FASTENING INSTRUMENT HAVING RF ELECTRODES, filed Feb. 14, 2008;


U.S. patent application Ser. No. 12/031,873, entitled END EFFECTORS FOR A SURGICAL CUTTING AND STAPLING INSTRUMENT, filed Feb. 15, 2008, now U.S. Pat. No. 7,980,443;


U.S. patent application Ser. No. 12/235,782, entitled MOTOR-DRIVEN SURGICAL CUTTING INSTRUMENT, filed Sep. 23, 2008, now U.S. Pat. No. 8,210,411;


U.S. patent application Ser. No. 12/249,117, entitled POWERED SURGICAL CUTTING AND STAPLING APPARATUS WITH MANUALLY RETRACTABLE FIRING SYSTEM, filed Oct. 10, 2008, now U.S. Pat. No. 8,608,045;


U.S. patent application Ser. No. 12/647,100, entitled MOTOR-DRIVEN SURGICAL CUTTING INSTRUMENT WITH ELECTRIC ACTUATOR DIRECTIONAL CONTROL ASSEMBLY, filed Dec. 24, 2009, now U.S. Pat. No. 8,220,688;


U.S. patent application Ser. No. 12/893,461, entitled STAPLE CARTRIDGE, filed Sep. 29, 2012, now U.S. Patent Application Publication No. 2012/0074198;


U.S. patent application Ser. No. 13/036,647, entitled SURGICAL STAPLING INSTRUMENT, filed Feb. 28, 2011, now U.S. Pat. No. 8,561,870;


U.S. patent application Ser. No. 13/118,241, entitled SURGICAL STAPLING INSTRUMENTS WITH ROTATABLE STAPLE DEPLOYMENT ARRANGEMENTS, now U.S. Patent Application Publication No. 2012/0298719;


U.S. patent application Ser. No. 13/524,049, entitled ARTICULATABLE SURGICAL INSTRUMENT COMPRISING A FIRING DRIVE, filed on Jun. 15, 2012, now U.S. Patent Application Publication No. 2013/0334278;


U.S. patent application Ser. No. 13/800,025, entitled STAPLE CARTRIDGE TISSUE THICKNESS SENSOR SYSTEM, filed on Mar. 13, 2013;


U.S. patent application Ser. No. 13/800,067, entitled STAPLE CARTRIDGE TISSUE THICKNESS SENSOR SYSTEM, filed on Mar. 13, 2013;


U.S. Patent Application Publication No. 2007/0175955, entitled SURGICAL CUTTING AND FASTENING INSTRUMENT WITH CLOSURE TRIGGER LOCKING MECHANISM, filed Jan. 31, 2006; and


U.S. Patent Application Publication No. 2010/0264194, entitled SURGICAL STAPLING INSTRUMENT WITH AN ARTICULATABLE END EFFECTOR, filed Apr. 22, 2010, now U.S. Pat. No. 8,308,040, are hereby incorporated by reference herein.


As described earlier, sensors may be configured to detect and collect data associated with the surgical device. The processor processes the sensor data received from the sensor(s).


The processor may be configured to execute operating logic. The processor may be any one of a number of single or multi-core processors known in the art. The storage may comprise volatile and nonvolatile storage media configured to store persistent and temporal (working) copy of the operating logic.


In various embodiments, the operating logic may be configured to process the data associated with motion, as described above. In various embodiments, the operating logic may be configured to perform the initial processing, and transmit the data to the computer hosting the application to determine and generate instructions. For these embodiments, the operating logic may be further configured to receive information from and provide feedback to a hosting computer. In alternate embodiments, the operating logic may be configured to assume a larger role in receiving information and determining the feedback. In either case, whether determined on its own or responsive to instructions from a hosting computer, the operating logic may be further configured to control and provide feedback to the user.


In various embodiments, the operating logic may be implemented in instructions supported by the instruction set architecture (ISA) of the processor, or in higher level languages and compiled into the supported ISA. The operating logic may comprise one or more logic units or modules. The operating logic may be implemented in an object oriented manner. The operating logic may be configured to be executed in a multi-tasking and/or multi-thread manner. In other embodiments, the operating logic may be implemented in hardware such as a gate array.


In various embodiments, the communication interface may be configured to facilitate communication between a peripheral device and the computing system. The communication may include transmission of the collected biometric data associated with position, posture, and/or movement data of the user's body part(s) to a hosting computer, and transmission of data associated with the tactile feedback from the host computer to the peripheral device. In various embodiments, the communication interface may be a wired or a wireless communication interface. An example of a wired communication interface may include, but is not limited to, a Universal Serial Bus (USB) interface. An example of a wireless communication interface may include, but is not limited to, a Bluetooth interface.


For various embodiments, the processor may be packaged together with the operating logic. In various embodiments, the processor may be packaged together with the operating logic to form a System in Package (SiP). In various embodiments, the processor may be integrated on the same die with the operating logic. In various embodiments, the processor may be packaged together with the operating logic to form a System on Chip (SoC).


Various embodiments may be described herein in the general context of computer executable instructions, such as software, program modules, and/or engines being executed by a processor. Generally, software, program modules, and/or engines include any software element arranged to perform particular operations or implement particular abstract data types. Software, program modules, and/or engines can include routines, programs, objects, components, data structures and the like that perform particular tasks or implement particular abstract data types. An implementation of the software, program modules, and/or engines components and techniques may be stored on and/or transmitted across some form of computer-readable media. In this regard, computer-readable media can be any available medium or media useable to store information and accessible by a computing device. Some embodiments also may be practiced in distributed computing environments where operations are performed by one or more remote processing devices that are linked through a communications network. In a distributed computing environment, software, program modules, and/or engines may be located in both local and remote computer storage media including memory storage devices. A memory such as a random access memory (RAM) or other dynamic storage device may be employed for storing information and instructions to be executed by the processor. The memory also may be used for storing temporary variables or other intermediate information during execution of instructions to be executed by the processor.


Although some embodiments may be illustrated and described as comprising functional components, software, engines, and/or modules performing various operations, it can be appreciated that such components or modules may be implemented by one or more hardware components, software components, and/or combination thereof. The functional components, software, engines, and/or modules may be implemented, for example, by logic (e.g., instructions, data, and/or code) to be executed by a logic device (e.g., processor). Such logic may be stored internally or externally to a logic device on one or more types of computer-readable storage media. In other embodiments, the functional components such as software, engines, and/or modules may be implemented by hardware elements that may include processors, microprocessors, circuits, circuit elements (e.g., transistors, resistors, capacitors, inductors, and so forth), integrated circuits, application specific integrated circuits (ASIC), programmable logic devices (PLD), digital signal processors (DSP), field programmable gate array (FPGA), logic gates, registers, semiconductor device, chips, microchips, chip sets, and so forth.


Examples of software, engines, and/or modules may include software components, programs, applications, computer programs, application programs, system programs, machine programs, operating system software, middleware, firmware, software modules, routines, subroutines, functions, methods, procedures, software interfaces, application program interfaces (API), instruction sets, computing code, computer code, code segments, computer code segments, words, values, symbols, or any combination thereof. Determining whether an embodiment is implemented using hardware elements and/or software elements may vary in accordance with any number of factors, such as desired computational rate, power levels, heat tolerances, processing cycle budget, input data rates, output data rates, memory resources, data bus speeds and other design or performance constraints.


One or more of the modules described herein may comprise one or more embedded applications implemented as firmware, software, hardware, or any combination thereof. One or more of the modules described herein may comprise various executable modules such as software, programs, data, drivers, application program interfaces (APIs), and so forth. The firmware may be stored in a memory of the controller 2016 and/or the controller 2022 which may comprise a nonvolatile memory (NVM), such as in bit-masked read-only memory (ROM) or flash memory. In various implementations, storing the firmware in ROM may preserve flash memory. The nonvolatile memory (NVM) may comprise other types of memory including, for example, programmable ROM (PROM), erasable programmable ROM (EPROM), electrically erasable programmable ROM (EEPROM), or battery backed random-access memory (RAM) such as dynamic RAM (DRAM), Double-Data-Rate DRAM (DDRAM), and/or synchronous DRAM (SDRAM).


In some cases, various embodiments may be implemented as an article of manufacture. The article of manufacture may include a computer readable storage medium arranged to store logic, instructions and/or data for performing various operations of one or more embodiments. In various embodiments, for example, the article of manufacture may comprise a magnetic disk, optical disk, flash memory or firmware containing computer program instructions suitable for execution by a general purpose processor or application specific processor. The embodiments, however, are not limited in this context.


The functions of the various functional elements, logical blocks, modules, and circuits elements described in connection with the embodiments disclosed herein may be implemented in the general context of computer executable instructions, such as software, control modules, logic, and/or logic modules executed by the processing unit. Generally, software, control modules, logic, and/or logic modules comprise any software element arranged to perform particular operations. Software, control modules, logic, and/or logic modules can comprise routines, programs, objects, components, data structures and the like that perform particular tasks or implement particular abstract data types. An implementation of the software, control modules, logic, and/or logic modules and techniques may be stored on and/or transmitted across some form of computer-readable media. In this regard, computer-readable media can be any available medium or media useable to store information and accessible by a computing device. Some embodiments also may be practiced in distributed computing environments where operations are performed by one or more remote processing devices that are linked through a communications network. In a distributed computing environment, software, control modules, logic, and/or logic modules may be located in both local and remote computer storage media including memory storage devices.


Additionally, it is to be appreciated that the embodiments described herein illustrate example implementations, and that the functional elements, logical blocks, modules, and circuits elements may be implemented in various other ways which are consistent with the described embodiments. Furthermore, the operations performed by such functional elements, logical blocks, modules, and circuits elements may be combined and/or separated for a given implementation and may be performed by a greater number or fewer number of components or modules. As will be apparent to those of skill in the art upon reading the present disclosure, each of the individual embodiments described and illustrated herein has discrete components and features which may be readily separated from or combined with the features of any of the other several aspects without departing from the scope of the present disclosure. Any recited method can be carried out in the order of events recited or in any other order which is logically possible.


It is worthy to note that any reference to “one embodiment” or “an embodiment” means that a particular feature, structure, or characteristic described in connection with the embodiment is comprised in at least one embodiment. The appearances of the phrase “in one embodiment” or “in one aspect” in the specification are not necessarily all referring to the same embodiment.


Unless specifically stated otherwise, it may be appreciated that terms such as “processing,” “computing,” “calculating,” “determining,” or the like, refer to the action and/or processes of a computer or computing system, or similar electronic computing device, such as a general purpose processor, a DSP, ASIC, FPGA or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described herein that manipulates and/or transforms data represented as physical quantities (e.g., electronic) within registers and/or memories into other data similarly represented as physical quantities within the memories, registers or other such information storage, transmission or display devices.


It is worthy to note that some embodiments may be described using the expression “coupled” and “connected” along with their derivatives. These terms are not intended as synonyms for each other. For example, some embodiments may be described using the terms “connected” and/or “coupled” to indicate that two or more elements are in direct physical or electrical contact with each other. The term “coupled,” however, also may mean that two or more elements are not in direct contact with each other, but yet still co-operate or interact with each other. With respect to software elements, for example, the term “coupled” may refer to interfaces, message interfaces, application program interface (API), exchanging messages, and so forth.


It should be appreciated that any patent, publication, or other disclosure material, in whole or in part, that is said to be incorporated by reference herein is incorporated herein only to the extent that the incorporated material does not conflict with existing definitions, statements, or other disclosure material set forth in this disclosure. As such, and to the extent necessary, the disclosure as explicitly set forth herein supersedes any conflicting material incorporated herein by reference. Any material, or portion thereof, that is said to be incorporated by reference herein, but which conflicts with existing definitions, statements, or other disclosure material set forth herein will only be incorporated to the extent that no conflict arises between that incorporated material and the existing disclosure material.


The disclosed embodiments have application in conventional endoscopic and open surgical instrumentation as well as application in robotic-assisted surgery.


Embodiments of the devices disclosed herein can be designed to be disposed of after a single use, or they can be designed to be used multiple times. Embodiments may, in either or both cases, be reconditioned for reuse after at least one use. Reconditioning may include any combination of the steps of disassembly of the device, followed by cleaning or replacement of particular pieces, and subsequent reassembly. In particular, embodiments of the device may be disassembled, and any number of the particular pieces or parts of the device may be selectively replaced or removed in any combination. Upon cleaning and/or replacement of particular parts, embodiments of the device may be reassembled for subsequent use either at a reconditioning facility, or by a surgical team immediately prior to a surgical procedure. Those skilled in the art will appreciate that reconditioning of a device may utilize a variety of techniques for disassembly, cleaning/replacement, and reassembly. Use of such techniques, and the resulting reconditioned device, are all within the scope of the present application.


By way of example only, embodiments described herein may be processed before surgery. First, a new or used instrument may be obtained and when necessary cleaned. The instrument may then be sterilized. In one sterilization technique, the instrument is placed in a closed and sealed container, such as a plastic or TYVEK bag. The container and instrument may then be placed in a field of radiation that can penetrate the container, such as gamma radiation, x-rays, or high-energy electrons. The radiation may kill bacteria on the instrument and in the container. The sterilized instrument may then be stored in the sterile container. The sealed container may keep the instrument sterile until it is opened in a medical facility. A device may also be sterilized using any other technique known in the art, including but not limited to beta or gamma radiation, ethylene oxide, or steam.


One skilled in the art will recognize that the herein described components (e.g., operations), devices, objects, and the discussion accompanying them are used as examples for the sake of conceptual clarity and that various configuration modifications are contemplated. Consequently, as used herein, the specific exemplars set forth and the accompanying discussion are intended to be representative of their more general classes. In general, use of any specific exemplar is intended to be representative of its class, and the non-inclusion of specific components (e.g., operations), devices, and objects should not be taken limiting.


With respect to the use of substantially any plural and/or singular terms herein, those having skill in the art can translate from the plural to the singular and/or from the singular to the plural as is appropriate to the context and/or application. The various singular/plural permutations are not expressly set forth herein for sake of clarity.


The herein described subject matter sometimes illustrates different components contained within, or connected with, different other components. It is to be understood that such depicted architectures are merely examples and that in fact many other architectures may be implemented which achieve the same functionality. In a conceptual sense, any arrangement of components to achieve the same functionality is effectively “associated” such that the desired functionality is achieved. Hence, any two components herein combined to achieve a particular functionality can be seen as “associated with” each other such that the desired functionality is achieved, irrespective of architectures or intermedial components. Likewise, any two components so associated can also be viewed as being “operably connected,” or “operably coupled,” to each other to achieve the desired functionality, and any two components capable of being so associated can also be viewed as being “operably couplable,” to each other to achieve the desired functionality. Specific examples of operably couplable include but are not limited to physically mateable and/or physically interacting components, and/or wirelessly interactable, and/or wirelessly interacting components, and/or logically interacting, and/or logically interactable components.


Some aspects may be described using the expression “coupled” and “connected” along with their derivatives. It should be understood that these terms are not intended as synonyms for each other. For example, some aspects may be described using the term “connected” to indicate that two or more elements are in direct physical or electrical contact with each other. In another example, some aspects may be described using the term “coupled” to indicate that two or more elements are in direct physical or electrical contact. The term “coupled,” however, also may mean that two or more elements are not in direct contact with each other, but yet still co-operate or interact with each other.


In some instances, one or more components may be referred to herein as “configured to,” “configurable to,” “operable/operative to,” “adapted/adaptable,” “able to,” “conformable/conformed to,” etc. Those skilled in the art will recognize that “configured to” can generally encompass active-state components and/or inactive-state components and/or standby-state components, unless context requires otherwise.


While particular aspects of the present subject matter described herein have been shown and described, it will be apparent to those skilled in the art that, based upon the teachings herein, changes and modifications may be made without departing from the subject matter described herein and its broader aspects and, therefore, the appended claims are to encompass within their scope all such changes and modifications as are within the true scope of the subject matter described herein. It will be understood by those within the art that, in general, terms used herein, and especially in the appended claims (e.g., bodies of the appended claims) are generally intended as “open” terms (e.g., the term “including” should be interpreted as “including but not limited to,” the term “having” should be interpreted as “having at least,” the term “includes” should be interpreted as “includes but is not limited to,” etc.). It will be further understood by those within the art that when a specific number of an introduced claim recitation is intended, such an intent will be explicitly recited in the claim, and in the absence of such recitation no such intent is present. For example, as an aid to understanding, the following appended claims may contain usage of the introductory phrases “at least one” and “one or more” to introduce claim recitations. However, the use of such phrases should not be construed to imply that the introduction of a claim recitation by the indefinite articles “a” or “an” limits any particular claim containing such introduced claim recitation to claims containing only one such recitation, even when the same claim includes the introductory phrases “one or more” or “at least one” and indefinite articles such as “a” or “an” (e.g., “a” and/or “an” should typically be interpreted to mean “at least one” or “one or more”); the same holds true for the use of definite articles used to introduce claim recitations.


In addition, even when a specific number of an introduced claim recitation is explicitly recited, those skilled in the art will recognize that such recitation should typically be interpreted to mean at least the recited number (e.g., the bare recitation of “two recitations,” without other modifiers, typically means at least two recitations, or two or more recitations). Furthermore, in those instances where a convention analogous to “at least one of A, B, and C, etc.” is used, in general such a construction is intended in the sense one having skill in the art would understand the convention (e.g., “a system having at least one of A, B, and C” would include but not be limited to systems that have A alone, B alone, C alone, A and B together, A and C together, B and C together, and/or A, B, and C together, etc.). In those instances where a convention analogous to “at least one of A, B, or C, etc.” is used, in general such a construction is intended in the sense one having skill in the art would understand the convention (e.g., “a system having at least one of A, B, or C” would include but not be limited to systems that have A alone, B alone, C alone, A and B together, A and C together, B and C together, and/or A, B, and C together, etc.). It will be further understood by those within the art that typically a disjunctive word and/or phrase presenting two or more alternative terms, whether in the description, claims, or drawings, should be understood to contemplate the possibilities of including one of the terms, either of the terms, or both terms unless context dictates otherwise. For example, the phrase “A or B” will be typically understood to include the possibilities of “A” or “B” or “A and B.”


With respect to the appended claims, those skilled in the art will appreciate that recited operations therein may generally be performed in any order. Also, although various operational flows are presented in a sequence(s), it should be understood that the various operations may be performed in other orders than those which are illustrated, or may be performed concurrently. Examples of such alternate orderings may include overlapping, interleaved, interrupted, reordered, incremental, preparatory, supplemental, simultaneous, reverse, or other variant orderings, unless context dictates otherwise. Furthermore, terms like “responsive to,” “related to,” or other past-tense adjectives are generally not intended to exclude such variants, unless context dictates otherwise.


In summary, numerous benefits have been described which result from employing the concepts described herein. The foregoing description of the one or more embodiments has been presented for purposes of illustration and description. It is not intended to be exhaustive or limiting to the precise form disclosed. Modifications or variations are possible in light of the above teachings. The one or more embodiments were chosen and described in order to illustrate principles and practical application to thereby enable one of ordinary skill in the art to utilize the various embodiments and with various modifications as are suited to the particular use contemplated. It is intended that the claims submitted herewith define the overall scope.

Claims
  • 1. A surgical fastening instrument, comprising: a handle;a first motor comprising a first rotatable output;a second motor comprising a second rotatable output;a shaft defining a longitudinal shaft axis;a first jaw, comprising: an anvil defining a longitudinal anvil axis;a proximal end; anda distal end;a second jaw comprising a cartridge channel configured to receive a fastener cartridge;a pivot pivotably coupling said first jaw to said second jaw, wherein said first jaw is rotatable relative to said second jaw about a fixed axis between: a first position where said first jaw is open and said longitudinal anvil axis is transverse to said longitudinal shaft axis;a second position where said longitudinal anvil axis is parallel to said longitudinal shaft axis; anda third position where said first jaw is fully clamped and said longitudinal anvil axis is transverse to said longitudinal shaft axis,wherein said fixed axis is fixed relative to said longitudinal shaft axis such that said pivot is prevented from moving axially and transversely relative to said longitudinal shaft axis;a closing drive operably couplable to said first rotatable output, wherein said closing drive comprises a closure member configured to engage said first jaw and pivot said first jaw toward said second jaw; anda firing drive operably couplable to said second rotatable output, wherein said firing drive comprises a firing member configured to eject fasteners from said fastener cartridge,wherein said anvil comprises a camming pin, and wherein said camming pin is positioned between said distal end and said pivot.
  • 2. The surgical fastening instrument of claim 1, wherein said closure member comprises a cam slot defined therein, wherein said camming pin is positioned within said cam slot, and wherein said cam slot comprises a sidewall configured to contact said camming pin and displace said camming pin within said cam slot when said closure member is advanced toward said distal end.
  • 3. The surgical fastening instrument of claim 1, wherein said second jaw defines a longitudinal axis, wherein said first motor defines a first motor axis, wherein said first rotatable output extends along said first motor axis, wherein said second motor defines a second motor axis, wherein said second rotatable output extends along said second motor axis, and wherein said first motor axis and said second motor axis are parallel to said longitudinal axis.
  • 4. The surgical fastening instrument of claim 1, wherein said second jaw comprises a frame including a first lateral side and a second lateral side, wherein said first lateral side includes a first guide slot, wherein said second lateral side includes a second guide slot, wherein said closure member comprises a first guide pin slidably positioned in said first guide slot and a second guide pin slidably position in said second guide slot, and wherein said first guide slot and said second guide slot are configured to constrain the movement of said closure member to a longitudinal path.
  • 5. A surgical fastening instrument, comprising: a handle;a first motor comprising a first rotatable output;a second motor comprising a second rotatable output;a first jaw, comprising: an anvil;a proximal end; anda distal end;a second jaw comprising a cartridge channel configured to receive a fastener cartridge;a pivot pivotably coupling said first jaw to said second jaw, wherein said first jaw is rotatable relative to said second jaw about a fixed axis;a closing drive operably couplable to said first rotatable output, wherein said closing drive comprises a closure member configured to engage said first jaw and pivot said first jaw toward said second jaw; anda firing drive operably couplable to said second rotatable output, wherein said firing drive comprises a firing member configured to eject fasteners from the fastener cartridge, wherein said anvil comprises a camming pin, wherein said closure member comprises a cam slot defined therein, and wherein said cam slot comprises:a proximal slot end;a distal slot end;a first sidewall extending between said proximal slot end and said distal slot end; anda second sidewall extending between said proximal slot end and said distal slot end, wherein said camming pin is positioned within said distal slot end when said first jaw is in an open position, wherein said first sidewall is configured to contact said camming pin when said closure member is moved distally to pivot said first jaw from said open position toward a closed position, wherein said camming pin is positioned within said proximal slot end when said first jaw is in said closed position, and wherein said second sidewall is configured to contact said camming pin when said closure member is moved proximally to pivot said first jaw from said closed position toward said open position.
  • 6. The surgical fastening instrument of claim 5, wherein said first sidewall is defined by a first arcuate surface, and wherein said second sidewall is defined by a second arcuate surface.
  • 7. The surgical fastening instrument of claim 5, wherein said second jaw defines a longitudinal axis, and wherein said first sidewall comprises a flat portion adjacent to said proximal slot end which is parallel to said longitudinal axis.
  • 8. The surgical fastening instrument of claim 5, wherein said second jaw defines a longitudinal axis, and wherein said first sidewall comprises a flat portion adjacent to said distal slot end which is perpendicular to said longitudinal axis.
  • 9. A surgical fastening instrument, comprising: a handle;a motor comprising a rotatable output;a first jaw, comprising: an anvil;a proximal end;a distal end; anda camming pin;a second jaw comprising a cartridge channel configured to receive a fastener cartridge, wherein the fastener cartridge comprises a deck surface comprising a plurality of fastener cavities defined therein;a shaft defining a longitudinal shaft axis;a fixed pivot pivotably coupling said first jaw to said second jaw, wherein said first jaw is rotatable relative to said second jaw about a fixed pivot axis defined by said fixed pivot, wherein said first jaw is rotatable into a closed position where said proximal end is a first distance from said deck surface and said distal end is a second distance from said deck surface, wherein said second distance is less than said first distance, wherein said fixed pivot axis is fixed relative to said longitudinal shaft axis such that said fixed pivot is prevented from moving axially and transversely relative to said longitudinal shaft axis, and wherein said camming pin is positioned between said distal end and said pivot;a closing drive operably couplable to said rotatable output, wherein said closing drive comprises a closure member configured to engage said first jaw and pivot said first jaw toward said second jaw, wherein said closure member comprises a cam slot defined therein, wherein said camming pin is positioned within said cam slot, and wherein said cam slot is configured to displace said camming pin when said closure member is advanced toward said distal end; anda firing drive comprising a firing member configured to eject fasteners from said fastener cartridge,wherein said camming pin is positioned between said distal end and said fixed pivot.
  • 10. The surgical fastening instrument of claim 9, wherein said motor comprises a first motor, wherein said rotatable output comprises a first rotatable output, wherein said surgical fastening instrument further comprises a second motor operably couplable to said firing drive, wherein said second motor comprises a second rotatable output, wherein said second jaw defines a longitudinal axis, wherein said first motor defines a first motor axis, wherein said first rotatable output extends along said first motor axis, wherein said second motor defines a second motor axis, wherein said second rotatable output extends along said second motor axis, and wherein said first motor axis and said second motor axis are parallel to said longitudinal axis.
  • 11. The surgical fastening instrument of claim 9, wherein said second jaw comprises a frame including a first lateral side and a second lateral side, wherein said first lateral side includes a first guide slot, wherein said second lateral side includes a second guide slot, wherein said closure member comprises a first guide pin slidably positioned in said first guide slot and a second guide pin slidably position in said second guide slot, and wherein said first guide slot and said second guide slot are configured to constrain the movement of said closure member to a longitudinal path.
  • 12. A surgical fastening instrument, comprising: a handle;a motor comprising a rotatable output;a first jaw, comprising: an anvil;a proximal end;a distal end; anda camming pin;a second jaw comprising a cartridge channel configured to receive a fastener cartridge;a pivot pivotably coupling said first jaw to said second jaw, wherein said first jaw is rotatable relative to said second jaw, and wherein said camming pin is positioned between said distal end and said pivot;a closing drive operably couplable to said rotatable output, wherein said closing drive comprises a closure member configured to engage said first jaw and pivot said first jaw toward said second jaw, wherein said closure member comprises a cam slot defined therein, wherein said camming pin is positioned within said cam slot, and wherein said cam slot is configured to displace said camming pin when said closure member is advanced toward said distal end; anda firing drive comprising a firing member configured to eject fasteners from the fastener cartridge,wherein said cam slot comprises: a proximal slot end;a distal slot end;a first sidewall extending between said proximal slot end and said distal slot end; anda second sidewall extending between said proximal slot end and said distal slot end, wherein said camming pin is positioned within said distal slot end when said first jaw is in an open position, wherein said first sidewall is configured to contact said camming pin when said closure member is moved distally to pivot said first jaw from said open position toward a closed position, wherein said camming pin is positioned within said proximal slot end when said first jaw is in said closed position, and wherein said second sidewall is configured to contact said camming pin when said closure member is moved proximally to pivot said first jaw from said closed position toward said open position.
  • 13. The surgical fastening instrument of claim 12, wherein said first sidewall is defined by a first arcuate surface, and wherein said second sidewall is defined by a second arcuate surface.
  • 14. The surgical fastening instrument of claim 12, wherein said second jaw defines a longitudinal axis, and wherein said first sidewall comprises a flat portion adjacent to said proximal slot end which is parallel to said longitudinal axis.
  • 15. The surgical fastening instrument of claim 12, wherein said second jaw defines a longitudinal axis, and wherein said first sidewall comprises a flat portion adjacent to said distal slot end which is perpendicular to said longitudinal axis.
  • 16. A surgical fastening instrument, comprising: a handle;a motor comprising a rotatable output;a first jaw comprising an anvil;a second jaw comprising a cartridge channel configured to receive a fastener cartridge;a shaft defining a longitudinal shaft axis;a pivot pivotably coupling said first jaw to said second jaw, wherein said first jaw is rotatable relative to said second jaw about a fixed axis defined by said pivot between an open position and a closed position, wherein a distal end of said anvil is in contact with the fastener cartridge and said anvil and said fastener cartridge are in a non-parallel configuration when said anvil is in said closed position, and wherein said fixed axis is fixed relative to said longitudinal shaft axis such that said fixed axis is prevented from moving axially and transversely relative to said longitudinal shaft axis;a closing drive operably couplable to said rotatable output, wherein said closing drive comprises a closure member configured to pivot said first jaw toward said second jaw, and wherein said closure member comprises means for increasing the mechanical advantage applied to said first jaw as said closure member moves said first jaw between said open position and said closed position; anda firing drive comprising a firing member configured to eject fasteners from said fastener cartridge,wherein said anvil comprises a camming pin configured to be engaged by said closure member to pivot said first jaw relative to said second jaw, and wherein said camming pin is positioned distal to said pivot.
  • 17. The surgical fastening instrument of claim 16, further comprising said fastener cartridge.
CROSS-REFERENCE TO RELATED APPLICATIONS

This non-provisional patent application claims the benefit under 35 U.S.C. § 119(e) of U.S. Provisional Patent Application Ser. No. 61/812,365, entitled SURGICAL INSTRUMENT WITH MULTIPLE FUNCTIONS PERFORMED BY A SINGLE MOTOR, filed Apr. 16, 2013, which is incorporated by reference herein in its entirety. This non-provisional patent application also claims the benefit under 35 U.S.C. § 119(e) of U.S. Provisional Patent Application Ser. No. 61/812,376, entitled LINEAR CUTTER WITH POWER, filed Apr. 16, 2013, which is incorporated by reference herein in its entirety. This non-provisional patent application also claims the benefit under 35 U.S.C. § 119(e) of U.S. Provisional Patent Application Ser. No. 61/812,382, entitled LINEAR CUTTER WITH MOTOR AND PISTOL GRIP, filed Apr. 16, 2013, which is incorporated by reference herein in its entirety. This non-provisional patent application also claims the benefit under 35 U.S.C. § 119(e) of U.S. Provisional Patent Application Ser. No. 61/812,385, entitled SURGICAL INSTRUMENT HANDLE WITH MULTIPLE ACTUATION MOTORS AND MOTOR CONTROL, filed Apr. 16, 2013, which is incorporated by reference herein in its entirety. This non-provisional patent application also claims the benefit under 35 U.S.C. § 119(e) of U.S. Provisional Patent Application Ser. No. 61/812,372, entitled SURGICAL INSTRUMENT WITH MULTIPLE FUNCTIONS PERFORMED BY A SINGLE MOTOR, filed Apr. 16, 2013, which is incorporated by reference herein in its entirety.

US Referenced Citations (5708)
Number Name Date Kind
66052 Smith Jun 1867 A
662587 Blake Nov 1900 A
670748 Weddeler Mar 1901 A
719487 Minor Feb 1903 A
804229 Hutchinson Nov 1905 A
951393 Hahn Mar 1910 A
1306107 Elliott Jun 1919 A
1314601 McCaskey Sep 1919 A
1677337 Grove Jul 1928 A
1794907 Kelly Mar 1931 A
1849427 Hook Mar 1932 A
1944116 Stratman Jan 1934 A
1954048 Jeffrey et al. Apr 1934 A
2037727 La Chapelle Apr 1936 A
2132295 Hawkins Oct 1938 A
2161632 Nattenheimer Jun 1939 A
2211117 Hess Aug 1940 A
2214870 West Sep 1940 A
2224882 Peck Dec 1940 A
2318379 Davis et al. May 1943 A
2329440 La Place Sep 1943 A
2441096 Happe May 1948 A
2448741 Scott et al. Sep 1948 A
2450527 Smith et al. Oct 1948 A
2526902 Rublee Oct 1950 A
2527256 Jackson Oct 1950 A
2578686 Fish Dec 1951 A
2638901 Sugarbaker May 1953 A
2674149 Benson Apr 1954 A
2711461 Happe Jun 1955 A
2742955 Dominguez Apr 1956 A
2804848 O'Farrell et al. Sep 1957 A
2808482 Zanichkowsky et al. Oct 1957 A
2853074 Olson Sep 1958 A
2887004 Stewart May 1959 A
2957353 Lewis Oct 1960 A
2959974 Emrick Nov 1960 A
3032769 Palmer May 1962 A
3060972 Sheldon Oct 1962 A
3075062 Iaccarino Jan 1963 A
3078465 Bobrov Feb 1963 A
3079606 Bobrov et al. Mar 1963 A
3080564 Strekopitov et al. Mar 1963 A
3166072 Sullivan, Jr. Jan 1965 A
3180236 Beckett Apr 1965 A
3196869 Scholl Jul 1965 A
3204731 Bent et al. Sep 1965 A
3266494 Brownrigg et al. Aug 1966 A
3269630 Fleischer Aug 1966 A
3269631 Takaro Aug 1966 A
3275211 Hirsch et al. Sep 1966 A
3317103 Cullen et al. May 1967 A
3317105 Astafjev et al. May 1967 A
3357296 Lefever Dec 1967 A
3359978 Smith, Jr. Dec 1967 A
3480193 Ralston Nov 1969 A
3490675 Green et al. Jan 1970 A
3494533 Green et al. Feb 1970 A
3499591 Green Mar 1970 A
3503396 Pierie et al. Mar 1970 A
3509629 Kidokoro May 1970 A
3551987 Wilkinson Jan 1971 A
3568675 Harvey Mar 1971 A
35572159 Tschanz Mar 1971
3583393 Takahashi Jun 1971 A
3589589 Akopov Jun 1971 A
3598943 Barrett Aug 1971 A
3608549 Merrill Sep 1971 A
3618842 Bryan Nov 1971 A
3638652 Kelley Feb 1972 A
3640317 Panfili Feb 1972 A
3643851 Green et al. Feb 1972 A
3650453 Smith, Jr. Mar 1972 A
3661666 Foster et al. May 1972 A
3662939 Bryan May 1972 A
3688966 Perkins et al. Sep 1972 A
3695646 Mommsen Oct 1972 A
3709221 Riely Jan 1973 A
3717294 Green Feb 1973 A
3734207 Fishbein May 1973 A
3740994 DeCarlo, Jr. Jun 1973 A
3744495 Johnson Jul 1973 A
3746002 Haller Jul 1973 A
3747603 Adler Jul 1973 A
3751902 Kingsbury et al. Aug 1973 A
3752161 Bent Aug 1973 A
3799151 Fukaumi et al. Mar 1974 A
3808452 Hutchinson Apr 1974 A
3815476 Green et al. Jun 1974 A
3819100 Noiles et al. Jun 1974 A
3821919 Knohl Jul 1974 A
3836171 Hayashi et al. Sep 1974 A
3837555 Green Sep 1974 A
3841474 Maier Oct 1974 A
3851196 Hinds Nov 1974 A
3863639 Kleaveland Feb 1975 A
3883624 McKenzie et al. May 1975 A
3885491 Curtis May 1975 A
3892228 Mitsui Jul 1975 A
3894174 Cartun Jul 1975 A
3902247 Fleer et al. Sep 1975 A
3940844 Colby et al. Mar 1976 A
3944163 Hayashi et al. Mar 1976 A
3950686 Randall Apr 1976 A
3952747 Kimmell, Jr. Apr 1976 A
3955581 Spasiano et al. May 1976 A
3959879 Sellers Jun 1976 A
RE28932 Noiles et al. Aug 1976 E
3972734 King Aug 1976 A
3981051 Brumlik Sep 1976 A
4025216 Hives May 1977 A
4027746 Kine Jun 1977 A
4034143 Sweet Jul 1977 A
4054108 Gill Oct 1977 A
4060089 Noiles Nov 1977 A
4066133 Voss Jan 1978 A
4100820 Evett Jul 1978 A
4106446 Yamada et al. Aug 1978 A
4108211 Tanaka Aug 1978 A
4111206 Vishnevsky et al. Sep 1978 A
4127227 Green Nov 1978 A
4129059 Van Eck Dec 1978 A
4135517 Reale Jan 1979 A
4154122 Severin May 1979 A
4169990 Lerdman Oct 1979 A
4180285 Reneau Dec 1979 A
4185701 Boys Jan 1980 A
4190042 Sinnreich Feb 1980 A
4198734 Brumlik Apr 1980 A
4198982 Fortner et al. Apr 1980 A
4207898 Becht Jun 1980 A
4213562 Garrett et al. Jul 1980 A
4226242 Jarvik Oct 1980 A
4239431 Davini Dec 1980 A
4241861 Fleischer Dec 1980 A
4244372 Kapitanov et al. Jan 1981 A
4250436 Weissman Feb 1981 A
4261244 Becht et al. Apr 1981 A
4272002 Moshofsky Jun 1981 A
4272662 Simpson Jun 1981 A
4274304 Curtiss Jun 1981 A
4274398 Scott, Jr. Jun 1981 A
4275813 Noiles Jun 1981 A
4278091 Borzone Jul 1981 A
4289131 Mueller Sep 1981 A
4289133 Rothfuss Sep 1981 A
4290542 Fedotov et al. Sep 1981 A
D261356 Robinson Oct 1981 S
4296654 Mercer Oct 1981 A
4296881 Lee Oct 1981 A
4304236 Conta et al. Dec 1981 A
4305539 Korolkov et al. Dec 1981 A
4312363 Rothfuss et al. Jan 1982 A
4312685 Riedl Jan 1982 A
4317451 Cerwin et al. Mar 1982 A
4319576 Rothfuss Mar 1982 A
4321002 Froehlich Mar 1982 A
4321746 Grinage Mar 1982 A
4328839 Lyons et al. May 1982 A
4331277 Green May 1982 A
4340331 Savino Jul 1982 A
4347450 Colligan Aug 1982 A
4349028 Green Sep 1982 A
4350151 Scott Sep 1982 A
4353371 Cosman Oct 1982 A
4357940 Muller Nov 1982 A
4361057 Kochera Nov 1982 A
4366544 Shima et al. Dec 1982 A
4373147 Carlson, Jr. Feb 1983 A
4376380 Burgess Mar 1983 A
4379457 Gravener et al. Apr 1983 A
4380312 Landrus Apr 1983 A
4382326 Rabuse May 1983 A
4383634 Green May 1983 A
4393728 Larson et al. Jul 1983 A
4396139 Hall et al. Aug 1983 A
4397311 Kanshin et al. Aug 1983 A
4402445 Green Sep 1983 A
4406621 Bailey Sep 1983 A
4408692 Siegel et al. Oct 1983 A
4409057 Molenda et al. Oct 1983 A
4415112 Green Nov 1983 A
4416276 Newton et al. Nov 1983 A
4417890 Dennehey et al. Nov 1983 A
4423456 Zaidenweber Dec 1983 A
4428376 Mericle Jan 1984 A
4429695 Green Feb 1984 A
4430997 DiGiovanni et al. Feb 1984 A
4434796 Karapetian et al. Mar 1984 A
4438659 Desplats Mar 1984 A
4442964 Becht Apr 1984 A
4448194 DiGiovanni et al. May 1984 A
4451743 Suzuki et al. May 1984 A
4452376 Klieman et al. Jun 1984 A
4454887 Krüger Jun 1984 A
4461305 Cibley Jul 1984 A
4467805 Fukuda Aug 1984 A
4469481 Kobayashi Sep 1984 A
4470414 Imagawa et al. Sep 1984 A
4471780 Menges et al. Sep 1984 A
4471781 Di Giovanni et al. Sep 1984 A
4473077 Noiles et al. Sep 1984 A
4475679 Fleury, Jr. Oct 1984 A
4478220 Di Giovanni et al. Oct 1984 A
4480641 Failla et al. Nov 1984 A
4485816 Krumme Dec 1984 A
4485817 Swiggett Dec 1984 A
4486928 Tucker et al. Dec 1984 A
4488523 Shichman Dec 1984 A
4489875 Crawford et al. Dec 1984 A
4493983 Taggert Jan 1985 A
4499895 Takayama Feb 1985 A
4500024 DiGiovanni et al. Feb 1985 A
D278081 Green Mar 1985 S
4503842 Takayama Mar 1985 A
4505272 Utyamyshev et al. Mar 1985 A
4505273 Braun et al. Mar 1985 A
4505414 Filipi Mar 1985 A
4506671 Green Mar 1985 A
4512038 Alexander et al. Apr 1985 A
4520817 Green Jun 1985 A
4522327 Korthoff et al. Jun 1985 A
4526174 Froehlich Jul 1985 A
4527724 Chow et al. Jul 1985 A
4530357 Pawloski et al. Jul 1985 A
4530453 Green Jul 1985 A
4531522 Bedi et al. Jul 1985 A
4532927 Miksza, Jr. Aug 1985 A
4540202 Amphoux et al. Sep 1985 A
4548202 Duncan Oct 1985 A
4556058 Green Dec 1985 A
4560915 Soultanian Dec 1985 A
4565109 Tsay Jan 1986 A
4565189 Mabuchi Jan 1986 A
4566620 Green et al. Jan 1986 A
4569346 Poirier Feb 1986 A
4569469 Mongeon et al. Feb 1986 A
4571213 Ishimoto Feb 1986 A
4573468 Conta et al. Mar 1986 A
4573469 Golden et al. Mar 1986 A
4573622 Green et al. Mar 1986 A
4576165 Green et al. Mar 1986 A
4576167 Noiles et al. Mar 1986 A
4580712 Green Apr 1986 A
4585153 Failla et al. Apr 1986 A
4586501 Claracq May 1986 A
4586502 Bedi et al. May 1986 A
4589416 Green May 1986 A
4589870 Citrin et al. May 1986 A
4591035 Di Giovanni May 1986 A
RE32214 Schramm Jul 1986 E
4597753 Turley Jul 1986 A
4600037 Hatten Jul 1986 A
4604786 Howie, Jr. Aug 1986 A
4605001 Rothfuss et al. Aug 1986 A
4605004 Di Giovanni et al. Aug 1986 A
4606343 Conta et al. Aug 1986 A
4607638 Crainich Aug 1986 A
4608981 Rothfuss et al. Sep 1986 A
4610250 Green Sep 1986 A
4610383 Rothfuss et al. Sep 1986 A
4612933 Brinkerhoff et al. Sep 1986 A
D286180 Korthoff Oct 1986 S
D286442 Korthoff et al. Oct 1986 S
4617914 Ueda Oct 1986 A
4619262 Taylor Oct 1986 A
4619391 Sharkany et al. Oct 1986 A
D287278 Spreckelmeier Dec 1986 S
4628459 Shinohara et al. Dec 1986 A
4629107 Fedotov et al. Dec 1986 A
4632290 Green et al. Dec 1986 A
4633861 Chow et al. Jan 1987 A
4633874 Chow et al. Jan 1987 A
4634419 Kreizman et al. Jan 1987 A
4635638 Weintraub et al. Jan 1987 A
4641076 Linden Feb 1987 A
4642618 Johnson et al. Feb 1987 A
4643173 Bell et al. Feb 1987 A
4643731 Eckenhoff Feb 1987 A
4646722 Silverstein et al. Mar 1987 A
4646745 Noiles Mar 1987 A
4652820 Maresca Mar 1987 A
4654028 Suma Mar 1987 A
4655222 Florez et al. Apr 1987 A
4662555 Thornton May 1987 A
4663874 Sano et al. May 1987 A
4664305 Blake, III et al. May 1987 A
4665916 Green May 1987 A
4667674 Korthoff et al. May 1987 A
4669647 Storace Jun 1987 A
4671278 Chin Jun 1987 A
4671280 Dorband et al. Jun 1987 A
4671445 Barker et al. Jun 1987 A
4672964 Dee et al. Jun 1987 A
4675944 Wells Jun 1987 A
4676245 Fukuda Jun 1987 A
4679460 Yoshigai Jul 1987 A
4679719 Kramer Jul 1987 A
4684051 Akopov et al. Aug 1987 A
4688555 Wardle Aug 1987 A
4691703 Auth et al. Sep 1987 A
4693248 Failla Sep 1987 A
4698579 Richter et al. Oct 1987 A
4700703 Resnick et al. Oct 1987 A
4705038 Sjostrom et al. Nov 1987 A
4708141 Inoue et al. Nov 1987 A
4709120 Pearson Nov 1987 A
4715520 Roehr, Jr. et al. Dec 1987 A
4719917 Barrows et al. Jan 1988 A
4721099 Chikama Jan 1988 A
4724840 McVay et al. Feb 1988 A
4727308 Huljak et al. Feb 1988 A
4728020 Green et al. Mar 1988 A
4728876 Mongeon et al. Mar 1988 A
4729260 Dudden Mar 1988 A
4730726 Holzwarth Mar 1988 A
4741336 Failla et al. May 1988 A
4743214 Tai-Cheng May 1988 A
4744363 Hasson May 1988 A
4747820 Hornlein et al. May 1988 A
4750902 Wuchinich et al. Jun 1988 A
4752024 Green et al. Jun 1988 A
4754909 Barker et al. Jul 1988 A
4763669 Jaeger Aug 1988 A
4767044 Green Aug 1988 A
4773420 Green Sep 1988 A
4777780 Holzwarth Oct 1988 A
4781186 Simpson et al. Nov 1988 A
4784137 Kulik et al. Nov 1988 A
4787387 Burbank, III et al. Nov 1988 A
4790225 Moody et al. Dec 1988 A
4790314 Weaver Dec 1988 A
4805617 Bedi et al. Feb 1989 A
4805823 Rothfuss Feb 1989 A
4807628 Peters et al. Feb 1989 A
4809695 Gwathmey et al. Mar 1989 A
4815460 Porat et al. Mar 1989 A
4817643 Olson Apr 1989 A
4817847 Redtenbacher et al. Apr 1989 A
4819853 Green Apr 1989 A
4821939 Green Apr 1989 A
4827911 Broadwin et al. May 1989 A
4828542 Hermann May 1989 A
4828944 Yabe et al. May 1989 A
4830855 Stewart May 1989 A
4833937 Nagano May 1989 A
4834720 Blinkhorn May 1989 A
4838859 Strassmann Jun 1989 A
4844068 Arata et al. Jul 1989 A
4848637 Pruitt Jul 1989 A
4856078 Konopka Aug 1989 A
4860644 Kohl et al. Aug 1989 A
4862891 Smith Sep 1989 A
4863423 Wallace Sep 1989 A
4865030 Polyak Sep 1989 A
4868530 Ahs Sep 1989 A
4869414 Green et al. Sep 1989 A
4869415 Fox Sep 1989 A
4873977 Avant et al. Oct 1989 A
4875486 Rapoport et al. Oct 1989 A
4880015 Nierman Nov 1989 A
4890613 Golden et al. Jan 1990 A
4892244 Fox et al. Jan 1990 A
4893622 Green et al. Jan 1990 A
4894051 Shiber Jan 1990 A
4896584 Stoll et al. Jan 1990 A
4896678 Ogawa Jan 1990 A
4900303 Lemelson Feb 1990 A
4903697 Resnick et al. Feb 1990 A
4909789 Taguchi et al. Mar 1990 A
4915100 Green Apr 1990 A
4919679 Averill et al. Apr 1990 A
4921479 Grayzel May 1990 A
4925082 Kim May 1990 A
4928699 Sasai May 1990 A
4930503 Pruitt Jun 1990 A
4930674 Barak Jun 1990 A
4931047 Broadwin et al. Jun 1990 A
4931737 Hishiki Jun 1990 A
4932960 Green et al. Jun 1990 A
4933843 Scheller et al. Jun 1990 A
D309350 Sutherland et al. Jul 1990 S
4938408 Bedi et al. Jul 1990 A
4941623 Pruitt Jul 1990 A
4943182 Hoblingre Jul 1990 A
4944443 Oddsen et al. Jul 1990 A
4946067 Kelsall Aug 1990 A
4948327 Crupi, Jr. Aug 1990 A
4949707 LeVahn et al. Aug 1990 A
4951860 Peters et al. Aug 1990 A
4951861 Schulze et al. Aug 1990 A
4955959 Tompkins et al. Sep 1990 A
4957212 Duck et al. Sep 1990 A
4962877 Hervas Oct 1990 A
4964559 Deniega et al. Oct 1990 A
4964863 Kanshin et al. Oct 1990 A
4965709 Ngo Oct 1990 A
4973274 Hirukawa Nov 1990 A
4973302 Armour et al. Nov 1990 A
4978049 Green Dec 1990 A
4978333 Broadwin et al. Dec 1990 A
4979952 Kubota et al. Dec 1990 A
4984564 Yuen Jan 1991 A
4986808 Broadwin et al. Jan 1991 A
4987049 Komamura et al. Jan 1991 A
4988334 Hornlein et al. Jan 1991 A
4995877 Ams et al. Feb 1991 A
4995959 Metzner Feb 1991 A
4996975 Nakamura Mar 1991 A
5002543 Bradshaw et al. Mar 1991 A
5002553 Shiber Mar 1991 A
5005754 Van Overloop Apr 1991 A
5009661 Michelson Apr 1991 A
5012411 Policastro et al. Apr 1991 A
5014898 Heidrich May 1991 A
5014899 Presty et al. May 1991 A
5015227 Broadwin et al. May 1991 A
5018515 Gilman May 1991 A
5018657 Pedlick et al. May 1991 A
5024652 Dumenek et al. Jun 1991 A
5024671 Tu et al. Jun 1991 A
5027834 Pruitt Jul 1991 A
5030226 Green et al. Jul 1991 A
5031814 Tompkins et al. Jul 1991 A
5035040 Kerrigan et al. Jul 1991 A
5038109 Goble et al. Aug 1991 A
5038247 Kelley et al. Aug 1991 A
5040715 Green et al. Aug 1991 A
5042707 Taheri Aug 1991 A
5061269 Muller Oct 1991 A
5062491 Takeshima et al. Nov 1991 A
5062563 Green et al. Nov 1991 A
5065929 Schulze et al. Nov 1991 A
5071052 Rodak et al. Dec 1991 A
5071430 de Salis et al. Dec 1991 A
5074454 Peters Dec 1991 A
5077506 Krause Dec 1991 A
5079006 Urquhart Jan 1992 A
5080556 Carreno Jan 1992 A
5083695 Foslien et al. Jan 1992 A
5084057 Green et al. Jan 1992 A
5088979 Filipi et al. Feb 1992 A
5088997 Delahuerga et al. Feb 1992 A
5089606 Cole et al. Feb 1992 A
5094247 Hernandez et al. Mar 1992 A
5098004 Kerrigan Mar 1992 A
5098360 Hirota Mar 1992 A
5100042 Gravener et al. Mar 1992 A
5100420 Green et al. Mar 1992 A
5104025 Main et al. Apr 1992 A
5104397 Vasconcelos et al. Apr 1992 A
5104400 Berguer et al. Apr 1992 A
5106008 Tompkins et al. Apr 1992 A
5108368 Hammerslag et al. Apr 1992 A
5109722 Hufnagle et al. May 1992 A
5111987 Moeinzadeh et al. May 1992 A
5116349 Aranyi May 1992 A
D327323 Hunt Jun 1992 S
5119009 McCaleb et al. Jun 1992 A
5122156 Granger et al. Jun 1992 A
5124990 Williamson Jun 1992 A
5129570 Schulze et al. Jul 1992 A
5137198 Nobis et al. Aug 1992 A
5139513 Segato Aug 1992 A
5141144 Foslien et al. Aug 1992 A
5142932 Moya et al. Sep 1992 A
5155941 Takahashi et al. Oct 1992 A
5156315 Green et al. Oct 1992 A
5156609 Nakao et al. Oct 1992 A
5156614 Green et al. Oct 1992 A
5158567 Green Oct 1992 A
D330699 Gill Nov 1992 S
5163598 Peters et al. Nov 1992 A
5168605 Bartlett Dec 1992 A
5170925 Madden et al. Dec 1992 A
5171247 Hughett et al. Dec 1992 A
5171249 Stefanchik et al. Dec 1992 A
5171253 Klieman et al. Dec 1992 A
5173133 Morin et al. Dec 1992 A
5176677 Wuchinich Jan 1993 A
5176688 Narayan et al. Jan 1993 A
5187422 Izenbaard et al. Feb 1993 A
5188102 Idemoto et al. Feb 1993 A
5188111 Yates et al. Feb 1993 A
5190517 Zieve et al. Mar 1993 A
5190544 Chapman et al. Mar 1993 A
5190560 Woods et al. Mar 1993 A
5192288 Thompson et al. Mar 1993 A
5195505 Josefsen Mar 1993 A
5195968 Lundquist et al. Mar 1993 A
5197648 Gingold Mar 1993 A
5197649 Bessler et al. Mar 1993 A
5197966 Sommerkamp Mar 1993 A
5197970 Green et al. Mar 1993 A
5200280 Karasa Apr 1993 A
5201750 Hocherl et al. Apr 1993 A
5205459 Brinkerhoff et al. Apr 1993 A
5207697 Carusillo et al. May 1993 A
5209747 Knoepfler May 1993 A
5209756 Seedhom et al. May 1993 A
5211649 Kohler et al. May 1993 A
5211655 Hasson May 1993 A
5217457 Delahuerga et al. Jun 1993 A
5217478 Rexroth Jun 1993 A
5219111 Bilotti et al. Jun 1993 A
5220269 Chen et al. Jun 1993 A
5221036 Takase Jun 1993 A
5221281 Klicek Jun 1993 A
5222945 Basnight Jun 1993 A
5222963 Brinkerhoff et al. Jun 1993 A
5222975 Crainich Jun 1993 A
5222976 Yoon Jun 1993 A
5223675 Taft Jun 1993 A
D338729 Sprecklemeier et al. Aug 1993 S
5234447 Kaster et al. Aug 1993 A
5236424 Imran Aug 1993 A
5236440 Hlavacek Aug 1993 A
5239981 Anapliotis Aug 1993 A
5240163 Stein et al. Aug 1993 A
5242457 Akopov et al. Sep 1993 A
5244462 Delahuerga et al. Sep 1993 A
5246156 Rothfuss et al. Sep 1993 A
5246443 Mai Sep 1993 A
5253793 Green et al. Oct 1993 A
5258007 Spetzler et al. Nov 1993 A
5258008 Wilk Nov 1993 A
5258009 Conners Nov 1993 A
5258010 Green et al. Nov 1993 A
5258012 Luscombe et al. Nov 1993 A
5259366 Reydel et al. Nov 1993 A
5259835 Clark et al. Nov 1993 A
5260637 Pizzi Nov 1993 A
5261877 Fine et al. Nov 1993 A
5261922 Hood Nov 1993 A
5263629 Trumbull et al. Nov 1993 A
5263937 Shipp Nov 1993 A
5263973 Cook Nov 1993 A
5264218 Rogozinski Nov 1993 A
5268622 Philipp Dec 1993 A
5271543 Grant et al. Dec 1993 A
5271544 Fox et al. Dec 1993 A
RE34519 Fox et al. Jan 1994 E
5275322 Brinkerhoff et al. Jan 1994 A
5275323 Schulze et al. Jan 1994 A
5275608 Forman et al. Jan 1994 A
5279416 Malec et al. Jan 1994 A
5281216 Klicek Jan 1994 A
5282806 Haber et al. Feb 1994 A
5282829 Hermes Feb 1994 A
5284128 Hart Feb 1994 A
5285381 Iskarous et al. Feb 1994 A
5285945 Brinkerhoff et al. Feb 1994 A
5286253 Fucci Feb 1994 A
5289963 McGarry et al. Mar 1994 A
5290271 Jernberg Mar 1994 A
5290310 Makower et al. Mar 1994 A
5292053 Bilotti et al. Mar 1994 A
5297714 Kramer Mar 1994 A
5304204 Bregen Apr 1994 A
D347474 Olson May 1994 S
5307976 Olson et al. May 1994 A
5308576 Green et al. May 1994 A
5309387 Mori et al. May 1994 A
5309927 Welch May 1994 A
5312023 Green et al. May 1994 A
5312024 Grant et al. May 1994 A
5312329 Beaty et al. May 1994 A
5313935 Kortenbach et al. May 1994 A
5313967 Lieber et al. May 1994 A
5314424 Nicholas May 1994 A
5314445 Heidmueller et al. May 1994 A
5314466 Stern et al. May 1994 A
5318221 Green et al. Jun 1994 A
5320627 Sorensen et al. Jun 1994 A
D348930 Olson Jul 1994 S
5326013 Green et al. Jul 1994 A
5329923 Lundquist Jul 1994 A
5330487 Thornton et al. Jul 1994 A
5330502 Hassler et al. Jul 1994 A
5331971 Bales et al. Jul 1994 A
5332142 Robinson et al. Jul 1994 A
5333422 Warren et al. Aug 1994 A
5333772 Rothfuss et al. Aug 1994 A
5333773 Main et al. Aug 1994 A
5334183 Wuchinich Aug 1994 A
5336130 Ray Aug 1994 A
5336229 Noda Aug 1994 A
5336232 Green et al. Aug 1994 A
5339799 Kami et al. Aug 1994 A
5341724 Vatel Aug 1994 A
5341807 Nardella Aug 1994 A
5341810 Dardel Aug 1994 A
5342380 Hood Aug 1994 A
5342381 Tidemand Aug 1994 A
5342385 Norelli et al. Aug 1994 A
5342395 Jarrett et al. Aug 1994 A
5342396 Cook Aug 1994 A
5343382 Hale et al. Aug 1994 A
5343391 Mushabac Aug 1994 A
5344059 Green et al. Sep 1994 A
5344060 Gravener et al. Sep 1994 A
5344454 Clarke et al. Sep 1994 A
5346504 Ortiz et al. Sep 1994 A
5348259 Blanco et al. Sep 1994 A
5350355 Sklar Sep 1994 A
5350388 Epstein Sep 1994 A
5350391 Iacovelli Sep 1994 A
5350400 Esposito et al. Sep 1994 A
5352229 Goble et al. Oct 1994 A
5352235 Koros et al. Oct 1994 A
5352238 Green et al. Oct 1994 A
5354250 Christensen Oct 1994 A
5354303 Spaeth et al. Oct 1994 A
5356006 Alpern et al. Oct 1994 A
5356064 Green et al. Oct 1994 A
5358506 Green et al. Oct 1994 A
5358510 Luscombe et al. Oct 1994 A
5359231 Flowers et al. Oct 1994 A
D352780 Glaeser et al. Nov 1994 S
5359993 Slater et al. Nov 1994 A
5360305 Kerrigan Nov 1994 A
5360428 Hutchinson, Jr. Nov 1994 A
5364001 Bryan Nov 1994 A
5364002 Green et al. Nov 1994 A
5364003 Williamson, IV Nov 1994 A
5366133 Geiste Nov 1994 A
5366134 Green et al. Nov 1994 A
5366479 McGarry et al. Nov 1994 A
5368015 Wilk Nov 1994 A
5368592 Stern et al. Nov 1994 A
5369565 Chen et al. Nov 1994 A
5370645 Klicek et al. Dec 1994 A
5372124 Takayama et al. Dec 1994 A
5372596 Klicek et al. Dec 1994 A
5372602 Burke Dec 1994 A
5374277 Hassler Dec 1994 A
5375588 Yoon Dec 1994 A
5376095 Ortiz Dec 1994 A
5379933 Green et al. Jan 1995 A
5381649 Webb Jan 1995 A
5381782 DeLaRama et al. Jan 1995 A
5381943 Allen et al. Jan 1995 A
5382247 Cimino et al. Jan 1995 A
5383880 Hooven Jan 1995 A
5383881 Green et al. Jan 1995 A
5383882 Buess et al. Jan 1995 A
5383888 Zvenyatsky et al. Jan 1995 A
5383895 Holmes et al. Jan 1995 A
5388568 van der Heide Feb 1995 A
5389098 Tsuruta et al. Feb 1995 A
5389102 Green et al. Feb 1995 A
5389104 Hahnen et al. Feb 1995 A
5391180 Tovey et al. Feb 1995 A
5392979 Green et al. Feb 1995 A
5395030 Kuramoto et al. Mar 1995 A
5395033 Byrne et al. Mar 1995 A
5395034 Allen et al. Mar 1995 A
5395312 Desai Mar 1995 A
5395384 Duthoit Mar 1995 A
5397046 Savage et al. Mar 1995 A
5397324 Carroll et al. Mar 1995 A
5400267 Denen et al. Mar 1995 A
5403276 Schechter et al. Apr 1995 A
5403312 Yates et al. Apr 1995 A
5404106 Matsuda Apr 1995 A
5404870 Brinkerhoff et al. Apr 1995 A
5404960 Wada et al. Apr 1995 A
5405072 Zlock et al. Apr 1995 A
5405073 Porter Apr 1995 A
5405344 Williamson et al. Apr 1995 A
5405360 Tovey Apr 1995 A
5407293 Crainich Apr 1995 A
5408409 Glassman Apr 1995 A
5409498 Braddock et al. Apr 1995 A
5409703 McAnalley et al. Apr 1995 A
D357981 Green et al. May 1995 S
5411481 Allen et al. May 1995 A
5411508 Bessler et al. May 1995 A
5413107 Oakley et al. May 1995 A
5413267 Solyntjes et al. May 1995 A
5413268 Green et al. May 1995 A
5413272 Green et al. May 1995 A
5413573 Koivukangas May 1995 A
5415334 Williamson, IV et al. May 1995 A
5415335 Knodell, Jr. May 1995 A
5417203 Tovey et al. May 1995 A
5417361 Williamson, IV May 1995 A
5419766 Chang et al. May 1995 A
5421829 Olichney et al. Jun 1995 A
5422567 Matsunaga Jun 1995 A
5423471 Mastri et al. Jun 1995 A
5423809 Klicek Jun 1995 A
5423835 Green et al. Jun 1995 A
5425745 Green et al. Jun 1995 A
5427298 Tegtmeier Jun 1995 A
5431322 Green et al. Jul 1995 A
5431323 Smith et al. Jul 1995 A
5431654 Nic Jul 1995 A
5431668 Burbank, III et al. Jul 1995 A
5433721 Hooven Jul 1995 A
5437681 Meade et al. Aug 1995 A
5438302 Goble Aug 1995 A
5439155 Viola Aug 1995 A
5439156 Grant et al. Aug 1995 A
5439479 Schichman et al. Aug 1995 A
5441191 Linden Aug 1995 A
5441193 Gravener Aug 1995 A
5441483 Avitall Aug 1995 A
5441494 Ortiz Aug 1995 A
5443197 Malis et al. Aug 1995 A
5443463 Stern et al. Aug 1995 A
5444113 Sinclair et al. Aug 1995 A
5445155 Sieben Aug 1995 A
5445304 Plyley et al. Aug 1995 A
5445604 Lang Aug 1995 A
5445644 Pietrafitta et al. Aug 1995 A
5447265 Vidal et al. Sep 1995 A
5447417 Kuhl et al. Sep 1995 A
5447513 Davison et al. Sep 1995 A
5449355 Rhum et al. Sep 1995 A
5449365 Green et al. Sep 1995 A
5449370 Vaitekunas Sep 1995 A
5452836 Huitema et al. Sep 1995 A
5452837 Williamson, IV et al. Sep 1995 A
5454378 Palmer et al. Oct 1995 A
5454822 Schob et al. Oct 1995 A
5454827 Aust et al. Oct 1995 A
5456401 Green et al. Oct 1995 A
5456917 Wise et al. Oct 1995 A
5458279 Plyley Oct 1995 A
5458579 Chodorow et al. Oct 1995 A
5462215 Viola et al. Oct 1995 A
5464013 Lemelson Nov 1995 A
5464144 Guy et al. Nov 1995 A
5464300 Crainich Nov 1995 A
5465819 Weilant et al. Nov 1995 A
5465894 Clark et al. Nov 1995 A
5465895 Knodel et al. Nov 1995 A
5465896 Allen et al. Nov 1995 A
5466020 Page et al. Nov 1995 A
5467911 Tsuruta et al. Nov 1995 A
5468253 Bezwada et al. Nov 1995 A
5470006 Rodak Nov 1995 A
5470007 Plyley et al. Nov 1995 A
5470008 Rodak Nov 1995 A
5470009 Rodak Nov 1995 A
5470010 Rothfuss et al. Nov 1995 A
5471129 Mann Nov 1995 A
5472132 Savage et al. Dec 1995 A
5472442 Klicek Dec 1995 A
5473204 Temple Dec 1995 A
5474057 Makower et al. Dec 1995 A
5474223 Viola et al. Dec 1995 A
5474566 Alesi et al. Dec 1995 A
5476206 Green et al. Dec 1995 A
5476479 Green et al. Dec 1995 A
5476481 Schondorf Dec 1995 A
5478003 Green et al. Dec 1995 A
5478354 Tovey et al. Dec 1995 A
5480089 Blewett Jan 1996 A
5480409 Riza Jan 1996 A
5482197 Green et al. Jan 1996 A
5483952 Aranyi Jan 1996 A
5484095 Green et al. Jan 1996 A
5484398 Stoddard Jan 1996 A
5484451 Akopov et al. Jan 1996 A
5485947 Olson et al. Jan 1996 A
5485952 Fontayne Jan 1996 A
5487499 Sorrentino et al. Jan 1996 A
5487500 Knodel et al. Jan 1996 A
5489058 Plyley et al. Feb 1996 A
5489256 Adair Feb 1996 A
5489290 Furnish Feb 1996 A
5490819 Nicholas et al. Feb 1996 A
5492671 Krafft Feb 1996 A
5496312 Klicek Mar 1996 A
5496317 Goble et al. Mar 1996 A
5497933 DeFonzo et al. Mar 1996 A
5501654 Failla et al. Mar 1996 A
5503320 Webster et al. Apr 1996 A
5503635 Sauer et al. Apr 1996 A
5503638 Cooper et al. Apr 1996 A
5505363 Green et al. Apr 1996 A
5507426 Young et al. Apr 1996 A
5509596 Green et al. Apr 1996 A
5509916 Taylor Apr 1996 A
5511564 Wilk Apr 1996 A
5514129 Smith May 1996 A
5514149 Green et al. May 1996 A
5514157 Nicholas et al. May 1996 A
5518163 Hoover May 1996 A
5518164 Hoover May 1996 A
5520609 Moll et al. May 1996 A
5520634 Fox et al. May 1996 A
5520678 Heckele et al. May 1996 A
5520700 Beyar et al. May 1996 A
5522817 Sander et al. Jun 1996 A
5522831 Sleister et al. Jun 1996 A
5527264 Moll et al. Jun 1996 A
5527320 Carruthers et al. Jun 1996 A
5529235 Boiarski et al. Jun 1996 A
D372086 Grasso et al. Jul 1996 S
5531305 Roberts et al. Jul 1996 A
5531744 Nardella et al. Jul 1996 A
5531856 Moll et al. Jul 1996 A
5533521 Granger Jul 1996 A
5533581 Barth et al. Jul 1996 A
5533661 Main et al. Jul 1996 A
5535934 Boiarski et al. Jul 1996 A
5535935 Vidal et al. Jul 1996 A
5535937 Boiarski et al. Jul 1996 A
5540375 Bolanos et al. Jul 1996 A
5540705 Meade et al. Jul 1996 A
5541376 Ladtkow et al. Jul 1996 A
5541489 Dunstan Jul 1996 A
5542594 McKean et al. Aug 1996 A
5542949 Yoon Aug 1996 A
5543119 Sutter et al. Aug 1996 A
5543695 Culp et al. Aug 1996 A
5544802 Crainich Aug 1996 A
5547117 Hamblin et al. Aug 1996 A
5549583 Sanford et al. Aug 1996 A
5549621 Bessler et al. Aug 1996 A
5549627 Kieturakis Aug 1996 A
5549628 Cooper et al. Aug 1996 A
5549637 Crainich Aug 1996 A
5551622 Yoon Sep 1996 A
5553624 Francese et al. Sep 1996 A
5553675 Pitzen et al. Sep 1996 A
5553765 Knodel et al. Sep 1996 A
5554148 Aebischer et al. Sep 1996 A
5554169 Green et al. Sep 1996 A
5556020 Hou Sep 1996 A
5556416 Clark et al. Sep 1996 A
5558533 Hashizawa et al. Sep 1996 A
5558665 Kieturakis Sep 1996 A
5558671 Yates Sep 1996 A
5560530 Bolanos et al. Oct 1996 A
5560532 DeFonzo et al. Oct 1996 A
5561881 Klinger et al. Oct 1996 A
5562239 Boiarski et al. Oct 1996 A
5562241 Knodel et al. Oct 1996 A
5562682 Oberlin et al. Oct 1996 A
5562690 Green et al. Oct 1996 A
5562701 Huitema et al. Oct 1996 A
5562702 Huitema et al. Oct 1996 A
5563481 Krause Oct 1996 A
5564615 Bishop et al. Oct 1996 A
5569161 Ebling et al. Oct 1996 A
5569270 Weng Oct 1996 A
5569284 Young et al. Oct 1996 A
5571090 Sherts Nov 1996 A
5571100 Goble et al. Nov 1996 A
5571116 Bolanos et al. Nov 1996 A
5571285 Chow et al. Nov 1996 A
5571488 Beerstecher et al. Nov 1996 A
5573169 Green et al. Nov 1996 A
5573543 Akopov et al. Nov 1996 A
5574431 McKeown et al. Nov 1996 A
5575054 Klinzing et al. Nov 1996 A
5575789 Bell et al. Nov 1996 A
5575799 Bolanos et al. Nov 1996 A
5575803 Cooper et al. Nov 1996 A
5575805 Li Nov 1996 A
5577654 Bishop Nov 1996 A
5578052 Koros et al. Nov 1996 A
5579978 Green et al. Dec 1996 A
5580067 Hamblin et al. Dec 1996 A
5582611 Tsuruta et al. Dec 1996 A
5582617 Klieman et al. Dec 1996 A
5583114 Barrows et al. Dec 1996 A
5584425 Savage et al. Dec 1996 A
5586711 Plyley et al. Dec 1996 A
5588579 Schnut et al. Dec 1996 A
5588580 Paul et al. Dec 1996 A
5588581 Conlon et al. Dec 1996 A
5591170 Spievack et al. Jan 1997 A
5591187 Dekel Jan 1997 A
5597107 Knodel et al. Jan 1997 A
5599151 Daum et al. Feb 1997 A
5599279 Slotman et al. Feb 1997 A
5599344 Paterson Feb 1997 A
5599350 Schulze et al. Feb 1997 A
5599852 Scopelianos et al. Feb 1997 A
5601224 Bishop et al. Feb 1997 A
5601573 Fogelberg et al. Feb 1997 A
5601604 Vincent Feb 1997 A
5602449 Krause et al. Feb 1997 A
5603443 Clark et al. Feb 1997 A
5605272 Witt et al. Feb 1997 A
5605273 Hamblin et al. Feb 1997 A
5607094 Clark et al. Mar 1997 A
5607095 Smith et al. Mar 1997 A
5607433 Polla et al. Mar 1997 A
5607450 Zvenyatsky et al. Mar 1997 A
5607474 Athanasiou et al. Mar 1997 A
5609285 Grant et al. Mar 1997 A
5609601 Kolesa et al. Mar 1997 A
5611709 McAnulty Mar 1997 A
5613499 Palmer et al. Mar 1997 A
5613937 Garrison et al. Mar 1997 A
5613966 Makower et al. Mar 1997 A
5614887 Buchbinder Mar 1997 A
5615820 Viola Apr 1997 A
5618294 Aust et al. Apr 1997 A
5618303 Marlow et al. Apr 1997 A
5618307 Donlon et al. Apr 1997 A
5619992 Guthrie et al. Apr 1997 A
5620289 Curry Apr 1997 A
5620326 Younker Apr 1997 A
5620452 Yoon Apr 1997 A
5624398 Smith et al. Apr 1997 A
5624452 Yates Apr 1997 A
5626587 Bishop et al. May 1997 A
5626595 Sklar et al. May 1997 A
5628446 Geiste et al. May 1997 A
5628743 Cimino May 1997 A
5628745 Bek May 1997 A
5630539 Plyley et al. May 1997 A
5630540 Blewett May 1997 A
5630541 Williamson, IV et al. May 1997 A
5630782 Adair May 1997 A
5632432 Schulze May 1997 A
5632433 Grant et al. May 1997 A
5633374 Humphrey et al. May 1997 A
5634584 Okorocha et al. Jun 1997 A
5636779 Palmer Jun 1997 A
5636780 Green et al. Jun 1997 A
5639008 Gallagher et al. Jun 1997 A
D381077 Hunt Jul 1997 S
5643291 Pier et al. Jul 1997 A
5643294 Tovey et al. Jul 1997 A
5643319 Green et al. Jul 1997 A
5645209 Green et al. Jul 1997 A
5647526 Green et al. Jul 1997 A
5647869 Goble et al. Jul 1997 A
5649937 Bito et al. Jul 1997 A
5649956 Jensen et al. Jul 1997 A
5651491 Heaton et al. Jul 1997 A
5651762 Bridges Jul 1997 A
5651821 Uchida Jul 1997 A
5653373 Green et al. Aug 1997 A
5653374 Young et al. Aug 1997 A
5653677 Okada et al. Aug 1997 A
5653721 Knodel et al. Aug 1997 A
5655698 Yoon Aug 1997 A
5657417 Di Troia Aug 1997 A
5657429 Wang et al. Aug 1997 A
5657921 Young et al. Aug 1997 A
5658238 Suzuki et al. Aug 1997 A
5658281 Heard Aug 1997 A
5658298 Vincent et al. Aug 1997 A
5658300 Bito et al. Aug 1997 A
5658307 Exconde Aug 1997 A
5662258 Knodel et al. Sep 1997 A
5662260 Yoon Sep 1997 A
5662662 Bishop et al. Sep 1997 A
5662667 Knodel Sep 1997 A
5665085 Nardella Sep 1997 A
5667517 Hooven Sep 1997 A
5667526 Levin Sep 1997 A
5667527 Cook Sep 1997 A
5669544 Schulze et al. Sep 1997 A
5669904 Platt, Jr. et al. Sep 1997 A
5669907 Platt, Jr. et al. Sep 1997 A
5669918 Balazs et al. Sep 1997 A
5630983 Plyley et al. Oct 1997 A
5673840 Schulze et al. Oct 1997 A
5673841 Schulze et al. Oct 1997 A
5673842 Bittner et al. Oct 1997 A
5674286 D'Alessio et al. Oct 1997 A
5678748 Plyley et al. Oct 1997 A
5680981 Mililli et al. Oct 1997 A
5680982 Schulze et al. Oct 1997 A
5681341 Lunsford et al. Oct 1997 A
5683349 Makower et al. Nov 1997 A
5685474 Seeber Nov 1997 A
5686090 Schilder et al. Nov 1997 A
5688270 Yates et al. Nov 1997 A
5690269 Bolanos et al. Nov 1997 A
5692668 Schulze et al. Dec 1997 A
5693020 Rauh Dec 1997 A
5693042 Boiarski et al. Dec 1997 A
5693051 Schulze et al. Dec 1997 A
5695494 Becker Dec 1997 A
5695502 Pier et al. Dec 1997 A
5695504 Gifford, III et al. Dec 1997 A
5695524 Kelley et al. Dec 1997 A
5697542 Knodel Dec 1997 A
5697543 Burdorff Dec 1997 A
5697909 Eggers et al. Dec 1997 A
5697943 Sauer et al. Dec 1997 A
5700270 Peyser et al. Dec 1997 A
5700276 Benecke Dec 1997 A
5702387 Arts et al. Dec 1997 A
5702408 Wales et al. Dec 1997 A
5702409 Rayburn et al. Dec 1997 A
5704087 Strub Jan 1998 A
5704534 Huitema et al. Jan 1998 A
5706997 Green et al. Jan 1998 A
5706998 Plyley et al. Jan 1998 A
5707392 Kortenbach Jan 1998 A
5709334 Sorrentino et al. Jan 1998 A
5709335 Heck Jan 1998 A
5709680 Yates et al. Jan 1998 A
5709706 Kienzle et al. Jan 1998 A
5711472 Bryan Jan 1998 A
5712460 Carr et al. Jan 1998 A
5713128 Schrenk et al. Feb 1998 A
5713505 Huitema Feb 1998 A
5713895 Lontine et al. Feb 1998 A
5713896 Nardella Feb 1998 A
5713920 Bezwada et al. Feb 1998 A
5715604 Lanzoni Feb 1998 A
5715987 Kelley et al. Feb 1998 A
5715988 Palmer Feb 1998 A
5716366 Yates Feb 1998 A
5718359 Palmer et al. Feb 1998 A
5718360 Green et al. Feb 1998 A
5718548 Costellessa Feb 1998 A
5718714 Livneh Feb 1998 A
5720744 Eggleston et al. Feb 1998 A
D393067 Geary et al. Mar 1998 S
5724025 Tavori Mar 1998 A
5725536 Oberlin et al. Mar 1998 A
5725554 Simon et al. Mar 1998 A
5728110 Vidal et al. Mar 1998 A
5728113 Sherts Mar 1998 A
5728121 Bimbo et al. Mar 1998 A
5730758 Allgeyer Mar 1998 A
5732821 Stone et al. Mar 1998 A
5732871 Clark et al. Mar 1998 A
5732872 Bolduc et al. Mar 1998 A
5733308 Daugherty et al. Mar 1998 A
5735445 Vidal et al. Apr 1998 A
5735848 Yates et al. Apr 1998 A
5735874 Measamer et al. Apr 1998 A
5738474 Blewett Apr 1998 A
5738629 Moll et al. Apr 1998 A
5738648 Lands et al. Apr 1998 A
5741271 Nakao et al. Apr 1998 A
5743456 Jones et al. Apr 1998 A
5747953 Philipp May 1998 A
5749889 Bacich et al. May 1998 A
5749893 Vidal et al. May 1998 A
5749968 Melanson et al. May 1998 A
5752644 Bolanos et al. May 1998 A
5752965 Francis et al. May 1998 A
5752970 Yoon May 1998 A
5755717 Yates et al. May 1998 A
5758814 Gallagher et al. Jun 1998 A
5762255 Chrisman et al. Jun 1998 A
5762256 Mastri et al. Jun 1998 A
5766188 Igaki Jun 1998 A
5766205 Zvenyatsky et al. Jun 1998 A
5769303 Knodel et al. Jun 1998 A
5769748 Eyerly et al. Jun 1998 A
5769791 Benaron et al. Jun 1998 A
5769892 Kingwell Jun 1998 A
5772379 Evensen Jun 1998 A
5772578 Heimberger et al. Jun 1998 A
5772659 Becker et al. Jun 1998 A
5732749 Riza Jul 1998 A
5732859 Nicholas et al. Jul 1998 A
5734934 Izumisawa Jul 1998 A
5776130 Buysse et al. Jul 1998 A
5778939 Hok-Yin Jul 1998 A
5779130 Alesi et al. Jul 1998 A
5779131 Knodel et al. Jul 1998 A
5779132 Knodel et al. Jul 1998 A
5782396 Mastri et al. Jul 1998 A
5782397 Koukline Jul 1998 A
5782748 Palmer et al. Jul 1998 A
5785232 Vidal et al. Jul 1998 A
5785647 Tompkins et al. Jul 1998 A
5787897 Kieturakis Aug 1998 A
5791231 Cohn et al. Aug 1998 A
5792135 Madhani et al. Aug 1998 A
5792162 Jolly et al. Aug 1998 A
5792165 Klieman et al. Aug 1998 A
5794834 Hamblin et al. Aug 1998 A
5796188 Bays Aug 1998 A
5797536 Smith et al. Aug 1998 A
5797537 Oberlin et al. Aug 1998 A
5797538 Heaton et al. Aug 1998 A
5797637 Ervin Aug 1998 A
5797906 Rhum et al. Aug 1998 A
5797927 Yoon Aug 1998 A
5797941 Schulze et al. Aug 1998 A
5797959 Castro et al. Aug 1998 A
5799857 Robertson et al. Sep 1998 A
5800379 Edwards Sep 1998 A
5800423 Jensen Sep 1998 A
5804726 Geib et al. Sep 1998 A
5804936 Brodsky et al. Sep 1998 A
5806676 Wasgien Sep 1998 A
5807376 Viola et al. Sep 1998 A
5807378 Jensen et al. Sep 1998 A
5807393 Williamson, IV et al. Sep 1998 A
5809441 McKee Sep 1998 A
5810721 Mueller et al. Sep 1998 A
5810811 Yates et al. Sep 1998 A
5810846 Virnich et al. Sep 1998 A
5810855 Rayburn et al. Sep 1998 A
5813813 Daum et al. Sep 1998 A
5814055 Knodel et al. Sep 1998 A
5814057 Oi et al. Sep 1998 A
5816471 Plyley et al. Oct 1998 A
5817084 Jensen Oct 1998 A
5817091 Nardella et al. Oct 1998 A
5817093 Williamson, IV et al. Oct 1998 A
5817109 McGarry et al. Oct 1998 A
5817119 Klieman et al. Oct 1998 A
5820009 Melling et al. Oct 1998 A
5823066 Huitema et al. Oct 1998 A
5824333 Scopelianos et al. Oct 1998 A
5826776 Schulze et al. Oct 1998 A
5827271 Buysse et al. Oct 1998 A
5827298 Hart et al. Oct 1998 A
5829662 Allen et al. Nov 1998 A
5830598 Patterson Nov 1998 A
5833690 Yates et al. Nov 1998 A
5833695 Yoon Nov 1998 A
5833696 Whitfield et al. Nov 1998 A
5836503 Ehrenfels et al. Nov 1998 A
5836960 Kolesa et al. Nov 1998 A
5839369 Chatterjee et al. Nov 1998 A
5839639 Sauer et al. Nov 1998 A
5843021 Edwards et al. Dec 1998 A
5843096 Igaki et al. Dec 1998 A
5843097 Mayenberger et al. Dec 1998 A
5843122 Riza Dec 1998 A
5843132 Ilvento Dec 1998 A
5843169 Taheri Dec 1998 A
5846254 Schulze et al. Dec 1998 A
5847566 Marritt et al. Dec 1998 A
5849011 Jones et al. Dec 1998 A
5849020 Long et al. Dec 1998 A
5849023 Mericle Dec 1998 A
5851179 Ritson et al. Dec 1998 A
5853366 Dowlatshahi Dec 1998 A
5855311 Hamblin et al. Jan 1999 A
5855583 Wang et al. Jan 1999 A
5860581 Robertson et al. Jan 1999 A
5860975 Goble et al. Jan 1999 A
5865361 Milliman et al. Feb 1999 A
5865638 Trafton Feb 1999 A
5868361 Rinderer Feb 1999 A
5868760 McGuckin, Jr. Feb 1999 A
5868790 Vincent et al. Feb 1999 A
5871135 Williamson, IV et al. Feb 1999 A
5873885 Weidenbenner Feb 1999 A
5876401 Schulze et al. Mar 1999 A
5878193 Wang et al. Mar 1999 A
5878607 Nunes et al. Mar 1999 A
5878937 Green et al. Mar 1999 A
5878938 Bittner et al. Mar 1999 A
5881777 Bassi et al. Mar 1999 A
5891094 Masterson et al. Apr 1999 A
5891160 Williamson, IV et al. Apr 1999 A
5891558 Bell et al. Apr 1999 A
5893506 Powell Apr 1999 A
5893835 Witt et al. Apr 1999 A
5893878 Pierce Apr 1999 A
5894979 Powell Apr 1999 A
5897552 Edwards et al. Apr 1999 A
5897562 Bolanos et al. Apr 1999 A
5899824 Kurtz et al. May 1999 A
5899914 Zirps et al. May 1999 A
5901895 Heaton et al. May 1999 A
5902312 Frater et al. May 1999 A
5903117 Gregory May 1999 A
5904647 Ouchi May 1999 A
5904693 Dicesare et al. May 1999 A
5904702 Ek et al. May 1999 A
5906577 Beane et al. May 1999 A
5906625 Bito et al. May 1999 A
5907211 Hall et al. May 1999 A
5908402 Blythe Jun 1999 A
5908427 McKean et al. Jun 1999 A
5909062 Krietzman Jun 1999 A
5911353 Bolanos et al. Jun 1999 A
5915616 Viola et al. Jun 1999 A
5916225 Kugel Jun 1999 A
5918791 Sorrentino et al. Jul 1999 A
5919198 Graves, Jr. et al. Jul 1999 A
5921956 Grinberg et al. Jul 1999 A
5924864 Loge et al. Jul 1999 A
5928137 Green Jul 1999 A
5928256 Riza Jul 1999 A
5931847 Bittner et al. Aug 1999 A
5931853 McEwen et al. Aug 1999 A
5937951 Izuchukwu et al. Aug 1999 A
5938667 Peyser et al. Aug 1999 A
5941442 Geiste et al. Aug 1999 A
5941890 Voegele et al. Aug 1999 A
5944172 Hannula Aug 1999 A
5944715 Goble et al. Aug 1999 A
5946978 Yamashita Sep 1999 A
5947984 Whipple Sep 1999 A
5947996 Logeman Sep 1999 A
5948030 Miller et al. Sep 1999 A
5948429 Bell et al. Sep 1999 A
5951301 Younker Sep 1999 A
5951516 Bunyan Sep 1999 A
5951552 Long et al. Sep 1999 A
5951574 Stefanchik et al. Sep 1999 A
5951581 Saadat et al. Sep 1999 A
5954259 Viola et al. Sep 1999 A
5964394 Robertson Oct 1999 A
5964774 McKean et al. Oct 1999 A
5971916 Koren Oct 1999 A
5973221 Collyer et al. Oct 1999 A
D416089 Barton et al. Nov 1999 S
5976122 Madhani et al. Nov 1999 A
5977746 Hershberger et al. Nov 1999 A
5984949 Levin Nov 1999 A
5988479 Palmer Nov 1999 A
5990379 Gregory Nov 1999 A
5993466 Yoon Nov 1999 A
5997528 Bisch et al. Dec 1999 A
5997552 Person et al. Dec 1999 A
6001108 Wang et al. Dec 1999 A
6003517 Sheffield et al. Dec 1999 A
6004319 Goble et al. Dec 1999 A
6004335 Vaitekunas et al. Dec 1999 A
6007521 Bidwell et al. Dec 1999 A
6010054 Johnson et al. Jan 2000 A
6010513 Törmälä et al. Jan 2000 A
6010520 Pattison Jan 2000 A
6012494 Balazs Jan 2000 A
6013076 Goble et al. Jan 2000 A
6015406 Goble et al. Jan 2000 A
6015417 Reynolds, Jr. Jan 2000 A
6017322 Snoke et al. Jan 2000 A
6017354 Culp et al. Jan 2000 A
6017356 Frederick et al. Jan 2000 A
6018227 Kumar et al. Jan 2000 A
6019745 Gray Feb 2000 A
6022352 Vandewalle Feb 2000 A
6023641 Thompson Feb 2000 A
6024708 Bales et al. Feb 2000 A
6024741 Williamson, IV et al. Feb 2000 A
6024748 Manzo et al. Feb 2000 A
6024750 Mastri et al. Feb 2000 A
6024764 Schroeppel Feb 2000 A
6027501 Goble et al. Feb 2000 A
6030384 Nezhat Feb 2000 A
6032849 Mastri et al. Mar 2000 A
6033105 Barker et al. Mar 2000 A
6033378 Lundquist et al. Mar 2000 A
6033399 Gines Mar 2000 A
6033427 Lee Mar 2000 A
6036667 Manna et al. Mar 2000 A
6037724 Buss et al. Mar 2000 A
6037927 Rosenberg Mar 2000 A
6039733 Buysse et al. Mar 2000 A
6039734 Goble Mar 2000 A
6042601 Smith Mar 2000 A
6042607 Williamson, IV et al. Mar 2000 A
6043626 Snyder et al. Mar 2000 A
6045560 McKean et al. Apr 2000 A
6047861 Vidal et al. Apr 2000 A
6049145 Austin et al. Apr 2000 A
6050172 Corves et al. Apr 2000 A
6050472 Shibata Apr 2000 A
6050989 Fox et al. Apr 2000 A
6050990 Tankovich et al. Apr 2000 A
6050996 Schmaltz et al. Apr 2000 A
6053390 Green et al. Apr 2000 A
6053899 Slanda et al. Apr 2000 A
6053922 Krause et al. Apr 2000 A
RE36720 Green et al. May 2000 E
6056735 Okada et al. May 2000 A
6056746 Goble et al. May 2000 A
6059806 Hoegerle May 2000 A
6062360 Shields May 2000 A
6063025 Bridges et al. May 2000 A
6063050 Manna et al. May 2000 A
6063095 Wang et al. May 2000 A
6063097 Oi et al. May 2000 A
6063098 Houser et al. May 2000 A
6065679 Levie et al. May 2000 A
6065919 Peck May 2000 A
6066132 Chen et al. May 2000 A
6066151 Miyawaki et al. May 2000 A
6068627 Orszulak et al. May 2000 A
6071233 Ishikawa et al. Jun 2000 A
6074386 Goble et al. Jun 2000 A
6074401 Gardiner et al. Jun 2000 A
6077280 Fossum Jun 2000 A
6077286 Cuschieri et al. Jun 2000 A
6077290 Marini Jun 2000 A
6079606 Milliman et al. Jun 2000 A
6080181 Jensen et al. Jun 2000 A
6082577 Coates et al. Jul 2000 A
6083191 Rose Jul 2000 A
6083223 Baker Jul 2000 A
6083234 Nicholas et al. Jul 2000 A
6083242 Cook Jul 2000 A
6086544 Hibner et al. Jul 2000 A
6086600 Kortenbach Jul 2000 A
6090106 Goble et al. Jul 2000 A
6093186 Goble Jul 2000 A
6099537 Sugai et al. Aug 2000 A
6099551 Gabbay Aug 2000 A
6102271 Longo et al. Aug 2000 A
6104162 Sainsbury et al. Aug 2000 A
6104304 Clark et al. Aug 2000 A
6106511 Jensen Aug 2000 A
6109500 Alli et al. Aug 2000 A
6110187 Donlon Aug 2000 A
6113618 Nic Sep 2000 A
6117148 Ravo et al. Sep 2000 A
6117158 Measamer et al. Sep 2000 A
6119913 Adams et al. Sep 2000 A
6120433 Mizuno et al. Sep 2000 A
6120462 Hibner et al. Sep 2000 A
6123241 Walter et al. Sep 2000 A
6123701 Nezhat Sep 2000 A
H1904 Yates et al. Oct 2000 H
6126058 Adams et al. Oct 2000 A
6126359 Dittrich et al. Oct 2000 A
6126670 Walker et al. Oct 2000 A
6131789 Schulze et al. Oct 2000 A
6131790 Piraka Oct 2000 A
6132368 Cooper Oct 2000 A
6139546 Koenig et al. Oct 2000 A
6142149 Steen Nov 2000 A
6142933 Longo et al. Nov 2000 A
6147135 Yuan et al. Nov 2000 A
6149660 Laufer et al. Nov 2000 A
6151323 O'Connell et al. Nov 2000 A
6152935 Kammerer et al. Nov 2000 A
6155473 Tompkins et al. Dec 2000 A
6156056 Kearns et al. Dec 2000 A
6157169 Lee Dec 2000 A
6159146 El Gazayerli Dec 2000 A
6159200 Verdura et al. Dec 2000 A
6159224 Yoon Dec 2000 A
6162208 Hipps Dec 2000 A
6162220 Nezhat Dec 2000 A
6162537 Martin et al. Dec 2000 A
6165175 Wampler et al. Dec 2000 A
6165184 Verdura et al. Dec 2000 A
6165188 Saadat et al. Dec 2000 A
6167185 Smiley et al. Dec 2000 A
6168605 Measamer et al. Jan 2001 B1
6171305 Sherman Jan 2001 B1
6171316 Kovac et al. Jan 2001 B1
6171330 Benchetrit Jan 2001 B1
6173074 Russo Jan 2001 B1
6174308 Goble et al. Jan 2001 B1
6174309 Wrublewski et al. Jan 2001 B1
6174318 Bates et al. Jan 2001 B1
6175290 Forsythe et al. Jan 2001 B1
6179195 Adams et al. Jan 2001 B1
6179776 Adams et al. Jan 2001 B1
6181105 Cutolo et al. Jan 2001 B1
6182673 Kindermann et al. Feb 2001 B1
6185356 Parker et al. Feb 2001 B1
6186142 Schmidt et al. Feb 2001 B1
6187003 Buysse et al. Feb 2001 B1
6190386 Rydell Feb 2001 B1
6193129 Bittner et al. Feb 2001 B1
6197042 Ginn et al. Mar 2001 B1
6200330 Benderev et al. Mar 2001 B1
6202914 Geiste et al. Mar 2001 B1
6206894 Thompson et al. Mar 2001 B1
6206897 Jamiolkowski et al. Mar 2001 B1
6206904 Ouchi Mar 2001 B1
6209414 Uneme Apr 2001 B1
6210403 Klicek Apr 2001 B1
6213999 Platt, Jr. et al. Apr 2001 B1
6214028 Yoon et al. Apr 2001 B1
6220368 Ark et al. Apr 2001 B1
6221007 Green Apr 2001 B1
6221023 Matsuba et al. Apr 2001 B1
6223100 Green Apr 2001 B1
6223835 Habedank et al. May 2001 B1
6224617 Saadat et al. May 2001 B1
6228080 Gines May 2001 B1
6228081 Goble May 2001 B1
6228083 Lands et al. May 2001 B1
6228084 Kirwan, Jr. May 2001 B1
6228089 Wahrburg May 2001 B1
6228098 Kayan et al. May 2001 B1
6231565 Tovey et al. May 2001 B1
6234178 Goble et al. May 2001 B1
6237604 Burnside et al. May 2001 B1
6238384 Peer May 2001 B1
6241139 Milliman et al. Jun 2001 B1
6241140 Adams et al. Jun 2001 B1
6241723 Heim et al. Jun 2001 B1
6245084 Mark et al. Jun 2001 B1
6248116 Chevillon et al. Jun 2001 B1
6248117 Blatter Jun 2001 B1
6249076 Madden et al. Jun 2001 B1
6249105 Andrews et al. Jun 2001 B1
6250532 Green et al. Jun 2001 B1
6251485 Harris et al. Jun 2001 B1
6254534 Butler et al. Jul 2001 B1
6254619 Garabet et al. Jul 2001 B1
6254642 Taylor Jul 2001 B1
6258107 Balázs et al. Jul 2001 B1
6261286 Goble et al. Jul 2001 B1
6261679 Chen et al. Jul 2001 B1
6264086 McGuckin, Jr. Jul 2001 B1
6264087 Whitman Jul 2001 B1
6264617 Bales et al. Jul 2001 B1
6270508 Klieman et al. Aug 2001 B1
6270916 Sink et al. Aug 2001 B1
6273876 Klima et al. Aug 2001 B1
6273897 Dalessandro et al. Aug 2001 B1
6277114 Bullivant et al. Aug 2001 B1
6280407 Manna et al. Aug 2001 B1
6293927 McGuckin, Jr. Sep 2001 B1
6293942 Goble et al. Sep 2001 B1
6296640 Wampler et al. Oct 2001 B1
6302311 Adams et al. Oct 2001 B1
6302743 Chiu et al. Oct 2001 B1
6305891 Burlingame Oct 2001 B1
6306134 Goble et al. Oct 2001 B1
6306149 Meade Oct 2001 B1
6306424 Vyakarnam et al. Oct 2001 B1
6309397 Julian et al. Oct 2001 B1
6309403 Minor et al. Oct 2001 B1
6312435 Wallace et al. Nov 2001 B1
6315184 Whitman Nov 2001 B1
6319510 Yates Nov 2001 B1
6320123 Reimers Nov 2001 B1
6322494 Bullivant et al. Nov 2001 B1
6324339 Hudson et al. Nov 2001 B1
6325799 Goble Dec 2001 B1
6325805 Ogilvie et al. Dec 2001 B1
6325810 Hamilton et al. Dec 2001 B1
6328498 Mersch Dec 2001 B1
6330965 Milliman et al. Dec 2001 B1
6331181 Tierney et al. Dec 2001 B1
6331761 Kumar et al. Dec 2001 B1
6333029 Vyakarnam et al. Dec 2001 B1
6334860 Dorn Jan 2002 B1
6334861 Chandler et al. Jan 2002 B1
6336926 Goble Jan 2002 B1
6338737 Toledano Jan 2002 B1
6343731 Adams et al. Feb 2002 B1
6346077 Taylor et al. Feb 2002 B1
6348061 Whitman Feb 2002 B1
D454951 Bon Mar 2002 S
6352503 Matsui et al. Mar 2002 B1
6352532 Kramer et al. Mar 2002 B1
6355699 Vyakarnam et al. Mar 2002 B1
6356072 Chass Mar 2002 B1
6358224 Tims et al. Mar 2002 B1
6358263 Mark et al. Mar 2002 B2
6358459 Ziegler et al. Mar 2002 B1
6364877 Goble et al. Apr 2002 B1
6364888 Niemeyer et al. Apr 2002 B1
6370981 Watarai Apr 2002 B2
6371114 Schmidt et al. Apr 2002 B1
6373152 Wang et al. Apr 2002 B1
6377011 Ben-Ur Apr 2002 B1
6383201 Dong May 2002 B1
6387092 Burnside et al. May 2002 B1
6387113 Hawkins et al. May 2002 B1
6387114 Adams May 2002 B2
6391038 Vargas et al. May 2002 B2
6392854 O'Gorman May 2002 B1
6398779 Buysse et al. Jun 2002 B1
6398781 Goble et al. Jun 2002 B1
6398797 Bombard et al. Jun 2002 B2
6402766 Bowman et al. Jun 2002 B2
6406440 Stefanchik Jun 2002 B1
6406472 Jensen Jun 2002 B1
6409724 Penny et al. Jun 2002 B1
H2037 Yates et al. Jul 2002 H
6412639 Hickey Jul 2002 B1
6413274 Pedros Jul 2002 B1
6416486 Wampler Jul 2002 B1
6416509 Goble et al. Jul 2002 B1
6419695 Gabbay Jul 2002 B1
6423079 Blake, III Jul 2002 B1
RE37814 Allgeyer Aug 2002 E
6428070 Takanashi et al. Aug 2002 B1
6428487 Burdorff et al. Aug 2002 B1
6429611 Li Aug 2002 B1
6430298 Kettl et al. Aug 2002 B1
6432065 Burdorff et al. Aug 2002 B1
6436097 Nardella Aug 2002 B1
6436107 Wang et al. Aug 2002 B1
6436110 Bowman et al. Aug 2002 B2
6436122 Frank et al. Aug 2002 B1
6439439 Rickard et al. Aug 2002 B1
6439446 Perry et al. Aug 2002 B1
6440146 Nicholas et al. Aug 2002 B2
6441577 Blumenkranz et al. Aug 2002 B2
D462758 Epstein et al. Sep 2002 S
6443973 Whitman Sep 2002 B1
6445530 Baker Sep 2002 B1
6447518 Krause et al. Sep 2002 B1
6447523 Middleman et al. Sep 2002 B1
6447799 Ullman Sep 2002 B1
6447864 Johnson et al. Sep 2002 B2
6450391 Kayan et al. Sep 2002 B1
6450989 Dubrul et al. Sep 2002 B2
6454781 Witt et al. Sep 2002 B1
6458077 Boebel et al. Oct 2002 B1
6458147 Cruise et al. Oct 2002 B1
6460627 Below et al. Oct 2002 B1
6468275 Wampler et al. Oct 2002 B1
6468286 Mastri et al. Oct 2002 B2
6471106 Reining Oct 2002 B1
6471659 Eggers et al. Oct 2002 B2
6478210 Adams et al. Nov 2002 B2
6482200 Shippert Nov 2002 B2
6482217 Pintor et al. Nov 2002 B1
6485490 Wampler et al. Nov 2002 B2
6485503 Jacobs et al. Nov 2002 B2
6485667 Tan Nov 2002 B1
6486286 McGall et al. Nov 2002 B1
6488196 Fenton, Jr. Dec 2002 B1
6488197 Whitman Dec 2002 B1
6488659 Rosenman Dec 2002 B1
6491201 Whitman Dec 2002 B1
6491690 Goble et al. Dec 2002 B1
6491701 Tierney et al. Dec 2002 B2
6492785 Kasten et al. Dec 2002 B1
6494885 Dhindsa Dec 2002 B1
6494896 D'Alessio et al. Dec 2002 B1
6498480 Manara Dec 2002 B1
6500176 Truckai et al. Dec 2002 B1
6500194 Benderev et al. Dec 2002 B2
6503139 Coral Jan 2003 B2
6503257 Grant et al. Jan 2003 B2
6503259 Huxel et al. Jan 2003 B2
6505768 Whitman Jan 2003 B2
6506197 Rollero et al. Jan 2003 B1
6510854 Goble Jan 2003 B2
6511468 Cragg et al. Jan 2003 B1
6512360 Goto et al. Jan 2003 B1
6514252 Nezhat et al. Feb 2003 B2
6516073 Schulz et al. Feb 2003 B1
6517528 Pantages et al. Feb 2003 B1
6517535 Edwards Feb 2003 B2
6517565 Whitman et al. Feb 2003 B1
6517566 Hovland et al. Feb 2003 B1
6520971 Perry et al. Feb 2003 B1
6520972 Peters Feb 2003 B2
6522101 Malackowski Feb 2003 B2
6524180 Simms et al. Feb 2003 B1
6527735 Sancoff et al. Mar 2003 B1
6527782 Hogg et al. Mar 2003 B2
6532958 Buan et al. Mar 2003 B1
6533157 Whitman Mar 2003 B1
6533723 Lockery et al. Mar 2003 B1
6533784 Truckai et al. Mar 2003 B2
6535764 Imran et al. Mar 2003 B2
6539816 Kogiso et al. Apr 2003 B2
6543456 Freeman Apr 2003 B1
6545384 Pelrine et al. Apr 2003 B1
6547786 Goble Apr 2003 B1
6550546 Thurler et al. Apr 2003 B2
6551333 Kuhns et al. Apr 2003 B2
6554861 Knox et al. Apr 2003 B2
6555770 Kawase Apr 2003 B2
6558378 Sherman et al. May 2003 B2
6558379 Batchelor et al. May 2003 B1
6558429 Taylor May 2003 B2
6561187 Schmidt et al. May 2003 B2
6565560 Goble et al. May 2003 B1
6566619 Gillman et al. May 2003 B2
6569085 Kortenbach et al. May 2003 B2
6569171 DeGuillebon et al. May 2003 B2
6578751 Hartwick Jun 2003 B2
6582364 Butler et al. Jun 2003 B2
6582427 Goble et al. Jun 2003 B1
6582441 He et al. Jun 2003 B1
6583533 Pelrine et al. Jun 2003 B2
6585144 Adams et al. Jul 2003 B2
6585664 Burdorff et al. Jul 2003 B2
6587750 Gerbi et al. Jul 2003 B2
6588643 Bolduc et al. Jul 2003 B2
6588931 Betzner et al. Jul 2003 B2
6589118 Soma et al. Jul 2003 B1
6589164 Flaherty Jul 2003 B1
6592538 Hotchkiss et al. Jul 2003 B1
6592597 Grant et al. Jul 2003 B2
6594552 Nowlin et al. Jul 2003 B1
6596296 Nelson et al. Jul 2003 B1
6596304 Bayon et al. Jul 2003 B1
6596432 Kawakami et al. Jul 2003 B2
6599323 Melican et al. Jul 2003 B2
D478665 Isaacs et al. Aug 2003 S
D478986 Johnston et al. Aug 2003 S
6601749 Sullivan et al. Aug 2003 B2
6602252 Mollenauer Aug 2003 B2
6602262 Griego et al. Aug 2003 B2
6603050 Heaton Aug 2003 B2
6605078 Adams Aug 2003 B2
6605669 Awokola et al. Aug 2003 B2
6605911 Klesing Aug 2003 B1
6607475 Doyle et al. Aug 2003 B2
6611793 Burnside et al. Aug 2003 B1
6613069 Boyd et al. Sep 2003 B2
6616686 Coleman et al. Sep 2003 B2
6619529 Green et al. Sep 2003 B2
6620111 Stephens et al. Sep 2003 B2
6620166 Wenstrom, Jr. et al. Sep 2003 B1
6625517 Bogdanov et al. Sep 2003 B1
6626834 Dunne et al. Sep 2003 B2
6629630 Adams Oct 2003 B2
6629974 Penny et al. Oct 2003 B2
6629988 Weadock Oct 2003 B2
6635838 Kornelson Oct 2003 B1
6636412 Smith Oct 2003 B2
6638108 Tachi Oct 2003 B2
6638285 Gabbay Oct 2003 B2
6638297 Huitema Oct 2003 B1
RE38335 Aust et al. Nov 2003 E
6641528 Torii Nov 2003 B2
6644532 Green et al. Nov 2003 B2
6645201 Utley et al. Nov 2003 B1
6646307 Yu et al. Nov 2003 B1
6648816 Irion et al. Nov 2003 B2
6648901 Fleischman et al. Nov 2003 B2
6652595 Nicolo Nov 2003 B1
D484243 Ryan et al. Dec 2003 S
D484595 Ryan et al. Dec 2003 S
D484596 Ryan et al. Dec 2003 S
6656177 Truckai et al. Dec 2003 B2
6656193 Grant et al. Dec 2003 B2
6659940 Adler Dec 2003 B2
6663623 Oyama et al. Dec 2003 B1
6663641 Kovac et al. Dec 2003 B1
6666854 Lange Dec 2003 B1
6666875 Sakurai et al. Dec 2003 B1
6667825 Lu et al. Dec 2003 B2
6669073 Milliman et al. Dec 2003 B2
6670806 Wendt et al. Dec 2003 B2
6671185 Duval Dec 2003 B2
D484977 Ryan et al. Jan 2004 S
6676660 Wampler et al. Jan 2004 B2
6677687 Ho et al. Jan 2004 B2
6679269 Swanson Jan 2004 B2
6679410 Würsch et al. Jan 2004 B2
6681978 Geiste et al. Jan 2004 B2
6681979 Whitman Jan 2004 B2
6682527 Strul Jan 2004 B2
6682528 Frazier et al. Jan 2004 B2
6682544 Mastri et al. Jan 2004 B2
6685698 Morley et al. Feb 2004 B2
6685727 Fisher et al. Feb 2004 B2
6689153 Skiba Feb 2004 B1
6692507 Pugsley et al. Feb 2004 B2
6692692 Stetzel Feb 2004 B2
6695198 Adams et al. Feb 2004 B2
6695199 Whitman Feb 2004 B2
6695774 Hale et al. Feb 2004 B2
6696814 Henderson et al. Feb 2004 B2
6697048 Rosenberg et al. Feb 2004 B2
6698643 Whitman Mar 2004 B2
6699177 Wang et al. Mar 2004 B1
6699214 Gellman Mar 2004 B2
6699235 Wallace et al. Mar 2004 B2
6704210 Myers Mar 2004 B1
6705503 Pedicini et al. Mar 2004 B1
6709445 Boebel et al. Mar 2004 B2
6712773 Viola Mar 2004 B1
6716223 Leopold et al. Apr 2004 B2
6716232 Vidal et al. Apr 2004 B1
6716233 Whitman Apr 2004 B1
6720734 Norris Apr 2004 B2
6722550 Ricordi et al. Apr 2004 B1
6722552 Fenton, Jr. Apr 2004 B2
6723087 O'Neill et al. Apr 2004 B2
6723091 Goble et al. Apr 2004 B2
6723109 Solingen Apr 2004 B2
6726697 Nicholas et al. Apr 2004 B2
6726706 Dominguez Apr 2004 B2
6729119 Schnipke et al. May 2004 B2
6736825 Blatter et al. May 2004 B2
6736854 Vadurro et al. May 2004 B2
6740030 Martone et al. May 2004 B2
6743230 Lutze et al. Jun 2004 B2
6744385 Kazuya et al. Jun 2004 B2
6747121 Gogolewski Jun 2004 B2
6747300 Nadd et al. Jun 2004 B2
6749560 Konstorum et al. Jun 2004 B1
6749600 Levy Jun 2004 B1
6752768 Burdorff et al. Jun 2004 B2
6752816 Culp et al. Jun 2004 B2
6754959 Guiette, III et al. Jun 2004 B1
6755195 Lemke et al. Jun 2004 B1
6755338 Hahnen et al. Jun 2004 B2
6755843 Chung et al. Jun 2004 B2
6756705 Pulford, Jr. Jun 2004 B2
6758846 Goble et al. Jul 2004 B2
6761685 Adams et al. Jul 2004 B2
6762339 Klun et al. Jul 2004 B1
6764445 Ramans et al. Jul 2004 B2
6766957 Matsuura et al. Jul 2004 B2
6767352 Field et al. Jul 2004 B2
6767356 Kanner et al. Jul 2004 B2
6769590 Vresh et al. Aug 2004 B2
6769594 Orban, III Aug 2004 B2
6770027 Banik et al. Aug 2004 B2
6770070 Balbierz Aug 2004 B1
6770072 Truckai et al. Aug 2004 B1
6773409 Truckai et al. Aug 2004 B2
6773438 Knodel et al. Aug 2004 B1
6775575 Bommannan et al. Aug 2004 B2
6777838 Miekka et al. Aug 2004 B2
6780151 Grabover et al. Aug 2004 B2
6780180 Goble et al. Aug 2004 B1
6783524 Anderson et al. Aug 2004 B2
6786382 Hoffman Sep 2004 B1
6786864 Matsuura et al. Sep 2004 B2
6786896 Madani et al. Sep 2004 B1
6788018 Blumenkranz Sep 2004 B1
6790173 Saadat et al. Sep 2004 B2
6793652 Whitman et al. Sep 2004 B1
6793661 Hamilton et al. Sep 2004 B2
6793663 Kneifel et al. Sep 2004 B2
6793669 Nakamura et al. Sep 2004 B2
6796921 Buck et al. Sep 2004 B1
6802822 Dodge Oct 2004 B1
6802843 Truckai et al. Oct 2004 B2
6802844 Ferree Oct 2004 B2
6805273 Bilotti et al. Oct 2004 B2
6806808 Watters et al. Oct 2004 B1
6808525 Latterell et al. Oct 2004 B2
6810359 Sakaguchi Oct 2004 B2
6814741 Bowman et al. Nov 2004 B2
6817508 Racenet et al. Nov 2004 B1
6817509 Geiste et al. Nov 2004 B2
6817974 Cooper et al. Nov 2004 B2
6818018 Sawhney Nov 2004 B1
6820791 Adams Nov 2004 B2
6821273 Mollenauer Nov 2004 B2
6821282 Perry et al. Nov 2004 B2
6821284 Sturtz et al. Nov 2004 B2
6827246 Sullivan et al. Dec 2004 B2
6827712 Tovey et al. Dec 2004 B2
6827725 Batchelor et al. Dec 2004 B2
6828902 Casden Dec 2004 B2
6830174 Hillstead et al. Dec 2004 B2
6831629 Nishino et al. Dec 2004 B2
6832998 Goble Dec 2004 B2
6834001 Myono Dec 2004 B2
6835173 Couvillon, Jr. Dec 2004 B2
6835199 McGuckin, Jr. et al. Dec 2004 B2
6835336 Watt Dec 2004 B2
6836611 Popovic et al. Dec 2004 B2
6837846 Jaffe et al. Jan 2005 B2
6837883 Moll et al. Jan 2005 B2
6838493 Williams et al. Jan 2005 B2
6840423 Adams et al. Jan 2005 B2
6841967 Kim et al. Jan 2005 B2
6843403 Whitman Jan 2005 B2
6843789 Goble Jan 2005 B2
6843793 Brock et al. Jan 2005 B2
6846307 Whitman et al. Jan 2005 B2
6846308 Whitman et al. Jan 2005 B2
6846309 Whitman et al. Jan 2005 B2
6847190 Schaefer et al. Jan 2005 B2
6849071 Whitman et al. Feb 2005 B2
6850817 Green Feb 2005 B1
6852122 Rush Feb 2005 B2
6852330 Bowman et al. Feb 2005 B2
6853879 Sunaoshi Feb 2005 B2
6858005 Ohline et al. Feb 2005 B2
6859882 Fung Feb 2005 B2
RE38708 Bolanos et al. Mar 2005 E
D502994 Blake, III Mar 2005 S
6861142 Wilkie et al. Mar 2005 B1
6861954 Levin Mar 2005 B2
6863668 Gillespie et al. Mar 2005 B2
6863694 Boyce et al. Mar 2005 B1
6866178 Adams et al. Mar 2005 B2
6866671 Tierney et al. Mar 2005 B2
6867248 Martin et al. Mar 2005 B1
6869430 Balbierz et al. Mar 2005 B2
6869435 Blake, III Mar 2005 B2
6872214 Sonnenschein et al. Mar 2005 B2
6874669 Adams et al. Apr 2005 B2
6877647 Green et al. Apr 2005 B2
6878106 Herrmann Apr 2005 B1
6884392 Malkin et al. Apr 2005 B2
6884428 Binette et al. Apr 2005 B2
6887710 Call et al. May 2005 B2
6889116 Jinno May 2005 B2
6893435 Goble May 2005 B2
6894140 Roby May 2005 B2
6899538 Matoba May 2005 B2
6899593 Moeller et al. May 2005 B1
6905057 Swayze et al. Jun 2005 B2
6905497 Truckai et al. Jun 2005 B2
6905498 Hooven Jun 2005 B2
6908472 Wiener et al. Jun 2005 B2
6911033 de Guillebon et al. Jun 2005 B2
6911916 Wang et al. Jun 2005 B1
6913579 Truckai et al. Jul 2005 B2
6913608 Liddicoat et al. Jul 2005 B2
6913613 Schwarz et al. Jul 2005 B2
6921397 Corcoran et al. Jul 2005 B2
6921412 Black et al. Jul 2005 B1
6923093 Ullah Aug 2005 B2
6923803 Goble Aug 2005 B2
6923819 Meade et al. Aug 2005 B2
6926716 Baker et al. Aug 2005 B2
6928902 Eyssallenne Aug 2005 B1
6929641 Goble et al. Aug 2005 B2
6929644 Truckai et al. Aug 2005 B2
6931830 Liao Aug 2005 B2
6932218 Kosann et al. Aug 2005 B2
6932810 Ryan Aug 2005 B2
6936042 Wallace et al. Aug 2005 B2
6936948 Bell et al. Aug 2005 B2
D509297 Wells Sep 2005 S
D509589 Wells Sep 2005 S
6939358 Palacios et al. Sep 2005 B2
6942662 Goble et al. Sep 2005 B2
6945444 Gresham et al. Sep 2005 B2
6945981 Donofrio et al. Sep 2005 B2
6951562 Zwirnmann Oct 2005 B2
6953138 Dworak et al. Oct 2005 B1
6953139 Milliman et al. Oct 2005 B2
6953461 McClurken et al. Oct 2005 B2
6958035 Friedman et al. Oct 2005 B2
6959851 Heinrich Nov 2005 B2
6959852 Shelton, IV et al. Nov 2005 B2
6960107 Schaub et al. Nov 2005 B1
6960163 Ewers et al. Nov 2005 B2
6960220 Marino et al. Nov 2005 B2
6962587 Johnson et al. Nov 2005 B2
6963792 Green Nov 2005 B1
6964363 Wales et al. Nov 2005 B2
6966907 Goble Nov 2005 B2
6966909 Marshall et al. Nov 2005 B2
6968908 Tokunaga et al. Nov 2005 B2
6969385 Moreyra Nov 2005 B2
6969395 Eskuri Nov 2005 B2
6971988 Orban, III Dec 2005 B2
6972199 Lebouitz et al. Dec 2005 B2
6974435 Daw et al. Dec 2005 B2
6974462 Sater Dec 2005 B2
6978921 Shelton, IV et al. Dec 2005 B2
6978922 Bilotti et al. Dec 2005 B2
6981628 Wales Jan 2006 B2
6981941 Whitman et al. Jan 2006 B2
6981978 Gannoe Jan 2006 B2
6984203 Tartaglia et al. Jan 2006 B2
6984231 Goble et al. Jan 2006 B2
6986451 Mastri et al. Jan 2006 B1
6988649 Shelton, IV et al. Jan 2006 B2
6988650 Schwemberger et al. Jan 2006 B2
6989034 Hammer et al. Jan 2006 B2
6990731 Haytayan Jan 2006 B2
6990796 Schnipke et al. Jan 2006 B2
6993200 Tastl et al. Jan 2006 B2
6993413 Sunaoshi Jan 2006 B2
6994708 Manzo Feb 2006 B2
6995729 Govari et al. Feb 2006 B2
6996433 Burbank et al. Feb 2006 B2
6997931 Sauer et al. Feb 2006 B2
6997935 Anderson et al. Feb 2006 B2
6998736 Lee et al. Feb 2006 B2
6998816 Wieck et al. Feb 2006 B2
7000818 Shelton, IV et al. Feb 2006 B2
7000819 Swayze et al. Feb 2006 B2
7000911 McCormick et al. Feb 2006 B2
7001380 Goble Feb 2006 B2
7001408 Knodel et al. Feb 2006 B2
7004174 Eggers et al. Feb 2006 B2
7007176 Goodfellow et al. Feb 2006 B2
7008433 Voellmicke et al. Mar 2006 B2
7008435 Cummins Mar 2006 B2
7009039 Yayon et al. Mar 2006 B2
7011657 Truckai et al. Mar 2006 B2
7014640 Kemppainen et al. Mar 2006 B2
7018357 Emmons Mar 2006 B2
7018390 Turovskiy et al. Mar 2006 B2
7021669 Lindermeir et al. Apr 2006 B1
7023159 Gorti et al. Apr 2006 B2
7025064 Wang et al. Apr 2006 B2
7025732 Thompson et al. Apr 2006 B2
7025743 Mann et al. Apr 2006 B2
7025775 Gadberry et al. Apr 2006 B2
7028570 Ohta et al. Apr 2006 B2
7029435 Nakao Apr 2006 B2
7029439 Roberts et al. Apr 2006 B2
7030904 Adair et al. Apr 2006 B2
7032798 Whitman et al. Apr 2006 B2
7032799 Viola et al. Apr 2006 B2
7033356 Latterell et al. Apr 2006 B2
7035716 Harris et al. Apr 2006 B2
7035762 Menard et al. Apr 2006 B2
7036680 Flannery May 2006 B1
7037314 Armstrong May 2006 B2
7037344 Kagan et al. May 2006 B2
7041088 Nawrocki et al. May 2006 B2
7041102 Truckai et al. May 2006 B2
7041868 Greene et al. May 2006 B2
7043852 Hayashida et al. May 2006 B2
7044350 Kameyama et al. May 2006 B2
7044352 Shelton, IV et al. May 2006 B2
7044353 Mastri et al. May 2006 B2
7046082 Komiya et al. May 2006 B2
7048687 Reuss et al. May 2006 B1
7048745 Tierney et al. May 2006 B2
7052454 Taylor May 2006 B2
7052494 Goble et al. May 2006 B2
7052499 Steger et al. May 2006 B2
7055730 Ehrenfels et al. Jun 2006 B2
7055731 Shelton, IV et al. Jun 2006 B2
7056284 Martone et al. Jun 2006 B2
7056330 Gayton Jun 2006 B2
7059331 Adams et al. Jun 2006 B2
7059508 Shelton, IV et al. Jun 2006 B2
7063671 Couvillon, Jr. Jun 2006 B2
7063712 Vargas et al. Jun 2006 B2
7064509 Fu et al. Jun 2006 B1
7066879 Fowler et al. Jun 2006 B2
7066944 Laufer et al. Jun 2006 B2
7067038 Trokhan et al. Jun 2006 B2
7070083 Jankowski Jul 2006 B2
7070559 Adams et al. Jul 2006 B2
7070597 Truckai et al. Jul 2006 B2
7071287 Rhine et al. Jul 2006 B2
7075770 Smith Jul 2006 B1
7077856 Whitman Jul 2006 B2
7080769 Vresh et al. Jul 2006 B2
7081114 Rashidi Jul 2006 B2
7083073 Yoshie et al. Aug 2006 B2
7083075 Swayze et al. Aug 2006 B2
7083571 Wang et al. Aug 2006 B2
7083615 Peterson et al. Aug 2006 B2
7083619 Truckai et al. Aug 2006 B2
7083620 Jahns et al. Aug 2006 B2
7083626 Hart et al. Aug 2006 B2
7087049 Nowlin et al. Aug 2006 B2
7087054 Truckai et al. Aug 2006 B2
7087071 Nicholas et al. Aug 2006 B2
7090637 Danitz et al. Aug 2006 B2
7090673 Dycus et al. Aug 2006 B2
7090683 Brock et al. Aug 2006 B2
7090684 McGuckin, Jr. et al. Aug 2006 B2
7091412 Wang et al. Aug 2006 B2
7094202 Nobis et al. Aug 2006 B2
7094247 Monassevitch et al. Aug 2006 B2
7094916 DeLuca et al. Aug 2006 B2
7096972 Orozco, Jr. Aug 2006 B2
7097089 Marczyk Aug 2006 B2
7097644 Long Aug 2006 B2
7097650 Weller et al. Aug 2006 B2
7098794 Lindsay et al. Aug 2006 B2
7100949 Williams et al. Sep 2006 B2
7101187 Deconinck et al. Sep 2006 B1
7101394 Hamm et al. Sep 2006 B2
7104741 Krohn Sep 2006 B2
7108695 Witt et al. Sep 2006 B2
7108701 Evens et al. Sep 2006 B2
7108709 Cummins Sep 2006 B2
7111768 Cummins et al. Sep 2006 B2
7111769 Wales et al. Sep 2006 B2
7112214 Peterson et al. Sep 2006 B2
RE39358 Goble Oct 2006 E
7114642 Whitman Oct 2006 B2
7116100 Mock et al. Oct 2006 B1
7118020 Lee et al. Oct 2006 B2
7118528 Piskun Oct 2006 B1
7118563 Weckwerth et al. Oct 2006 B2
7118582 Wang et al. Oct 2006 B1
7119534 Butzmann Oct 2006 B2
7121446 Arad et al. Oct 2006 B2
7122028 Looper et al. Oct 2006 B2
7125403 Julian et al. Oct 2006 B2
7125409 Truckai et al. Oct 2006 B2
7126303 Farritor et al. Oct 2006 B2
7126879 Snyder Oct 2006 B2
7128253 Mastri et al. Oct 2006 B2
7128254 Shelton, IV et al. Oct 2006 B2
7128748 Mooradian et al. Oct 2006 B2
7131445 Amoah Nov 2006 B2
7133601 Phillips et al. Nov 2006 B2
7134587 Schwemberger et al. Nov 2006 B2
7135027 Delmotte Nov 2006 B2
7137980 Buysse et al. Nov 2006 B2
7137981 Long Nov 2006 B2
7139016 Squilla et al. Nov 2006 B2
7140527 Ehrenfels et al. Nov 2006 B2
7140528 Shelton, IV Nov 2006 B2
7141055 Abrams et al. Nov 2006 B2
7143923 Shelton, IV et al. Dec 2006 B2
7143924 Scirica et al. Dec 2006 B2
7143925 Shelton, IV et al. Dec 2006 B2
7143926 Shelton, IV et al. Dec 2006 B2
7146191 Kerner et al. Dec 2006 B2
7147138 Shelton, IV Dec 2006 B2
7147139 Schwemberger et al. Dec 2006 B2
7147140 Wukusick et al. Dec 2006 B2
7147637 Goble Dec 2006 B2
7147648 Lin Dec 2006 B2
7147650 Lee Dec 2006 B2
7150748 Ebbutt et al. Dec 2006 B2
7153300 Goble Dec 2006 B2
7155316 Sutherland et al. Dec 2006 B2
7156863 Sonnenschein et al. Jan 2007 B2
7159750 Racenet et al. Jan 2007 B2
7160296 Pearson et al. Jan 2007 B2
7160299 Baily Jan 2007 B2
7161036 Oikawa et al. Jan 2007 B2
7161580 Bailey et al. Jan 2007 B2
7163563 Schwartz et al. Jan 2007 B2
7166133 Evans et al. Jan 2007 B2
7168604 Milliman et al. Jan 2007 B2
7170910 Chen et al. Jan 2007 B2
7171279 Buckingham et al. Jan 2007 B2
7172104 Scirica et al. Feb 2007 B2
7172593 Trieu et al. Feb 2007 B2
7172615 Morriss et al. Feb 2007 B2
7174636 Lowe Feb 2007 B2
7179223 Motoki et al. Feb 2007 B2
7179267 Nolan et al. Feb 2007 B2
7182239 Myers Feb 2007 B1
7182763 Nardella Feb 2007 B2
7183737 Kitagawa Feb 2007 B2
7187960 Abreu Mar 2007 B2
7188758 Viola et al. Mar 2007 B2
7189207 Viola Mar 2007 B2
7190147 Gileff et al. Mar 2007 B2
7195627 Amoah et al. Mar 2007 B2
7196911 Takano et al. Mar 2007 B2
D541418 Schechter et al. Apr 2007 S
7199537 Okamura et al. Apr 2007 B2
7202576 Dechene et al. Apr 2007 B1
7202653 Pai Apr 2007 B2
7204404 Nguyen et al. Apr 2007 B2
7204835 Latterell et al. Apr 2007 B2
7207233 Wadge Apr 2007 B2
7207471 Heinrich et al. Apr 2007 B2
7207472 Wukusick et al. Apr 2007 B2
7207556 Saitoh et al. Apr 2007 B2
7208005 Frecker et al. Apr 2007 B2
7210609 Leiboff et al. May 2007 B2
7211081 Goble May 2007 B2
7211084 Goble et al. May 2007 B2
7211092 Hughett May 2007 B2
7211979 Khatib et al. May 2007 B2
7213736 Wales et al. May 2007 B2
7214224 Goble May 2007 B2
7215517 Takamatsu May 2007 B2
7217285 Vargas et al. May 2007 B2
7220260 Fleming et al. May 2007 B2
7220272 Weadock May 2007 B2
7225959 Patton et al. Jun 2007 B2
7225963 Scirica Jun 2007 B2
7225964 Mastri et al. Jun 2007 B2
7226450 Athanasiou et al. Jun 2007 B2
7229408 Douglas et al. Jun 2007 B2
7234624 Gresham et al. Jun 2007 B2
7235072 Sartor et al. Jun 2007 B2
7235089 McGuckin, Jr. Jun 2007 B1
7235302 Jing et al. Jun 2007 B2
7237708 Guy et al. Jul 2007 B1
7238195 Viola Jul 2007 B2
7238901 Kim et al. Jul 2007 B2
7239657 Gunnarsson Jul 2007 B1
7241288 Braun Jul 2007 B2
7241289 Braun Jul 2007 B2
7246734 Shelton, IV Jul 2007 B2
7247161 Johnston et al. Jul 2007 B2
7249267 Chapius Jul 2007 B2
7252641 Thompson et al. Aug 2007 B2
7252660 Kunz Aug 2007 B2
7255012 Hedtke Aug 2007 B2
7255696 Goble et al. Aug 2007 B2
7256695 Hamel et al. Aug 2007 B2
7258262 Mastri et al. Aug 2007 B2
7258546 Beier et al. Aug 2007 B2
7260431 Libbus et al. Aug 2007 B2
7265374 Lee et al. Sep 2007 B2
7267677 Johnson et al. Sep 2007 B2
7267679 McGuckin, Jr. et al. Sep 2007 B2
7272002 Drapeau Sep 2007 B2
7273483 Wiener et al. Sep 2007 B2
7232048 Goble et al. Oct 2007 B2
7275674 Racenet et al. Oct 2007 B2
7276044 Ferry et al. Oct 2007 B2
7276068 Johnson et al. Oct 2007 B2
7278562 Mastri et al. Oct 2007 B2
7278563 Green Oct 2007 B1
7278949 Bader Oct 2007 B2
7278994 Goble Oct 2007 B2
7286850 Frielink et al. Oct 2007 B2
7287682 Ezzat Oct 2007 B1
7289139 Amling et al. Oct 2007 B2
7293685 Ehrenfels et al. Nov 2007 B2
7295893 Sunaoshi Nov 2007 B2
7295907 Lu et al. Nov 2007 B2
7296722 Ivanko Nov 2007 B2
7296724 Green et al. Nov 2007 B2
7297149 Vitali et al. Nov 2007 B2
7300373 Jinno et al. Nov 2007 B2
7300450 Vleugels et al. Nov 2007 B2
7303106 Milliman et al. Dec 2007 B2
7303107 Milliman et al. Dec 2007 B2
7303108 Shelton, IV Dec 2007 B2
7303502 Thompson Dec 2007 B2
7303556 Metzger Dec 2007 B2
7306597 Manzo Dec 2007 B2
7308998 Mastri et al. Dec 2007 B2
7311238 Liu Dec 2007 B2
7313430 Urquhart et al. Dec 2007 B2
7314473 Jinno et al. Jan 2008 B2
7322859 Evans Jan 2008 B2
7322975 Goble et al. Jan 2008 B2
7322994 Nicholas et al. Jan 2008 B2
7324572 Chang Jan 2008 B2
7326203 Papineau et al. Feb 2008 B2
7326213 Benderev et al. Feb 2008 B2
7328828 Ortiz et al. Feb 2008 B2
7328829 Arad et al. Feb 2008 B2
7330004 DeJonge et al. Feb 2008 B2
7331340 Barney Feb 2008 B2
7331343 Schmidt et al. Feb 2008 B2
7331403 Berry et al. Feb 2008 B2
7331969 Inganas et al. Feb 2008 B1
7334717 Rethy et al. Feb 2008 B2
7334718 McAlister et al. Feb 2008 B2
7335199 Goble et al. Feb 2008 B2
7336045 Clermonts Feb 2008 B2
7336048 Lohr Feb 2008 B2
7336184 Smith et al. Feb 2008 B2
7337774 Webb Mar 2008 B2
7338505 Belson Mar 2008 B2
7338513 Lee et al. Mar 2008 B2
7341591 Grinberg Mar 2008 B2
7343920 Toby et al. Mar 2008 B2
7344532 Goble et al. Mar 2008 B2
7344533 Pearson et al. Mar 2008 B2
7346344 Fontaine Mar 2008 B2
7346406 Brotto et al. Mar 2008 B2
7348763 Reinhart et al. Mar 2008 B1
7348875 Hughes et al. Mar 2008 B2
RE40237 Bilotti et al. Apr 2008 E
7351258 Ricotta et al. Apr 2008 B2
7354447 Shelton, IV et al. Apr 2008 B2
7354502 Polat et al. Apr 2008 B2
7357287 Shelton, IV et al. Apr 2008 B2
7357806 Rivera et al. Apr 2008 B2
7361168 Makower et al. Apr 2008 B2
7361195 Schwartz et al. Apr 2008 B2
7364060 Milliman Apr 2008 B2
7364061 Swayze et al. Apr 2008 B2
7368124 Chun et al. May 2008 B2
7371210 Brock et al. May 2008 B2
7371403 McCarthy et al. May 2008 B2
7377918 Amoah May 2008 B2
7377928 Zubik et al. May 2008 B2
7380695 Doll et al. Jun 2008 B2
7380696 Shelton, IV et al. Jun 2008 B2
7384403 Sherman Jun 2008 B2
7384417 Cucin Jun 2008 B2
7386365 Nixon Jun 2008 B2
7386730 Uchikubo Jun 2008 B2
7388217 Buschbeck et al. Jun 2008 B2
7388484 Hsu Jun 2008 B2
7391173 Schena Jun 2008 B2
7394190 Huang Jul 2008 B2
7396356 Mollenauer Jul 2008 B2
7397364 Govari Jul 2008 B2
7398707 Morley et al. Jul 2008 B2
7398907 Racenet et al. Jul 2008 B2
7398908 Holsten et al. Jul 2008 B2
7400107 Schneider et al. Jul 2008 B2
7400752 Zacharias Jul 2008 B2
7401000 Nakamura Jul 2008 B2
7401721 Holsten et al. Jul 2008 B2
7404449 Bermingham et al. Jul 2008 B2
7404508 Smith et al. Jul 2008 B2
7404509 Ortiz et al. Jul 2008 B2
7404822 Viart et al. Jul 2008 B2
7407074 Ortiz et al. Aug 2008 B2
7407075 Holsten et al. Aug 2008 B2
7407076 Racenet et al. Aug 2008 B2
7407077 Ortiz et al. Aug 2008 B2
7407078 Shelton, IV et al. Aug 2008 B2
7408310 Hong et al. Aug 2008 B2
7410085 Wolf et al. Aug 2008 B2
7410086 Ortiz et al. Aug 2008 B2
7410483 Danitz et al. Aug 2008 B2
7413563 Corcoran et al. Aug 2008 B2
7416101 Shelton, IV et al. Aug 2008 B2
7418078 Blanz et al. Aug 2008 B2
RE40514 Mastri et al. Sep 2008 E
7419080 Smith et al. Sep 2008 B2
7419081 Ehrenfeis et al. Sep 2008 B2
7419321 Tereschouk Sep 2008 B2
7419495 Menn et al. Sep 2008 B2
7422136 Marczyk Sep 2008 B1
7422138 Bilotti et al. Sep 2008 B2
7422139 Shelton, IV et al. Sep 2008 B2
7424965 Racenet et al. Sep 2008 B2
7427607 Suzuki Sep 2008 B2
D578644 Shumer et al. Oct 2008 S
7431188 Marczyk Oct 2008 B1
7431189 Shelton, IV et al. Oct 2008 B2
7431694 Stefanchik et al. Oct 2008 B2
7431730 Viola Oct 2008 B2
7434715 Shelton, IV et al. Oct 2008 B2
7434717 Shelton, IV et al. Oct 2008 B2
7435249 Buysse et al. Oct 2008 B2
7438209 Hess et al. Oct 2008 B1
7438718 Milliman et al. Oct 2008 B2
7439354 Lenges et al. Oct 2008 B2
7441684 Shelton, IV et al. Oct 2008 B2
7441685 Boudreaux Oct 2008 B1
7442201 Pugsley et al. Oct 2008 B2
7443547 Moreno et al. Oct 2008 B2
7448525 Shelton, IV et al. Nov 2008 B2
7451904 Shelton, IV Nov 2008 B2
7455208 Wales et al. Nov 2008 B2
7455676 Holsten et al. Nov 2008 B2
7455682 Viola Nov 2008 B2
7461767 Viola et al. Dec 2008 B2
7462187 Johnston et al. Dec 2008 B2
7464845 Chou Dec 2008 B2
7464846 Shelton, IV et al. Dec 2008 B2
7464847 Viola et al. Dec 2008 B2
7464849 Shelton, IV et al. Dec 2008 B2
7467740 Shelton, IV et al. Dec 2008 B2
7467849 Silverbrook et al. Dec 2008 B2
7472814 Mastri et al. Jan 2009 B2
7472815 Shelton, IV et al. Jan 2009 B2
7472816 Holsten et al. Jan 2009 B2
7473221 Ewers et al. Jan 2009 B2
7473253 Dycus et al. Jan 2009 B2
7473263 Johnston et al. Jan 2009 B2
7476237 Taniguchi et al. Jan 2009 B2
7479608 Smith Jan 2009 B2
7481347 Roy Jan 2009 B2
7481348 Marczyk Jan 2009 B2
7481349 Holsten et al. Jan 2009 B2
7481824 Boudreaux et al. Jan 2009 B2
7485124 Kuhns et al. Feb 2009 B2
7485133 Cannon et al. Feb 2009 B2
7485142 Milo Feb 2009 B2
7487899 Shelton, IV et al. Feb 2009 B2
7489055 Jeong et al. Feb 2009 B2
7490749 Schall et al. Feb 2009 B2
7491232 Bolduc et al. Feb 2009 B2
7494039 Racenet et al. Feb 2009 B2
7494499 Nagase et al. Feb 2009 B2
7494501 Ahlberg et al. Feb 2009 B2
7500979 Hueil et al. Mar 2009 B2
7501198 Barlev et al. Mar 2009 B2
7503474 Hillstead et al. Mar 2009 B2
7506790 Shelton, IV Mar 2009 B2
7506791 Omaits et al. Mar 2009 B2
7507202 Schoellhorn Mar 2009 B2
7510107 Timm et al. Mar 2009 B2
7510534 Burdorff et al. Mar 2009 B2
7510566 Jacobs et al. Mar 2009 B2
7513407 Chang Apr 2009 B1
7513408 Shelton, IV et al. Apr 2009 B2
7517356 Heinrich Apr 2009 B2
7524320 Tierney et al. Apr 2009 B2
7527632 Houghton et al. May 2009 B2
7530984 Sonnenschein et al. May 2009 B2
7530985 Takemoto et al. May 2009 B2
7533906 Luettgen et al. May 2009 B2
7534259 Lashinski et al. May 2009 B2
7540867 Jinno et al. Jun 2009 B2
7542807 Bertolero et al. Jun 2009 B2
7546939 Adams et al. Jun 2009 B2
7546940 Milliman et al. Jun 2009 B2
7547312 Bauman et al. Jun 2009 B2
7549563 Mather et al. Jun 2009 B2
7549564 Boudreaux Jun 2009 B2
7549998 Braun Jun 2009 B2
7552854 Wixey et al. Jun 2009 B2
7553173 Kowalick Jun 2009 B2
7553275 Padget et al. Jun 2009 B2
7554343 Bromfield Jun 2009 B2
7556185 Viola Jul 2009 B2
7556186 Milliman Jul 2009 B2
7556647 Drews et al. Jul 2009 B2
7559449 Viola Jul 2009 B2
7559450 Wales et al. Jul 2009 B2
7559452 Wales et al. Jul 2009 B2
7559937 de la Torre et al. Jul 2009 B2
7561637 Jonsson et al. Jul 2009 B2
7562910 Kertesz et al. Jul 2009 B2
7563269 Hashiguchi Jul 2009 B2
7563862 Sieg et al. Jul 2009 B2
7565993 Milliman et al. Jul 2009 B2
7566300 Devierre et al. Jul 2009 B2
7567045 Fristedt Jul 2009 B2
7568603 Shelton, IV et al. Aug 2009 B2
7568604 Ehrenfels et al. Aug 2009 B2
7568619 Todd et al. Aug 2009 B2
7575144 Ortiz et al. Aug 2009 B2
7578825 Huebner Aug 2009 B2
7583063 Dooley Sep 2009 B2
7586289 Andruk et al. Sep 2009 B2
7588174 Holsten et al. Sep 2009 B2
7588175 Timm et al. Sep 2009 B2
7588176 Timm et al. Sep 2009 B2
7588177 Racenet Sep 2009 B2
7591783 Boulais et al. Sep 2009 B2
7591818 Bertolero et al. Sep 2009 B2
7597229 Boudreaux et al. Oct 2009 B2
7597230 Racenet et al. Oct 2009 B2
7597693 Garrison Oct 2009 B2
7597699 Rogers Oct 2009 B2
7598972 Tomita Oct 2009 B2
7600663 Green Oct 2009 B2
7604150 Boudreaux Oct 2009 B2
7604151 Hess et al. Oct 2009 B2
7604668 Farnsworth et al. Oct 2009 B2
7607557 Shelton, IV et al. Oct 2009 B2
7611038 Racenet et al. Nov 2009 B2
7611474 Hibner et al. Nov 2009 B2
7615003 Stefanchik et al. Nov 2009 B2
7615067 Lee et al. Nov 2009 B2
7617961 Viola Nov 2009 B2
7624902 Marczyk et al. Dec 2009 B2
7624903 Green et al. Dec 2009 B2
7625370 Hart et al. Dec 2009 B2
7630841 Comisky et al. Dec 2009 B2
7631793 Rethy et al. Dec 2009 B2
7631794 Rethy et al. Dec 2009 B2
7635074 Olson et al. Dec 2009 B2
7637409 Marczyk Dec 2009 B2
7637410 Marczyk Dec 2009 B2
7638958 Philipp et al. Dec 2009 B2
7641091 Olson et al. Jan 2010 B2
7641092 Kruszynski et al. Jan 2010 B2
7641093 Doll et al. Jan 2010 B2
7641095 Viola Jan 2010 B2
7644783 Roberts et al. Jan 2010 B2
7644848 Swayze et al. Jan 2010 B2
7645230 Mikkaichi et al. Jan 2010 B2
7648457 Stefanchik et al. Jan 2010 B2
7648519 Lee et al. Jan 2010 B2
7650185 Maile et al. Jan 2010 B2
7651017 Ortiz et al. Jan 2010 B2
7651498 Shifrin et al. Jan 2010 B2
7654431 Hueil et al. Feb 2010 B2
7655004 Long Feb 2010 B2
7655288 Bauman et al. Feb 2010 B2
7655584 Biran et al. Feb 2010 B2
7656131 Embrey et al. Feb 2010 B2
7658311 Boudreaux Feb 2010 B2
7658312 Vidal et al. Feb 2010 B2
7658705 Melvin et al. Feb 2010 B2
7659219 Biran et al. Feb 2010 B2
7662161 Briganti et al. Feb 2010 B2
7665646 Prommersberger Feb 2010 B2
7665647 Shelton, IV et al. Feb 2010 B2
7669746 Shelton, IV Mar 2010 B2
7669747 Weisenburgh, II et al. Mar 2010 B2
7670334 Hueil et al. Mar 2010 B2
7673780 Shelton, IV et al. Mar 2010 B2
7673781 Swayze et al. Mar 2010 B2
7673782 Hess et al. Mar 2010 B2
7673783 Morgan et al. Mar 2010 B2
7674253 Fisher et al. Mar 2010 B2
7674255 Braun Mar 2010 B2
7674263 Ryan Mar 2010 B2
7674270 Layer Mar 2010 B2
7682307 Danitz et al. Mar 2010 B2
7682367 Shah et al. Mar 2010 B2
7682686 Curro et al. Mar 2010 B2
7686201 Csiky Mar 2010 B2
7686804 Johnson et al. Mar 2010 B2
7686826 Lee et al. Mar 2010 B2
7688028 Phillips et al. Mar 2010 B2
7691098 Wallace et al. Apr 2010 B2
7691103 Fernandez et al. Apr 2010 B2
7691106 Schenberger et al. Apr 2010 B2
7694864 Okada et al. Apr 2010 B2
7694865 Scirica Apr 2010 B2
7695485 Whitman et al. Apr 2010 B2
7699204 Viola Apr 2010 B2
7699835 Lee et al. Apr 2010 B2
7699844 Utley et al. Apr 2010 B2
7699846 Ryan Apr 2010 B2
7699856 Van Wyk et al. Apr 2010 B2
7699859 Bombard et al. Apr 2010 B2
7699860 Huitema et al. Apr 2010 B2
7703653 Shah et al. Apr 2010 B2
7708180 Murray et al. May 2010 B2
7708181 Cole et al. May 2010 B2
7708182 Viola May 2010 B2
7708758 Lee et al. May 2010 B2
7712182 Zeiler et al. May 2010 B2
7713190 Brock et al. May 2010 B2
7714239 Smith May 2010 B2
7714334 Lin May 2010 B2
7717312 Beetel May 2010 B2
7717313 Criscuolo et al. May 2010 B2
7717846 Zirps et al. May 2010 B2
7717873 Swick May 2010 B2
7717915 Miyazawa May 2010 B2
7718180 Karp May 2010 B2
7718556 Matsuda et al. May 2010 B2
7721930 McKenna et al. May 2010 B2
7721931 Shelton, IV et al. May 2010 B2
7721933 Ehrenfels et al. May 2010 B2
7721934 Shelton, IV et al. May 2010 B2
7721936 Shelton, IV et al. May 2010 B2
7722527 Bouchier et al. May 2010 B2
7722607 Dumbauld et al. May 2010 B2
7722610 Viola et al. May 2010 B2
7725214 Diolaiti May 2010 B2
7726171 Langlotz et al. Jun 2010 B2
7726537 Olson et al. Jun 2010 B2
7726538 Holsten et al. Jun 2010 B2
7726539 Holsten et al. Jun 2010 B2
7727954 McKay Jun 2010 B2
7728553 Carrier et al. Jun 2010 B2
7729742 Govari Jun 2010 B2
7731072 Timm et al. Jun 2010 B2
7731073 Wixey et al. Jun 2010 B2
7731724 Huitema et al. Jun 2010 B2
7735703 Morgan et al. Jun 2010 B2
7736254 Schena Jun 2010 B2
7736306 Brustad et al. Jun 2010 B2
7736374 Vaughan et al. Jun 2010 B2
7738971 Swayze et al. Jun 2010 B2
7740159 Shelton, IV et al. Jun 2010 B2
7742036 Grant et al. Jun 2010 B2
7743960 Whitman et al. Jun 2010 B2
7744624 Bettuchi Jun 2010 B2
7744627 Orban, III et al. Jun 2010 B2
7744628 Viola Jun 2010 B2
7747146 Milano et al. Jun 2010 B2
7748587 Haramiishi et al. Jul 2010 B2
7748632 Coleman et al. Jul 2010 B2
7749204 Dhanaraj et al. Jul 2010 B2
7751870 Whitman Jul 2010 B2
7753245 Boudreaux et al. Jul 2010 B2
7753246 Scirica Jul 2010 B2
7753904 Shelton, IV et al. Jul 2010 B2
7757924 Gerbi et al. Jul 2010 B2
7758612 Shipp Jul 2010 B2
7762462 Gelbman Jul 2010 B2
7762998 Birk et al. Jul 2010 B2
7766207 Mather et al. Aug 2010 B2
7766209 Baxter, III et al. Aug 2010 B2
7766210 Shelton, IV et al. Aug 2010 B2
7766821 Brunnen et al. Aug 2010 B2
7766894 Weitzner et al. Aug 2010 B2
7770658 Ito et al. Aug 2010 B2
7770773 Whitman et al. Aug 2010 B2
7770774 Mastri et al. Aug 2010 B2
7770775 Shelton, IV et al. Aug 2010 B2
7770776 Chen et al. Aug 2010 B2
7771396 Stefanchik et al. Aug 2010 B2
7772720 McGee et al. Aug 2010 B2
7772725 Siman-Tov Aug 2010 B2
7775972 Brock et al. Aug 2010 B2
7776037 Odom Aug 2010 B2
7776060 Mooradian et al. Aug 2010 B2
7776065 Griffiths et al. Aug 2010 B2
7778004 Nerheim et al. Aug 2010 B2
7780054 Wales Aug 2010 B2
7780055 Scirica et al. Aug 2010 B2
7780309 McMillan et al. Aug 2010 B2
7780663 Yates et al. Aug 2010 B2
7780685 Hunt et al. Aug 2010 B2
7784662 Wales et al. Aug 2010 B2
7784663 Shelton, IV Aug 2010 B2
7787256 Chan et al. Aug 2010 B2
7739889 Zubik et al. Sep 2010 B2
7789283 Shah Sep 2010 B2
7789875 Brock et al. Sep 2010 B2
7789883 Takashino et al. Sep 2010 B2
7793812 Moore et al. Sep 2010 B2
7794475 Hess et al. Sep 2010 B2
7798386 Schall et al. Sep 2010 B2
7799039 Shelton, IV et al. Sep 2010 B2
7799044 Johnston et al. Sep 2010 B2
7799965 Patel et al. Sep 2010 B2
7803151 Whitman Sep 2010 B2
7806871 Li et al. Oct 2010 B2
7806891 Nowlin et al. Oct 2010 B2
7810690 Bilotti et al. Oct 2010 B2
7810691 Boyden et al. Oct 2010 B2
7810692 Hall et al. Oct 2010 B2
7810693 Broehl et al. Oct 2010 B2
7811275 Birk et al. Oct 2010 B2
7814816 Alberti et al. Oct 2010 B2
7815092 Whitman et al. Oct 2010 B2
7815565 Stefanchik et al. Oct 2010 B2
7815662 Spivey et al. Oct 2010 B2
7819296 Hueil et al. Oct 2010 B2
7819297 Doll et al. Oct 2010 B2
7819298 Hall et al. Oct 2010 B2
7819299 Shelton, IV et al. Oct 2010 B2
7819799 Merril et al. Oct 2010 B2
7819884 Lee et al. Oct 2010 B2
7819886 Whitfield et al. Oct 2010 B2
7823592 Bettuchi et al. Nov 2010 B2
7823760 Zemlok et al. Nov 2010 B2
7824401 Manzo et al. Nov 2010 B2
7824422 Benchetrit Nov 2010 B2
7824426 Racenet et al. Nov 2010 B2
7828189 Holsten et al. Nov 2010 B2
7828794 Sartor Nov 2010 B2
7828808 Hinman et al. Nov 2010 B2
7831292 Quaid et al. Nov 2010 B2
7832408 Shelton, IV et al. Nov 2010 B2
7832611 Boyden et al. Nov 2010 B2
7832612 Baxter, III et al. Nov 2010 B2
7833234 Bailly et al. Nov 2010 B2
7835823 Sillman et al. Nov 2010 B2
7836400 May et al. Nov 2010 B2
7837079 Holsten et al. Nov 2010 B2
7837080 Schwemberger Nov 2010 B2
7837081 Holsten et al. Nov 2010 B2
7837425 Saeki et al. Nov 2010 B2
7837685 Weinberg et al. Nov 2010 B2
7837694 Tethrake et al. Nov 2010 B2
7838789 Stoffers et al. Nov 2010 B2
7839109 Carmen, Jr. et al. Nov 2010 B2
7841503 Sonnenschein et al. Nov 2010 B2
7842025 Coleman et al. Nov 2010 B2
7842028 Lee Nov 2010 B2
7843158 Prisco Nov 2010 B2
7845533 Marczyk et al. Dec 2010 B2
7845535 Scircia Dec 2010 B2
7845536 Viola et al. Dec 2010 B2
7845537 Shelton, IV et al. Dec 2010 B2
7846085 Silverman et al. Dec 2010 B2
7846149 Jankowski Dec 2010 B2
7848066 Yanagishima Dec 2010 B2
7850623 Griffin et al. Dec 2010 B2
7850642 Moll et al. Dec 2010 B2
7850982 Stopek et al. Dec 2010 B2
7854735 Houser et al. Dec 2010 B2
7854736 Ryan Dec 2010 B2
7857183 Shelton, IV Dec 2010 B2
7857184 Viola Dec 2010 B2
7857185 Swayze et al. Dec 2010 B2
7857186 Baxter, III et al. Dec 2010 B2
7857813 Schmitz et al. Dec 2010 B2
7861906 Doll et al. Jan 2011 B2
7862502 Pool et al. Jan 2011 B2
7862546 Conlon et al. Jan 2011 B2
7862579 Ortiz et al. Jan 2011 B2
7866525 Scirica Jan 2011 B2
7866527 Hall et al. Jan 2011 B2
7866528 Olson et al. Jan 2011 B2
7870989 Viola et al. Jan 2011 B2
7871418 Thompson et al. Jan 2011 B2
7871440 Schwartz et al. Jan 2011 B2
7875055 Cichocki, Jr. Jan 2011 B2
7879063 Khosravi Feb 2011 B2
7879070 Ortiz et al. Feb 2011 B2
7883461 Albrecht et al. Feb 2011 B2
7883465 Donofrio et al. Feb 2011 B2
7886951 Hessler Feb 2011 B2
7886952 Scirica et al. Feb 2011 B2
7887530 Zemlok et al. Feb 2011 B2
7887535 Lands et al. Feb 2011 B2
7887536 Johnson et al. Feb 2011 B2
7887563 Cummins Feb 2011 B2
7891531 Ward Feb 2011 B1
7891532 Mastri et al. Feb 2011 B2
7892200 Birk et al. Feb 2011 B2
7892245 Liddicoat et al. Feb 2011 B2
7893586 West et al. Feb 2011 B2
7896214 Farascioni Mar 2011 B2
7896215 Adams et al. Mar 2011 B2
7896869 DiSilvestro et al. Mar 2011 B2
7896877 Hall et al. Mar 2011 B2
7896895 Boudreaux et al. Mar 2011 B2
7896897 Gresham et al. Mar 2011 B2
7898198 Murphree Mar 2011 B2
7900805 Shelton, IV et al. Mar 2011 B2
7900806 Chen et al. Mar 2011 B2
7901381 Birk et al. Mar 2011 B2
7905380 Shelton, IV et al. Mar 2011 B2
7905381 Baxter, III et al. Mar 2011 B2
7905881 Masuda et al. Mar 2011 B2
7905889 Catanese, III et al. Mar 2011 B2
7905902 Huitema et al. Mar 2011 B2
7909039 Hur Mar 2011 B2
7909191 Baker et al. Mar 2011 B2
7909220 Viola Mar 2011 B2
7909221 Viola et al. Mar 2011 B2
7909224 Prommersberger Mar 2011 B2
7913891 Doll et al. Mar 2011 B2
7913893 Mastri et al. Mar 2011 B2
7914543 Roth et al. Mar 2011 B2
7914551 Ortiz et al. Mar 2011 B2
7918230 Whitman et al. Apr 2011 B2
7918376 Knodel et al. Apr 2011 B1
7918377 Measamer et al. Apr 2011 B2
7918845 Saadat et al. Apr 2011 B2
7918848 Lau et al. Apr 2011 B2
7918861 Brock et al. Apr 2011 B2
7918867 Dana et al. Apr 2011 B2
7922061 Shelton, IV et al. Apr 2011 B2
7922063 Zemlok et al. Apr 2011 B2
7922743 Heinrich et al. Apr 2011 B2
7923144 Kohn et al. Apr 2011 B2
7926691 Viola et al. Apr 2011 B2
7927328 Orszulak et al. Apr 2011 B2
7928281 Augustine Apr 2011 B2
7930040 Kelsch et al. Apr 2011 B1
7930065 Larkin et al. Apr 2011 B2
7931660 Aranyi et al. Apr 2011 B2
7931695 Ringeisen Apr 2011 B2
7931877 Steffens et al. Apr 2011 B2
7934630 Shelton, IV et al. May 2011 B2
7934631 Balbierz et al. May 2011 B2
7935773 Hadba et al. May 2011 B2
7938307 Bettuchi May 2011 B2
7941865 Seman, Jr. et al. May 2011 B2
7942303 Shah May 2011 B2
7942890 D'Agostino et al. May 2011 B2
7944175 Mori et al. May 2011 B2
7945792 Cherpantier May 2011 B2
7945798 Carlson et al. May 2011 B2
7946453 Voegele et al. May 2011 B2
7947011 Birk et al. May 2011 B2
7950560 Zemlok et al. May 2011 B2
7950561 Aranyi May 2011 B2
7951071 Whitman et al. May 2011 B2
7951166 Orban et al. May 2011 B2
7954682 Giordano et al. Jun 2011 B2
7954684 Boudreaux Jun 2011 B2
7954685 Viola Jun 2011 B2
7954686 Baxter, III et al. Jun 2011 B2
7954687 Zemlok et al. Jun 2011 B2
7955253 Ewers et al. Jun 2011 B2
7955257 Frasier et al. Jun 2011 B2
7955322 Devengenzo et al. Jun 2011 B2
7955327 Sartor et al. Jun 2011 B2
7955380 Chu et al. Jun 2011 B2
7959050 Smith et al. Jun 2011 B2
7959051 Smith et al. Jun 2011 B2
7959052 Sonnenschein et al. Jun 2011 B2
7963432 Knodel et al. Jun 2011 B2
7963433 Whitman et al. Jun 2011 B2
7963913 Devengenzo et al. Jun 2011 B2
7963963 Francischelli et al. Jun 2011 B2
7963964 Santilli et al. Jun 2011 B2
7964206 Suokas et al. Jun 2011 B2
7966236 Noriega et al. Jun 2011 B2
7966799 Morgan et al. Jun 2011 B2
7967178 Scirica et al. Jun 2011 B2
7967179 Olson et al. Jun 2011 B2
7967180 Scirica Jun 2011 B2
7967181 Viola et al. Jun 2011 B2
7967791 Franer et al. Jun 2011 B2
7967839 Flock et al. Jun 2011 B2
7972298 Wallace et al. Jul 2011 B2
7972315 Birk et al. Jul 2011 B2
7976213 Bertolotti et al. Jul 2011 B2
7976563 Summerer Jul 2011 B2
7979137 Tracey et al. Jul 2011 B2
7980443 Scheib et al. Jul 2011 B2
7981132 Dubrul et al. Jul 2011 B2
7987405 Turner et al. Jul 2011 B2
7988015 Mason, II et al. Aug 2011 B2
7988026 Knodel et al. Aug 2011 B2
7988027 Olson et al. Aug 2011 B2
7988028 Farascioni et al. Aug 2011 B2
7988779 Disalvo et al. Aug 2011 B2
7992757 Wheeler et al. Aug 2011 B2
7993360 Hacker et al. Aug 2011 B2
7994670 Ji Aug 2011 B2
7997054 Bertsch et al. Aug 2011 B2
7997468 Farascioni Aug 2011 B2
7997469 Olson et al. Aug 2011 B2
8002696 Suzuki Aug 2011 B2
8002784 Jinno et al. Aug 2011 B2
8002785 Weiss et al. Aug 2011 B2
8002795 Beetel Aug 2011 B2
8006365 Levin et al. Aug 2011 B2
8006885 Marczyk Aug 2011 B2
8006889 Adams et al. Aug 2011 B2
8007370 Hirsch et al. Aug 2011 B2
8007465 Birk et al. Aug 2011 B2
8007479 Birk et al. Aug 2011 B2
8007511 Brock et al. Aug 2011 B2
8007513 Nalagatla et al. Aug 2011 B2
8011550 Aranyi et al. Sep 2011 B2
8011551 Marczyk et al. Sep 2011 B2
8011553 Mastri et al. Sep 2011 B2
8011555 Tarinelli et al. Sep 2011 B2
8012170 Whitman et al. Sep 2011 B2
8016176 Kasvikis et al. Sep 2011 B2
8016177 Bettuchi et al. Sep 2011 B2
8016178 Olson et al. Sep 2011 B2
8016849 Wenchell Sep 2011 B2
8016855 Whitman et al. Sep 2011 B2
8016858 Whitman Sep 2011 B2
8016881 Furst Sep 2011 B2
8020742 Marczyk Sep 2011 B2
8020743 Shelton, IV Sep 2011 B2
8021375 Aldrich et al. Sep 2011 B2
8025199 Whitman et al. Sep 2011 B2
8028882 Viola Oct 2011 B2
8028883 Stopek Oct 2011 B2
8028884 Sniffin et al. Oct 2011 B2
8028885 Smith et al. Oct 2011 B2
8029510 Hoegerle Oct 2011 B2
8031069 Cohn et al. Oct 2011 B2
8033438 Scirica Oct 2011 B2
8033439 Racenet et al. Oct 2011 B2
8033440 Wenchell et al. Oct 2011 B2
8034077 Smith et al. Oct 2011 B2
8034337 Simard Oct 2011 B2
8034363 Li et al. Oct 2011 B2
8035487 Malackowski Oct 2011 B2
8037591 Spivey et al. Oct 2011 B2
8038045 Bettuchi et al. Oct 2011 B2
8038046 Smith et al. Oct 2011 B2
8038686 Huitema et al. Oct 2011 B2
8043207 Adams Oct 2011 B2
8043328 Hahnen et al. Oct 2011 B2
8044536 Nguyen et al. Oct 2011 B2
8044604 Hagino et al. Oct 2011 B2
8047236 Perry Nov 2011 B2
8048503 Farnsworth et al. Nov 2011 B2
8052636 Moll et al. Nov 2011 B2
8056787 Boudreaux et al. Nov 2011 B2
8056788 Mastri et al. Nov 2011 B2
8056789 White et al. Nov 2011 B1
8057508 Shelton, IV Nov 2011 B2
8058771 Giordano et al. Nov 2011 B2
8060250 Reiland et al. Nov 2011 B2
8061014 Smith et al. Nov 2011 B2
8061576 Cappola Nov 2011 B2
8062236 Soltz Nov 2011 B2
8062330 Prommersberger et al. Nov 2011 B2
8063619 Zhu et al. Nov 2011 B2
8066158 Vogel et al. Nov 2011 B2
8066166 Demmy et al. Nov 2011 B2
8066167 Measamer et al. Nov 2011 B2
8066168 Vidal Nov 2011 B2
8066720 Knodel et al. Nov 2011 B2
D650074 Hunt et al. Dec 2011 S
8070033 Milliman et al. Dec 2011 B2
8070035 Holsten et al. Dec 2011 B2
8070743 Kagan et al. Dec 2011 B2
8074858 Marczyk Dec 2011 B2
8074861 Ehrenfels et al. Dec 2011 B2
8075476 Vargas Dec 2011 B2
8075571 Vitali et al. Dec 2011 B2
8079950 Stern et al. Dec 2011 B2
8079989 Birk et al. Dec 2011 B2
8080004 Downey et al. Dec 2011 B2
8083118 Milliman et al. Dec 2011 B2
8083119 Prommersberger Dec 2011 B2
8083120 Shelton, IV et al. Dec 2011 B2
8084001 Burns et al. Dec 2011 B2
8084969 David et al. Dec 2011 B2
8085013 Wei et al. Dec 2011 B2
8087563 Milliman et al. Jan 2012 B2
8089509 Chatenever et al. Jan 2012 B2
8091753 Viola Jan 2012 B2
8091756 Viola Jan 2012 B2
8092443 Bischoff Jan 2012 B2
8092932 Phillips et al. Jan 2012 B2
8093572 Kuduvalli Jan 2012 B2
8096458 Hessler Jan 2012 B2
8097017 Viola Jan 2012 B2
8100310 Zemlok Jan 2012 B2
8100824 Hegeman et al. Jan 2012 B2
8100872 Patel Jan 2012 B2
8102278 Deck et al. Jan 2012 B2
8105350 Lee et al. Jan 2012 B2
8107925 Natsuno et al. Jan 2012 B2
8108033 Drew et al. Jan 2012 B2
8108072 Zhao et al. Jan 2012 B2
8109426 Milliman et al. Feb 2012 B2
8110208 Hen Feb 2012 B1
8113405 Milliman Feb 2012 B2
8113408 Wenchell et al. Feb 2012 B2
8113410 Hall et al. Feb 2012 B2
8114100 Smith et al. Feb 2012 B2
8118206 Zand et al. Feb 2012 B2
8118207 Racenet et al. Feb 2012 B2
8120301 Goldberg et al. Feb 2012 B2
8122128 Burke Feb 2012 B2
8123103 Milliman Feb 2012 B2
8123523 Carron et al. Feb 2012 B2
8123766 Bauman et al. Feb 2012 B2
8123767 Bauman et al. Feb 2012 B2
8125168 Johnson et al. Feb 2012 B2
8127975 Olson et al. Mar 2012 B2
8127976 Scirica et al. Mar 2012 B2
8128624 Couture et al. Mar 2012 B2
8128643 Aranyi et al. Mar 2012 B2
8128645 Sonnenschein et al. Mar 2012 B2
8128662 Altarac et al. Mar 2012 B2
8132703 Milliman et al. Mar 2012 B2
8132705 Viola et al. Mar 2012 B2
8132706 Marczyk et al. Mar 2012 B2
8134306 Drader et al. Mar 2012 B2
8136711 Beardsley et al. Mar 2012 B2
8136712 Zingman Mar 2012 B2
8136713 Hathaway et al. Mar 2012 B2
8137339 Jinno et al. Mar 2012 B2
8140417 Shibata Mar 2012 B2
8141762 Bedi et al. Mar 2012 B2
8141763 Milliman Mar 2012 B2
8142200 Crunkilton et al. Mar 2012 B2
8142425 Eggers Mar 2012 B2
8142461 Houser et al. Mar 2012 B2
8142515 Therin et al. Mar 2012 B2
8143520 Cutler Mar 2012 B2
8146790 Milliman Apr 2012 B2
8147421 Farquhar et al. Apr 2012 B2
8147456 Fisher et al. Apr 2012 B2
8147485 Wham et al. Apr 2012 B2
8152041 Kostrzewski Apr 2012 B2
8152756 Webster et al. Apr 2012 B2
8154239 Katsuki et al. Apr 2012 B2
8157145 Shelton, IV et al. Apr 2012 B2
8157148 Scirica Apr 2012 B2
8157151 Ingmanson et al. Apr 2012 B2
8157152 Holsten et al. Apr 2012 B2
8157153 Shelton, IV et al. Apr 2012 B2
8157793 Omori et al. Apr 2012 B2
8161977 Shelton, IV et al. Apr 2012 B2
8162138 Bettenhausen et al. Apr 2012 B2
8162197 Mastri et al. Apr 2012 B2
8162668 Toly Apr 2012 B2
8162933 Francischelli et al. Apr 2012 B2
8162965 Reschke et al. Apr 2012 B2
8167185 Shelton, IV et al. May 2012 B2
8167622 Zhou May 2012 B2
8167895 D'Agostino et al. May 2012 B2
8167898 Schaller et al. May 2012 B1
8170241 Roe et al. May 2012 B2
8172004 Ho May 2012 B2
8172120 Boyden et al. May 2012 B2
8172122 Kasvikis et al. May 2012 B2
8172124 Shelton, IV et al. May 2012 B2
8177776 Humayun et al. May 2012 B2
8177797 Shimoji et al. May 2012 B2
8179705 Chapuis May 2012 B2
8180458 Kane et al. May 2012 B2
8181839 Beetel May 2012 B2
8181840 Milliman May 2012 B2
8182422 Bayer et al. May 2012 B2
8183807 Tsai et al. May 2012 B2
8186555 Shelton, IV et al. May 2012 B2
8186556 Viola May 2012 B2
8186558 Sapienza May 2012 B2
8186560 Hess et al. May 2012 B2
8191752 Scirica Jun 2012 B2
8192460 Orban, III et al. Jun 2012 B2
8192651 Young et al. Jun 2012 B2
8196795 Moore et al. Jun 2012 B2
8196796 Shelton, IV et al. Jun 2012 B2
8197501 Shadeck et al. Jun 2012 B2
8197502 Smith et al. Jun 2012 B2
8197837 Jamiolkowski et al. Jun 2012 B2
8201720 Hessler Jun 2012 B2
8201721 Zemlok et al. Jun 2012 B2
8202549 Stucky et al. Jun 2012 B2
8205779 Ma Jun 2012 B2
8205780 Sorrentino et al. Jun 2012 B2
8205781 Baxter, III et al. Jun 2012 B2
8210411 Yates et al. Jul 2012 B2
8210414 Bettuchi et al. Jul 2012 B2
8210415 Ward Jul 2012 B2
8210416 Milliman et al. Jul 2012 B2
8210721 Chen et al. Jul 2012 B2
8211125 Spivey Jul 2012 B2
8214019 Govari et al. Jul 2012 B2
8215531 Shelton, IV et al. Jul 2012 B2
8215532 Marczyk Jul 2012 B2
8215533 Viola et al. Jul 2012 B2
8220468 Cooper et al. Jul 2012 B2
8220688 Laurent et al. Jul 2012 B2
8220690 Hess et al. Jul 2012 B2
8221424 Cha Jul 2012 B2
8225799 Bettuchi Jul 2012 B2
8225979 Farascioni et al. Jul 2012 B2
8226553 Shelton, IV et al. Jul 2012 B2
8226635 Petrie et al. Jul 2012 B2
8226675 Houser et al. Jul 2012 B2
8226715 Hwang et al. Jul 2012 B2
8227946 Kim Jul 2012 B2
8228048 Spencer Jul 2012 B2
8229549 Whitman et al. Jul 2012 B2
8231040 Zemlok et al. Jul 2012 B2
8231041 Marczyk et al. Jul 2012 B2
8231042 Hessler et al. Jul 2012 B2
8231043 Tarinelli et al. Jul 2012 B2
8235272 Nicholas Aug 2012 B2
8236010 Ortiz et al. Aug 2012 B2
8236020 Smith et al. Aug 2012 B2
8237388 Jinno et al. Aug 2012 B2
8240537 Marczyk Aug 2012 B2
8241271 Millman et al. Aug 2012 B2
8241284 Dycus et al. Aug 2012 B2
8241308 Kortenbach et al. Aug 2012 B2
8241322 Whitman Aug 2012 B2
8245594 Rogers et al. Aug 2012 B2
8245898 Smith et al. Aug 2012 B2
8245899 Swensgard et al. Aug 2012 B2
8245900 Scirica Aug 2012 B2
8245901 Stopek Aug 2012 B2
8246608 Omori et al. Aug 2012 B2
8246637 Viola et al. Aug 2012 B2
8256654 Bettuchi et al. Sep 2012 B2
8256655 Sniffin et al. Sep 2012 B2
8256656 Milliman et al. Sep 2012 B2
8257251 Shelton, IV et al. Sep 2012 B2
8257356 Bleich et al. Sep 2012 B2
8257386 Lee et al. Sep 2012 B2
8257391 Orban, III et al. Sep 2012 B2
8257634 Scirica Sep 2012 B2
8258745 Smith et al. Sep 2012 B2
8262655 Ghabrial et al. Sep 2012 B2
8267300 Boudreaux Sep 2012 B2
8267924 Zemlok et al. Sep 2012 B2
8267946 Whitfield et al. Sep 2012 B2
8267951 Whayne et al. Sep 2012 B2
8269121 Smith Sep 2012 B2
8272553 Mastri et al. Sep 2012 B2
8272554 Whitman et al. Sep 2012 B2
8272918 Lam Sep 2012 B2
8273404 Dave et al. Sep 2012 B2
8276801 Zemlok et al. Oct 2012 B2
8276802 Kostrzewski Oct 2012 B2
8277473 Sunaoshi et al. Oct 2012 B2
8281446 Moskovich Oct 2012 B2
8281973 Wenchell et al. Oct 2012 B2
8281974 Hessler et al. Oct 2012 B2
8282654 Ferrari et al. Oct 2012 B2
8285367 Hyde et al. Oct 2012 B2
8286723 Puzio et al. Oct 2012 B2
8286845 Perry et al. Oct 2012 B2
8286846 Smith et al. Oct 2012 B2
8287522 Moses et al. Oct 2012 B2
8287561 Nunez et al. Oct 2012 B2
8292147 Viola Oct 2012 B2
8292150 Bryant Oct 2012 B2
8292151 Viola Oct 2012 B2
8292152 Milliman et al. Oct 2012 B2
8292155 Shelton, IV et al. Oct 2012 B2
8292157 Smith et al. Oct 2012 B2
8292888 Whitman Oct 2012 B2
8298161 Vargas Oct 2012 B2
8298189 Fisher et al. Oct 2012 B2
8298233 Mueller Oct 2012 B2
8298677 Wiesner et al. Oct 2012 B2
8302323 Fortier et al. Nov 2012 B2
8308040 Huang et al. Nov 2012 B2
8308042 Aranyi Nov 2012 B2
8308043 Bindra et al. Nov 2012 B2
8308046 Prommersberger Nov 2012 B2
8308659 Scheibe et al. Nov 2012 B2
8308725 Bell et al. Nov 2012 B2
8310188 Nakai Nov 2012 B2
8313496 Sauer et al. Nov 2012 B2
8313509 Kostrzewski Nov 2012 B2
8317070 Hueil et al. Nov 2012 B2
8317071 Knodel Nov 2012 B1
8317074 Ortiz et al. Nov 2012 B2
8317744 Kirschenman Nov 2012 B2
8317790 Bell et al. Nov 2012 B2
8319002 Daniels et al. Nov 2012 B2
8322455 Shelton, IV et al. Dec 2012 B2
8322589 Boudreaux Dec 2012 B2
8322590 Patel et al. Dec 2012 B2
8322901 Michelotti Dec 2012 B2
8323789 Rozhin et al. Dec 2012 B2
8328061 Kasvikis Dec 2012 B2
8328062 Viola Dec 2012 B2
8328063 Milliman et al. Dec 2012 B2
8328064 Racenet et al. Dec 2012 B2
8328802 Deville et al. Dec 2012 B2
8328823 Aranyi et al. Dec 2012 B2
8333313 Boudreaux et al. Dec 2012 B2
8333691 Schaaf Dec 2012 B2
8333764 Francischelli et al. Dec 2012 B2
8333779 Smith et al. Dec 2012 B2
8334468 Palmer et al. Dec 2012 B2
8336753 Olson et al. Dec 2012 B2
8336754 Cappola et al. Dec 2012 B2
8342377 Milliman et al. Jan 2013 B2
8342378 Marczyk et al. Jan 2013 B2
8342379 Whitman et al. Jan 2013 B2
8343150 Artale Jan 2013 B2
8347978 Forster et al. Jan 2013 B2
8348123 Scirica et al. Jan 2013 B2
8348124 Scirica Jan 2013 B2
8348125 Viola et al. Jan 2013 B2
8348126 Olson et al. Jan 2013 B2
8348127 Marczyk Jan 2013 B2
8348129 Bedi et al. Jan 2013 B2
8348130 Shah et al. Jan 2013 B2
8348131 Omaits et al. Jan 2013 B2
8348837 Wenchell Jan 2013 B2
8348959 Wolford et al. Jan 2013 B2
8348972 Soltz et al. Jan 2013 B2
8349987 Kapiamba et al. Jan 2013 B2
8353437 Boudreaux Jan 2013 B2
8353438 Baxter, III et al. Jan 2013 B2
8353439 Baxter, III et al. Jan 2013 B2
8356740 Knodel Jan 2013 B1
8357144 Whitman et al. Jan 2013 B2
8357161 Mueller Jan 2013 B2
8360296 Zingman Jan 2013 B2
8360297 Shelton, IV et al. Jan 2013 B2
8360298 Farascioni et al. Jan 2013 B2
8360299 Zemlok et al. Jan 2013 B2
8361501 DiTizio et al. Jan 2013 B2
8365973 White et al. Feb 2013 B1
8365975 Manoux et al. Feb 2013 B1
8365976 Hess et al. Feb 2013 B2
8366559 Papenfuss et al. Feb 2013 B2
8366787 Brown et al. Feb 2013 B2
8371393 Higuchi et al. Feb 2013 B2
8371491 Huitema et al. Feb 2013 B2
8371492 Aranyi et al. Feb 2013 B2
8371493 Aranyi et al. Feb 2013 B2
8371494 Racenet et al. Feb 2013 B2
8372094 Bettuchi et al. Feb 2013 B2
8376865 Forster et al. Feb 2013 B2
8377029 Nagao et al. Feb 2013 B2
8377044 Coe et al. Feb 2013 B2
8382773 Whitfield et al. Feb 2013 B2
8382790 Uenohara et al. Feb 2013 B2
8387848 Johnson et al. Mar 2013 B2
8388633 Rousseau et al. Mar 2013 B2
8389588 Ringelsen Mar 2013 B2
8393513 Jankowski Mar 2013 B2
8393514 Shelton, IV et al. Mar 2013 B2
8393516 Kostrzewski Mar 2013 B2
8397971 Yates et al. Mar 2013 B2
8397973 Hausen Mar 2013 B1
8398633 Mueller Mar 2013 B2
8398669 Kim Mar 2013 B2
8398673 Hinchliffe et al. Mar 2013 B2
8400851 Byun Mar 2013 B2
8403138 Weisshaupt et al. Mar 2013 B2
8403198 Sorrentino et al. Mar 2013 B2
8403832 Cunningham et al. Mar 2013 B2
8403945 Whitfield et al. Mar 2013 B2
8403946 Whitfield et al. Mar 2013 B2
8403950 Palmer et al. Mar 2013 B2
8408439 Huang et al. Apr 2013 B2
8408442 Racenet et al. Apr 2013 B2
8409079 Oakamoto et al. Apr 2013 B2
8409174 Omori Apr 2013 B2
8409175 Lee et al. Apr 2013 B2
8409222 Whitfield et al. Apr 2013 B2
8409223 Sorrentino et al. Apr 2013 B2
8411500 Gapihan et al. Apr 2013 B2
8413870 Pastorelli et al. Apr 2013 B2
8413871 Racenet et al. Apr 2013 B2
8413872 Patel Apr 2013 B2
8414577 Boudreaux et al. Apr 2013 B2
8418073 Mohr et al. Apr 2013 B2
8418906 Farascioni et al. Apr 2013 B2
8418908 Beardsley Apr 2013 B1
8418909 Kostrzewski Apr 2013 B2
8419717 Diolaiti et al. Apr 2013 B2
8419747 Hinman et al. Apr 2013 B2
8419754 Laby et al. Apr 2013 B2
8423182 Robinson et al. Apr 2013 B2
8424737 Scirica Apr 2013 B2
8424739 Racenet et al. Apr 2013 B2
8424740 Shelton, IV et al. Apr 2013 B2
8424741 McGuckin, Jr. et al. Apr 2013 B2
8425600 Maxwell Apr 2013 B2
8427430 Lee et al. Apr 2013 B2
8430292 Patel et al. Apr 2013 B2
8430892 Bindra et al. Apr 2013 B2
8430898 Wiener et al. Apr 2013 B2
8435257 Smith et al. May 2013 B2
8439246 Knodel et al. May 2013 B1
8444036 Shelton, IV May 2013 B2
8444037 Nicholas et al. May 2013 B2
8444549 Viola et al. May 2013 B2
8453904 Eskaros et al. Jun 2013 B2
8453906 Huang et al. Jun 2013 B2
8453907 Laurent et al. Jun 2013 B2
8453908 Bedi et al. Jun 2013 B2
8453912 Mastri et al. Jun 2013 B2
8453914 Laurent et al. Jun 2013 B2
8454495 Kawano et al. Jun 2013 B2
8454628 Smith et al. Jun 2013 B2
8454640 Johnston et al. Jun 2013 B2
8457757 Cauller et al. Jun 2013 B2
8459520 Giordano et al. Jun 2013 B2
8459521 Zemlok et al. Jun 2013 B2
8459525 Yates et al. Jun 2013 B2
8464922 Marczyk Jun 2013 B2
8464923 Shelton, IV Jun 2013 B2
8464924 Gresham et al. Jun 2013 B2
8464925 Hull et al. Jun 2013 B2
8465475 Isbell, Jr. Jun 2013 B2
8465502 Zergiebel Jun 2013 B2
8465515 Drew et al. Jun 2013 B2
8469946 Sugita Jun 2013 B2
8469973 Meade et al. Jun 2013 B2
8470355 Skalla et al. Jun 2013 B2
8474677 Woodard, Jr. et al. Jul 2013 B2
8475453 Marczyk et al. Jul 2013 B2
8475454 Alshemari Jul 2013 B1
8475474 Bombard et al. Jul 2013 B2
8479968 Hodgkinson et al. Jul 2013 B2
8479969 Shelton, IV Jul 2013 B2
8480703 Nicholas et al. Jul 2013 B2
8485412 Shelton, IV et al. Jul 2013 B2
8485413 Scheib et al. Jul 2013 B2
8485970 Widenhouse et al. Jul 2013 B2
8487199 Palmer et al. Jul 2013 B2
8490853 Criscuolo et al. Jul 2013 B2
8491581 Deville et al. Jul 2013 B2
8491603 Yeung et al. Jul 2013 B2
8496154 Marczyk et al. Jul 2013 B2
8496156 Sniffin et al. Jul 2013 B2
8496683 Prommersberger et al. Jul 2013 B2
8499992 Whitman et al. Aug 2013 B2
8499993 Shelton, IV et al. Aug 2013 B2
8500721 Jinno Aug 2013 B2
8500762 Sholev et al. Aug 2013 B2
8502091 Palmer et al. Aug 2013 B2
8505799 Viola et al. Aug 2013 B2
8505801 Ehrenfels et al. Aug 2013 B2
8506555 Ruiz Morales Aug 2013 B2
8506557 Zemlok et al. Aug 2013 B2
8506580 Zergiebel et al. Aug 2013 B2
8506581 Wingardner, III et al. Aug 2013 B2
8511308 Hecox et al. Aug 2013 B2
8512359 Whitman et al. Aug 2013 B2
8512402 Marczyk et al. Aug 2013 B2
8517239 Scheib et al. Aug 2013 B2
8517241 Nicholas et al. Aug 2013 B2
8517243 Giordano et al. Aug 2013 B2
8517244 Shelton, IV et al. Aug 2013 B2
8521273 Kliman Aug 2013 B2
8523043 Ullrich et al. Sep 2013 B2
8523881 Cabin et al. Sep 2013 B2
8523900 Jinno et al. Sep 2013 B2
8529588 Ahlberg et al. Sep 2013 B2
8529600 Woodard, Jr. et al. Sep 2013 B2
8529819 Ostapoff et al. Sep 2013 B2
8532747 Nock et al. Sep 2013 B2
8534528 Shelton, IV Sep 2013 B2
8535304 Sklar et al. Sep 2013 B2
8535340 Allen Sep 2013 B2
8540128 Shelton, IV et al. Sep 2013 B2
8540129 Baxter, III et al. Sep 2013 B2
8540130 Moore et al. Sep 2013 B2
8540131 Swayze Sep 2013 B2
8540133 Bedi et al. Sep 2013 B2
8540733 Whitman et al. Sep 2013 B2
8540735 Mitelberg et al. Sep 2013 B2
8550984 Takemoto Oct 2013 B2
8551076 Duval et al. Oct 2013 B2
8555660 Takenaka et al. Oct 2013 B2
8556151 Viola Oct 2013 B2
8556918 Bauman et al. Oct 2013 B2
8556935 Knodel et al. Oct 2013 B1
8560147 Taylor et al. Oct 2013 B2
8561617 Lindh et al. Oct 2013 B2
8561870 Baxter, III et al. Oct 2013 B2
8561871 Rajappa et al. Oct 2013 B2
8561873 Ingmanson et al. Oct 2013 B2
8562598 Falkenstein et al. Oct 2013 B2
8567656 Shelton, IV et al. Oct 2013 B2
8568416 Schmitz et al. Oct 2013 B2
8568425 Ross et al. Oct 2013 B2
8573459 Smith et al. Nov 2013 B2
8573461 Shelton, IV et al. Nov 2013 B2
8573462 Smith et al. Nov 2013 B2
8573465 Shelton, IV et al. Nov 2013 B2
8574199 von Bülow et al. Nov 2013 B2
8574263 Mueller Nov 2013 B2
8575880 Grantz Nov 2013 B2
8579176 Smith et al. Nov 2013 B2
8579178 Holsten et al. Nov 2013 B2
8579897 Vakharia et al. Nov 2013 B2
8579937 Gresham Nov 2013 B2
8584919 Hueil et al. Nov 2013 B2
8584920 Hodgkinson Nov 2013 B2
8584921 Scirica Nov 2013 B2
8585583 Sakaguchi et al. Nov 2013 B2
8585721 Kirsch Nov 2013 B2
8590760 Cummins et al. Nov 2013 B2
8590762 Hess et al. Nov 2013 B2
8590764 Hartwick et al. Nov 2013 B2
8596515 Okoniewski Dec 2013 B2
8597745 Farnsworth et al. Dec 2013 B2
8599450 Kubo et al. Dec 2013 B2
8602287 Yates et al. Dec 2013 B2
8602288 Shelton, IV et al. Dec 2013 B2
8603077 Cooper et al. Dec 2013 B2
8603089 Viola Dec 2013 B2
8603110 Maruyama et al. Dec 2013 B2
8603135 Mueller Dec 2013 B2
8608043 Scirica Dec 2013 B2
8608044 Hueil et al. Dec 2013 B2
8608045 Smith et al. Dec 2013 B2
8608046 Laurent et al. Dec 2013 B2
8608745 Guzman et al. Dec 2013 B2
8613383 Beckman et al. Dec 2013 B2
8616427 Viola Dec 2013 B2
8616431 Timm et al. Dec 2013 B2
8622274 Yates et al. Jan 2014 B2
8622275 Baxter, III et al. Jan 2014 B2
8627993 Smith et al. Jan 2014 B2
8627995 Smith et al. Jan 2014 B2
8628518 Blumenkranz et al. Jan 2014 B2
8628545 Cabrera et al. Jan 2014 B2
8631987 Shelton, IV et al. Jan 2014 B2
8631992 Hausen et al. Jan 2014 B1
8631993 Kostrzewski Jan 2014 B2
8632462 Yoo et al. Jan 2014 B2
8632525 Kerr et al. Jan 2014 B2
8632535 Shelton, IV et al. Jan 2014 B2
8632563 Nagase et al. Jan 2014 B2
8636187 Hueil et al. Jan 2014 B2
8636191 Meagher Jan 2014 B2
8636193 Whitman et al. Jan 2014 B2
8636736 Yates et al. Jan 2014 B2
8636766 Milliman et al. Jan 2014 B2
8639936 Hu et al. Jan 2014 B2
8640788 Dachs, II et al. Feb 2014 B2
8646674 Schulte et al. Feb 2014 B2
8647258 Aranyi et al. Feb 2014 B2
8652120 Giordano et al. Feb 2014 B2
8652151 Lehman et al. Feb 2014 B2
8657174 Yates et al. Feb 2014 B2
8657175 Sonnenschein et al. Feb 2014 B2
8657176 Shelton, IV et al. Feb 2014 B2
8657177 Scirica et al. Feb 2014 B2
8657178 Hueil et al. Feb 2014 B2
8657482 Malackowski et al. Feb 2014 B2
8657808 McPherson et al. Feb 2014 B2
8657814 Werneth et al. Feb 2014 B2
8657821 Palermo Feb 2014 B2
8662370 Takei Mar 2014 B2
8663106 Stivoric et al. Mar 2014 B2
8663192 Hester et al. Mar 2014 B2
8663245 Francischelli et al. Mar 2014 B2
8663262 Smith et al. Mar 2014 B2
8663270 Donnigan et al. Mar 2014 B2
8664792 Rebsdorf Mar 2014 B2
8668129 Olson Mar 2014 B2
8668130 Hess et al. Mar 2014 B2
8672206 Aranyi et al. Mar 2014 B2
8672207 Shelton, IV et al. Mar 2014 B2
8672208 Hess et al. Mar 2014 B2
8672922 Loh et al. Mar 2014 B2
8672935 Okada et al. Mar 2014 B2
8672951 Smith et al. Mar 2014 B2
8673210 Deshays Mar 2014 B2
8675820 Baic et al. Mar 2014 B2
8678263 Viola Mar 2014 B2
8679093 Farra Mar 2014 B2
8679098 Hart Mar 2014 B2
8679137 Bauman et al. Mar 2014 B2
8679154 Smith et al. Mar 2014 B2
8679156 Smith et al. Mar 2014 B2
8679454 Guire et al. Mar 2014 B2
8634250 Bettuchi et al. Apr 2014 B2
8684248 Milliman Apr 2014 B2
8684249 Racenet et al. Apr 2014 B2
8684253 Giordano et al. Apr 2014 B2
8684962 Kirschenman et al. Apr 2014 B2
8685004 Zemlock et al. Apr 2014 B2
8685020 Weizman et al. Apr 2014 B2
8695866 Leimbach et al. Apr 2014 B2
8696665 Hunt et al. Apr 2014 B2
8701958 Shelton, IV et al. Apr 2014 B2
8701959 Shah Apr 2014 B2
8708210 Zemlok et al. Apr 2014 B2
8708211 Zemlok et al. Apr 2014 B2
8708213 Shelton, IV et al. Apr 2014 B2
8714352 Farascioni et al. May 2014 B2
8714429 Demmy May 2014 B2
8714430 Natarajan et al. May 2014 B2
8715256 Greener May 2014 B2
8715302 Ibrahim et al. May 2014 B2
8720766 Hess et al. May 2014 B2
8721630 Ortiz et al. May 2014 B2
8721666 Schroeder et al. May 2014 B2
8727197 Hess et al. May 2014 B2
8727199 Wenchell May 2014 B2
8727200 Roy May 2014 B2
8727961 Ziv May 2014 B2
8728099 Cohn et al. May 2014 B2
8728119 Cummins May 2014 B2
8733470 Matthias et al. May 2014 B2
8733612 Ma May 2014 B2
8733613 Huitema et al. May 2014 B2
8733614 Ross et al. May 2014 B2
8734336 Bonadio et al. May 2014 B2
8734359 Ibanez et al. May 2014 B2
8734478 Widenhouse et al. May 2014 B2
8739033 Rosenberg May 2014 B2
8739417 Tokunaga et al. Jun 2014 B2
8740034 Morgan et al. Jun 2014 B2
8740037 Shelton, IV et al. Jun 2014 B2
8740038 Shelton, IV et al. Jun 2014 B2
8740987 Geremakis et al. Jun 2014 B2
8746529 Shelton, IV et al. Jun 2014 B2
8746530 Giordano et al. Jun 2014 B2
8746533 Whitman et al. Jun 2014 B2
8746535 Shelton, IV et al. Jun 2014 B2
8747238 Shelton, IV et al. Jun 2014 B2
8747441 Konieczynski et al. Jun 2014 B2
8752264 Ackley et al. Jun 2014 B2
8752699 Morgan et al. Jun 2014 B2
8752747 Shelton, IV et al. Jun 2014 B2
8752748 Whitman et al. Jun 2014 B2
8752749 Moore et al. Jun 2014 B2
8757287 Mak et al. Jun 2014 B2
8757465 Woodard, Jr. et al. Jun 2014 B2
8758235 Jaworek Jun 2014 B2
8758366 McLean et al. Jun 2014 B2
8758391 Swayze et al. Jun 2014 B2
8758438 Boyce et al. Jun 2014 B2
8763875 Morgan et al. Jul 2014 B2
8763877 Schall et al. Jul 2014 B2
8763879 Shelton, IV et al. Jul 2014 B2
8764732 Hartwell Jul 2014 B2
8770458 Scirica Jul 2014 B2
8770459 Racenet et al. Jul 2014 B2
8770460 Belzer Jul 2014 B2
8771169 Whitman et al. Jul 2014 B2
8777004 Shelton, IV et al. Jul 2014 B2
8777082 Scirica Jul 2014 B2
8777083 Racenet et al. Jul 2014 B2
8777898 Suon et al. Jul 2014 B2
8783541 Shelton, IV et al. Jul 2014 B2
8783542 Riestenberg et al. Jul 2014 B2
8783543 Shelton, IV et al. Jul 2014 B2
8784304 Mikkaichi et al. Jul 2014 B2
8784404 Doyle et al. Jul 2014 B2
8784415 Malackowski et al. Jul 2014 B2
8789737 Hodgkinson et al. Jul 2014 B2
8789739 Swensgard Jul 2014 B2
8789740 Baxter, III et al. Jul 2014 B2
8789741 Baxter, III et al. Jul 2014 B2
8790658 Cigarini et al. Jul 2014 B2
8790684 Dave et al. Jul 2014 B2
8794496 Scirica Aug 2014 B2
8794497 Zingman Aug 2014 B2
8795276 Dietz et al. Aug 2014 B2
8795308 Valin Aug 2014 B2
8795324 Kawai et al. Aug 2014 B2
8800681 Rousson et al. Aug 2014 B2
8800837 Zemlok Aug 2014 B2
8800838 Shelton, IV Aug 2014 B2
8800839 Beetel Aug 2014 B2
8800840 Jankowski Aug 2014 B2
8800841 Ellerhorst et al. Aug 2014 B2
8801734 Shelton, IV et al. Aug 2014 B2
8801735 Shelton, IV et al. Aug 2014 B2
8801752 Fortier et al. Aug 2014 B2
8806973 Ross et al. Aug 2014 B2
8807414 Ross et al. Aug 2014 B2
8808161 Gregg et al. Aug 2014 B2
8808274 Hartwell Aug 2014 B2
8808294 Fox et al. Aug 2014 B2
8808308 Boukhny et al. Aug 2014 B2
8808311 Heinrich et al. Aug 2014 B2
8808325 Hess et al. Aug 2014 B2
8810197 Juergens Aug 2014 B2
8811017 Fujii et al. Aug 2014 B2
8813866 Suzuki Aug 2014 B2
8814024 Woodard, Jr. et al. Aug 2014 B2
8814025 Miller et al. Aug 2014 B2
8820603 Shelton, IV et al. Sep 2014 B2
8820605 Shelton, IV Sep 2014 B2
8820606 Hodgkinson Sep 2014 B2
8820607 Marczyk Sep 2014 B2
8822934 Sayeh et al. Sep 2014 B2
8825164 Tweden et al. Sep 2014 B2
8827133 Shelton, IV et al. Sep 2014 B2
8827134 Viola et al. Sep 2014 B2
8827903 Shelton, IV et al. Sep 2014 B2
8833219 Pierce Sep 2014 B2
8833630 Milliman Sep 2014 B2
8833632 Swensgard Sep 2014 B2
8834498 Byrum et al. Sep 2014 B2
8840003 Morgan et al. Sep 2014 B2
8840603 Shelton, IV et al. Sep 2014 B2
8840609 Stuebe Sep 2014 B2
8844789 Shelton, IV et al. Sep 2014 B2
8851215 Goto Oct 2014 B2
8851354 Swensgard et al. Oct 2014 B2
8852185 Twomey Oct 2014 B2
8852199 Deslauriers et al. Oct 2014 B2
8857693 Schuckmann et al. Oct 2014 B2
8857694 Shelton, IV et al. Oct 2014 B2
8858538 Belson et al. Oct 2014 B2
8858571 Shelton, IV et al. Oct 2014 B2
8858590 Shelton, IV et al. Oct 2014 B2
8864007 Widenhouse et al. Oct 2014 B2
8864009 Shelton, IV et al. Oct 2014 B2
8864010 Williams Oct 2014 B2
8870050 Hodgkinson Oct 2014 B2
8870912 Brisson et al. Oct 2014 B2
8875971 Hall et al. Nov 2014 B2
8875972 Weisenburgh, II et al. Nov 2014 B2
8876857 Burbank Nov 2014 B2
8876858 Braun Nov 2014 B2
8887979 Mastri et al. Nov 2014 B2
8888688 Julian et al. Nov 2014 B2
8888695 Piskun et al. Nov 2014 B2
8888792 Harris et al. Nov 2014 B2
8888809 Davison et al. Nov 2014 B2
8893946 Boudreaux et al. Nov 2014 B2
8893949 Shelton, IV et al. Nov 2014 B2
8894647 Beardsley et al. Nov 2014 B2
8894654 Anderson Nov 2014 B2
8899460 Wojcicki Dec 2014 B2
8899461 Farascioni Dec 2014 B2
8899463 Schall et al. Dec 2014 B2
8899464 Hueil et al. Dec 2014 B2
8899465 Shelton, IV et al. Dec 2014 B2
8899466 Baxter, III et al. Dec 2014 B2
8905287 Racenet et al. Dec 2014 B2
8905977 Shelton et al. Dec 2014 B2
8910846 Viola Dec 2014 B2
8911426 Coppeta et al. Dec 2014 B2
8911448 Stein Dec 2014 B2
8911460 Neurohr et al. Dec 2014 B2
8911471 Spivey et al. Dec 2014 B2
8920433 Barrier et al. Dec 2014 B2
8920435 Smith et al. Dec 2014 B2
8920438 Aranyi et al. Dec 2014 B2
8920443 Hiles et al. Dec 2014 B2
8920444 Hiles et al. Dec 2014 B2
8922163 Macdonald Dec 2014 B2
8925782 Shelton, IV Jan 2015 B2
8925783 Zemlok et al. Jan 2015 B2
8925788 Hess et al. Jan 2015 B2
8926506 Widenhouse et al. Jan 2015 B2
8926598 Mollere et al. Jan 2015 B2
8931576 Iwata Jan 2015 B2
8931679 Kostrzewski Jan 2015 B2
8931680 Milliman Jan 2015 B2
8931682 Timm et al. Jan 2015 B2
8936614 Allen, IV Jan 2015 B2
8939343 Milliman et al. Jan 2015 B2
8939344 Olson et al. Jan 2015 B2
8945163 Voegele et al. Feb 2015 B2
8955732 Zemlok et al. Feb 2015 B2
8956342 Russo et al. Feb 2015 B1
8956390 Shah et al. Feb 2015 B2
8958860 Banerjee et al. Feb 2015 B2
8960519 Whitman et al. Feb 2015 B2
8960520 McCuen Feb 2015 B2
8960521 Kostrzewski Feb 2015 B2
8961504 Hoarau et al. Feb 2015 B2
8963714 Medhal et al. Feb 2015 B2
8967443 McCuen Mar 2015 B2
8967444 Beetel Mar 2015 B2
8967446 Beardsley et al. Mar 2015 B2
8967448 Carter et al. Mar 2015 B2
8968276 Zemlok et al. Mar 2015 B2
8968312 Marczyk et al. Mar 2015 B2
8968337 Whitfield et al. Mar 2015 B2
8968340 Chowaniec et al. Mar 2015 B2
8968355 Malkowski et al. Mar 2015 B2
8968358 Reschke Mar 2015 B2
8970507 Holbein et al. Mar 2015 B2
8973803 Hall et al. Mar 2015 B2
8973804 Hess et al. Mar 2015 B2
8974440 Farritor et al. Mar 2015 B2
8978954 Shelton, IV et al. Mar 2015 B2
8978955 Aronhalt et al. Mar 2015 B2
8978956 Schall et al. Mar 2015 B2
8979843 Timm et al. Mar 2015 B2
8979890 Boudreaux Mar 2015 B2
8982195 Claus et al. Mar 2015 B2
8991676 Hess et al. Mar 2015 B2
8991677 Moore et al. Mar 2015 B2
8991678 Wellman et al. Mar 2015 B2
8992042 Eichenholz Mar 2015 B2
8992422 Spivey et al. Mar 2015 B2
8992565 Brisson et al. Mar 2015 B2
8996165 Wang et al. Mar 2015 B2
8998058 Moore et al. Apr 2015 B2
8998059 Smith et al. Apr 2015 B2
8998061 Williams et al. Apr 2015 B2
9002518 Manzo et al. Apr 2015 B2
9004339 Park Apr 2015 B1
9005230 Yates et al. Apr 2015 B2
9005238 DeSantis et al. Apr 2015 B2
9005243 Stopek et al. Apr 2015 B2
9010606 Aranyi et al. Apr 2015 B2
9010608 Casasanta, Jr. et al. Apr 2015 B2
9011439 Shalaby et al. Apr 2015 B2
9011471 Timm et al. Apr 2015 B2
9016539 Kostrzewski et al. Apr 2015 B2
9016540 Whitman et al. Apr 2015 B2
9016541 Viola et al. Apr 2015 B2
9016542 Shelton, IV et al. Apr 2015 B2
9016545 Aranyi et al. Apr 2015 B2
9017331 Fox Apr 2015 B2
9017355 Smith et al. Apr 2015 B2
9017369 Renger et al. Apr 2015 B2
9017371 Whitman et al. Apr 2015 B2
9021684 Lenker et al. May 2015 B2
9023014 Chowaniec et al. May 2015 B2
9023071 Miller et al. May 2015 B2
9027817 Milliman et al. May 2015 B2
9028494 Shelton, IV et al. May 2015 B2
9028495 Mueller et al. May 2015 B2
9028519 Yates et al. May 2015 B2
9030169 Christensen et al. May 2015 B2
9033203 Woodard, Jr. et al. May 2015 B2
9033204 Shelton, IV et al. May 2015 B2
9034505 Detry et al. May 2015 B2
9038881 Schaller et al. May 2015 B1
9039690 Kersten et al. May 2015 B2
9039694 Ross et al. May 2015 B2
9039720 Madan May 2015 B2
9043027 Durant et al. May 2015 B2
9044227 Shelton, IV et al. Jun 2015 B2
9044228 Woodard, Jr. et al. Jun 2015 B2
9044229 Scheib et al. Jun 2015 B2
9044230 Morgan et al. Jun 2015 B2
9050083 Yates et al. Jun 2015 B2
9050084 Schmid et al. Jun 2015 B2
9050100 Yates et al. Jun 2015 B2
9050120 Swarup et al. Jun 2015 B2
9050123 Krause et al. Jun 2015 B2
9055941 Schmid et al. Jun 2015 B2
9055942 Balbierz et al. Jun 2015 B2
9055944 Hodgkinson et al. Jun 2015 B2
9055961 Manzo et al. Jun 2015 B2
9060770 Shelton, IV et al. Jun 2015 B2
9060776 Yates et al. Jun 2015 B2
9060794 Kang et al. Jun 2015 B2
9060894 Wubbeling Jun 2015 B2
9061392 Forgues et al. Jun 2015 B2
9072515 Hall et al. Jul 2015 B2
9072523 Houser et al. Jul 2015 B2
9072536 Shelton, IV et al. Jul 2015 B2
9078653 Leimbach et al. Jul 2015 B2
9084601 Moore et al. Jul 2015 B2
9084602 Glieman Jul 2015 B2
9086875 Harrat et al. Jul 2015 B2
9089326 Krumanaker et al. Jul 2015 B2
9089330 Widenhouse et al. Jul 2015 B2
9089352 Jeong Jul 2015 B2
9091588 Lefler Jul 2015 B2
9095339 Moore et al. Aug 2015 B2
9095346 Houser et al. Aug 2015 B2
9095362 Dachs, II et al. Aug 2015 B2
9096033 Holop et al. Aug 2015 B2
9099863 Smith et al. Aug 2015 B2
9101385 Shelton, IV et al. Aug 2015 B2
9101475 Wei et al. Aug 2015 B2
9107663 Swensgard Aug 2015 B2
9107690 Bales, Jr. et al. Aug 2015 B2
9110587 Kim et al. Aug 2015 B2
9113862 Morgan et al. Aug 2015 B2
9113864 Morgan et al. Aug 2015 B2
9113865 Shelton, IV et al. Aug 2015 B2
9113873 Marczyk et al. Aug 2015 B2
9113874 Shelton, IV et al. Aug 2015 B2
9113876 Zemlok et al. Aug 2015 B2
9113880 Zemlok et al. Aug 2015 B2
9113881 Scirica Aug 2015 B2
9113883 Aronhalt et al. Aug 2015 B2
9113884 Shelton, IV et al. Aug 2015 B2
9113887 Behnke, II et al. Aug 2015 B2
9119657 Shelton, IV et al. Sep 2015 B2
9119898 Bayon et al. Sep 2015 B2
9119957 Gantz et al. Sep 2015 B2
9123286 Park Sep 2015 B2
9124097 Cruz Sep 2015 B2
9125654 Aronhalt et al. Sep 2015 B2
9125662 Shelton, IV Sep 2015 B2
9126317 Lawton et al. Sep 2015 B2
9131835 Widenhouse et al. Sep 2015 B2
9131940 Huitema et al. Sep 2015 B2
9131950 Matthew Sep 2015 B2
9131957 Sharbnik et al. Sep 2015 B2
9138225 Huang et al. Sep 2015 B2
9138226 Racenet et al. Sep 2015 B2
9144455 Kennedy et al. Sep 2015 B2
9149274 Spivey et al. Oct 2015 B2
9149324 Huang et al. Oct 2015 B2
9149325 Worrell et al. Oct 2015 B2
9153994 Wood et al. Oct 2015 B2
9161753 Prior Oct 2015 B2
9161803 Yates et al. Oct 2015 B2
9168038 Shelton, IV et al. Oct 2015 B2
9168039 Knodel Oct 2015 B1
9168054 Turner et al. Oct 2015 B2
9168144 Rivin et al. Oct 2015 B2
9179911 Morgan et al. Nov 2015 B2
9179912 Yates et al. Nov 2015 B2
9182244 Luke et al. Nov 2015 B2
9186046 Ramamurthy et al. Nov 2015 B2
9186137 Farascioni et al. Nov 2015 B2
9186140 Hiles et al. Nov 2015 B2
9186142 Fanelli et al. Nov 2015 B2
9186143 Timm et al. Nov 2015 B2
9186148 Felder et al. Nov 2015 B2
9186221 Burbank Nov 2015 B2
9192380 (Tarinelli) Racenet et al. Nov 2015 B2
9192384 Bettuchi Nov 2015 B2
9192430 Rachlin et al. Nov 2015 B2
9192434 Twomey et al. Nov 2015 B2
9193045 Saur et al. Nov 2015 B2
9198642 Storz Dec 2015 B2
9198644 Balek et al. Dec 2015 B2
9198661 Swensgard Dec 2015 B2
9198662 Barton et al. Dec 2015 B2
9198683 Friedman et al. Dec 2015 B2
9204830 Zand et al. Dec 2015 B2
9204877 Whitman et al. Dec 2015 B2
9204878 Hall et al. Dec 2015 B2
9204879 Shelton, IV Dec 2015 B2
9204880 Baxter, III et al. Dec 2015 B2
9204923 Manzo et al. Dec 2015 B2
9204924 Marczyk et al. Dec 2015 B2
9211120 Scheib et al. Dec 2015 B2
9211121 Hall et al. Dec 2015 B2
9211122 Hagerty et al. Dec 2015 B2
9216013 Scirica et al. Dec 2015 B2
9216019 Schmid et al. Dec 2015 B2
9216020 Zhang et al. Dec 2015 B2
9216030 Fan et al. Dec 2015 B2
9216062 Duque et al. Dec 2015 B2
9220500 Swayze et al. Dec 2015 B2
9220501 Baxter, III et al. Dec 2015 B2
9220502 Zemlok et al. Dec 2015 B2
9220508 Dannaher Dec 2015 B2
9220559 Worrell et al. Dec 2015 B2
9220570 Kim et al. Dec 2015 B2
9226750 Weir et al. Jan 2016 B2
9226751 Shelton, IV et al. Jan 2016 B2
9226767 Stulen et al. Jan 2016 B2
9232941 Mandakolathur Vasudevan et al. Jan 2016 B2
9232945 Zingman Jan 2016 B2
9232979 Parihar et al. Jan 2016 B2
9233610 Kim et al. Jan 2016 B2
9237891 Shelton, IV Jan 2016 B2
9237892 Hodgkinson Jan 2016 B2
9237895 McCarthy et al. Jan 2016 B2
9237921 Messerly et al. Jan 2016 B2
9240740 Zeng et al. Jan 2016 B2
9241714 Timm et al. Jan 2016 B2
9241716 Whitman Jan 2016 B2
9241731 Boudreaux et al. Jan 2016 B2
9259274 Prisco Feb 2016 B2
9261172 Solomon et al. Feb 2016 B2
9265500 Sorrentino et al. Feb 2016 B2
9265516 Casey et al. Feb 2016 B2
9265585 Wingardner et al. Feb 2016 B2
9239256 Shelton, IV et al. Mar 2016 B2
9271718 Milad et al. Mar 2016 B2
9271727 McGuckin, Jr. et al. Mar 2016 B2
9271753 Butler et al. Mar 2016 B2
9271799 Shelton, IV et al. Mar 2016 B2
9272406 Aronhalt et al. Mar 2016 B2
9277919 Timmer et al. Mar 2016 B2
9277922 Carter et al. Mar 2016 B2
9282962 Schmid et al. Mar 2016 B2
9282963 Bryant Mar 2016 B2
9282966 Shelton, IV et al. Mar 2016 B2
9282974 Shelton, IV Mar 2016 B2
9283028 Johnson Mar 2016 B2
9283045 Rhee et al. Mar 2016 B2
9283054 Morgan et al. Mar 2016 B2
9289206 Hess et al. Mar 2016 B2
9289207 Shelton, IV Mar 2016 B2
9289210 Baxter, III et al. Mar 2016 B2
9289211 Williams et al. Mar 2016 B2
9289212 Shelton, IV et al. Mar 2016 B2
9289225 Shelton, IV et al. Mar 2016 B2
9293757 Chellew Mar 2016 B2
9295464 Shelton, IV et al. Mar 2016 B2
9295465 Farascioni Mar 2016 B2
9295466 Hodgkinson et al. Mar 2016 B2
9295468 Heinrich et al. Mar 2016 B2
9295514 Shelton, IV et al. Mar 2016 B2
9295522 Kostrzewski Mar 2016 B2
9295784 Eggert et al. Mar 2016 B2
9301691 Hufnagel et al. Apr 2016 B2
9301752 Mandakolathur Vasudevan et al. Apr 2016 B2
9301753 Aldridge et al. Apr 2016 B2
9301755 Shelton, IV et al. Apr 2016 B2
9301759 Spivey et al. Apr 2016 B2
9307965 Ming et al. Apr 2016 B2
9307987 Swensgard et al. Apr 2016 B2
9307988 Shelton, IV Apr 2016 B2
9307989 Shelton, IV et al. Apr 2016 B2
9307994 Gresham et al. Apr 2016 B2
9308009 Madan et al. Apr 2016 B2
9308011 Chao et al. Apr 2016 B2
9314246 Shelton, IV et al. Apr 2016 B2
9314247 Shelton, IV et al. Apr 2016 B2
9314261 Bales, Jr. et al. Apr 2016 B2
9314908 Tanimoto et al. Apr 2016 B2
9320518 Henderson et al. Apr 2016 B2
9320520 Shelton, IV et al. Apr 2016 B2
9320521 Shelton, IV et al. Apr 2016 B2
9320523 Shelton, IV et al. Apr 2016 B2
9326768 Shelton, IV May 2016 B2
9326769 Shelton, IV et al. May 2016 B2
9326770 Shelton, IV et al. May 2016 B2
9326771 Baxter, III et al. May 2016 B2
9326788 Batross et al. May 2016 B2
9326812 Waaler et al. May 2016 B2
9332890 Ozawa May 2016 B2
9332974 Henderson et al. May 2016 B2
9332984 Weaner et al. May 2016 B2
9333040 Shellenberger et al. May 2016 B2
9333082 Wei et al. May 2016 B2
9339226 van der Walt et al. May 2016 B2
9345477 Anim et al. May 2016 B2
9345480 Hessler et al. May 2016 B2
9351728 Sniffin et al. May 2016 B2
9351730 Schmid et al. May 2016 B2
9351731 Carter et al. May 2016 B2
9351732 Hodgkinson May 2016 B2
9358005 Shelton, IV et al. Jun 2016 B2
9358015 Sorrentino et al. Jun 2016 B2
9358031 Manzo Jun 2016 B2
9364217 Kostrzewski et al. Jun 2016 B2
9364219 Olson et al. Jun 2016 B2
9364220 Williams Jun 2016 B2
9364226 Zemlok et al. Jun 2016 B2
9364229 D'Agostino et al. Jun 2016 B2
9364230 Shelton, IV et al. Jun 2016 B2
9364231 Wenchell Jun 2016 B2
9364233 Alexander, III et al. Jun 2016 B2
9364279 Houser et al. Jun 2016 B2
9368991 Qahouq Jun 2016 B2
9370341 Ceniccola et al. Jun 2016 B2
9370358 Shelton, IV et al. Jun 2016 B2
9370364 Smith et al. Jun 2016 B2
9375206 Vidal et al. Jun 2016 B2
9375255 Houser et al. Jun 2016 B2
9381058 Houser et al. Jul 2016 B2
9386984 Aronhalt et al. Jul 2016 B2
9386985 Koch, Jr. et al. Jul 2016 B2
9386988 Baxter, III et al. Jul 2016 B2
9387003 Kaercher et al. Jul 2016 B2
9393015 Laurent et al. Jul 2016 B2
9393017 Flanagan et al. Jul 2016 B2
9393018 Wang et al. Jul 2016 B2
9402604 Williams et al. Aug 2016 B2
9402626 Ortiz et al. Aug 2016 B2
9402627 Stevenson et al. Aug 2016 B2
9408604 Shelton, IV et al. Aug 2016 B2
9408606 Shelton, IV Aug 2016 B2
9408622 Stulen et al. Aug 2016 B2
9411370 Benni et al. Aug 2016 B2
9414838 Shelton, IV et al. Aug 2016 B2
9414849 Nagashimada Aug 2016 B2
9414880 Monson et al. Aug 2016 B2
9420967 Zand et al. Aug 2016 B2
9421003 Williams et al. Aug 2016 B2
9421014 Ingmanson et al. Aug 2016 B2
9421030 Cole et al. Aug 2016 B2
9421060 Monson et al. Aug 2016 B2
9427223 Park et al. Aug 2016 B2
9427231 Racenet et al. Aug 2016 B2
9433411 Racenet et al. Sep 2016 B2
9433419 Gonzalez et al. Sep 2016 B2
9433420 Hodgkinson Sep 2016 B2
9439649 Shelton, IV et al. Sep 2016 B2
9439650 McGuckin, Jr. et al. Sep 2016 B2
9439651 Smith et al. Sep 2016 B2
9445808 Woodard, Jr. et al. Sep 2016 B2
9445813 Shelton, IV et al. Sep 2016 B2
9451958 Shelton, IV et al. Sep 2016 B2
9461340 Li et al. Oct 2016 B2
9463040 Jeong et al. Oct 2016 B2
9463260 Stopek Oct 2016 B2
9468447 Aman et al. Oct 2016 B2
9470297 Aranyi et al. Oct 2016 B2
9471969 Zeng et al. Oct 2016 B2
9474506 Magnin et al. Oct 2016 B2
9474523 Meade et al. Oct 2016 B2
9474540 Stokes et al. Oct 2016 B2
9475180 Eshleman et al. Oct 2016 B2
9480476 Aldridge et al. Nov 2016 B2
9480492 Aranyi et al. Nov 2016 B2
9483095 Tran et al. Nov 2016 B2
9486186 Fiebig et al. Nov 2016 B2
9486213 Altman et al. Nov 2016 B2
9486214 Shelton, IV Nov 2016 B2
9486302 Boey et al. Nov 2016 B2
9488197 Wi Nov 2016 B2
9492146 Kostrzewski et al. Nov 2016 B2
9492167 Shelton, IV et al. Nov 2016 B2
9492170 Bear et al. Nov 2016 B2
9492189 Williams et al. Nov 2016 B2
9492192 To et al. Nov 2016 B2
9498213 Marczyk et al. Nov 2016 B2
9498219 Moore et al. Nov 2016 B2
9504521 Deutmeyer et al. Nov 2016 B2
D775336 Shelton, IV et al. Dec 2016 S
9510828 Yates et al. Dec 2016 B2
9510830 Shelton, IV et al. Dec 2016 B2
9510846 Sholev et al. Dec 2016 B2
9510895 Houser et al. Dec 2016 B2
9510925 Hotter et al. Dec 2016 B2
9517063 Swayze et al. Dec 2016 B2
9517068 Shelton, IV et al. Dec 2016 B2
9521996 Armstrong Dec 2016 B2
9522029 Yates et al. Dec 2016 B2
9526481 Storz et al. Dec 2016 B2
9526499 Kostrzewski et al. Dec 2016 B2
9526564 Rusin Dec 2016 B2
9532783 Swayze et al. Jan 2017 B2
9545258 Smith et al. Jan 2017 B2
9549732 Yates et al. Jan 2017 B2
9549735 Shelton, IV et al. Jan 2017 B2
9554796 Kostrzewski Jan 2017 B2
9554812 Inkpen et al. Jan 2017 B2
9559624 Philipp Jan 2017 B2
9561031 Heinrich et al. Feb 2017 B2
9561032 Shelton, IV et al. Feb 2017 B2
9561038 Shelton, IV et al. Feb 2017 B2
9561045 Hinman et al. Feb 2017 B2
9566061 Aronhalt et al. Feb 2017 B2
9566067 Milliman et al. Feb 2017 B2
9572574 Shelton, IV et al. Feb 2017 B2
9572577 Lloyd et al. Feb 2017 B2
9572592 Price et al. Feb 2017 B2
9574644 Parihar Feb 2017 B2
9585550 Abel et al. Mar 2017 B2
9585657 Shelton, IV et al. Mar 2017 B2
9585658 Shelton, IV Mar 2017 B2
9585659 Viola et al. Mar 2017 B2
9585660 Laurent et al. Mar 2017 B2
9585662 Shelton, IV et al. Mar 2017 B2
9585663 Shelton, IV et al. Mar 2017 B2
9585672 Bastia Mar 2017 B2
9592050 Schmid et al. Mar 2017 B2
9592052 Shelton, IV Mar 2017 B2
9592053 Shelton, IV et al. Mar 2017 B2
9592054 Schmid et al. Mar 2017 B2
9597073 Sorrentino et al. Mar 2017 B2
9597075 Shelton, IV et al. Mar 2017 B2
9597080 Milliman et al. Mar 2017 B2
9597104 Nicholas et al. Mar 2017 B2
9597143 Madan et al. Mar 2017 B2
9603595 Shelton, IV et al. Mar 2017 B2
9603598 Shelton, IV et al. Mar 2017 B2
9603991 Shelton, IV et al. Mar 2017 B2
9610080 Whitfield et al. Apr 2017 B2
9614258 Takahashi et al. Apr 2017 B2
9615826 Shelton, IV et al. Apr 2017 B2
9629626 Soltz et al. Apr 2017 B2
9629629 Leimbach et al. Apr 2017 B2
9629652 Mumaw et al. Apr 2017 B2
9629814 Widenhouse et al. Apr 2017 B2
9636850 Stopek et al. May 2017 B2
9642620 Baxter, III et al. May 2017 B2
9649096 Sholev May 2017 B2
9649111 Shelton, IV et al. May 2017 B2
9655613 Schaller May 2017 B2
9655614 Swensgard et al. May 2017 B2
9655615 Knodel et al. May 2017 B2
9655624 Shelton, IV et al. May 2017 B2
9662108 Williams May 2017 B2
9662110 Huang et al. May 2017 B2
9662116 Smith et al. May 2017 B2
9662131 Omori et al. May 2017 B2
9668729 Williams et al. Jun 2017 B2
9668732 Patel et al. Jun 2017 B2
9675344 Combrowski et al. Jun 2017 B2
9675351 Hodgkinson et al. Jun 2017 B2
9675355 Shelton, IV et al. Jun 2017 B2
9675372 Laurent et al. Jun 2017 B2
9675375 Houser et al. Jun 2017 B2
9675405 Trees et al. Jun 2017 B2
9681870 Baxter, III et al. Jun 2017 B2
9681873 Smith et al. Jun 2017 B2
9681884 Clem et al. Jun 2017 B2
9687231 Baxter, III et al. Jun 2017 B2
9687232 Shelton, IV et al. Jun 2017 B2
9687233 Fernandez et al. Jun 2017 B2
9687236 Leimbach et al. Jun 2017 B2
9687237 Schmid et al. Jun 2017 B2
9687253 Detry et al. Jun 2017 B2
9689466 Kanai et al. Jun 2017 B2
9690362 Leimbach et al. Jun 2017 B2
9693772 Ingmanson et al. Jul 2017 B2
9693774 Gettinger et al. Jul 2017 B2
9693777 Schellin et al. Jul 2017 B2
9700310 Morgan et al. Jul 2017 B2
9700312 Kostrzewski et al. Jul 2017 B2
9700317 Aronhalt et al. Jul 2017 B2
9700318 Scirica et al. Jul 2017 B2
9700319 Motooka et al. Jul 2017 B2
9700321 Shelton, IV et al. Jul 2017 B2
9706981 Nicholas et al. Jul 2017 B2
9706991 Hess et al. Jul 2017 B2
9706993 Hessler et al. Jul 2017 B2
9707026 Malackowski et al. Jul 2017 B2
9707043 Bozung Jul 2017 B2
9707684 Ruiz Morales et al. Jul 2017 B2
9713468 Harris et al. Jul 2017 B2
9713470 Scirica et al. Jul 2017 B2
9724091 Shelton, IV et al. Aug 2017 B2
9724092 Baxter, III et al. Aug 2017 B2
9724094 Baber et al. Aug 2017 B2
9724096 Thompson et al. Aug 2017 B2
9724098 Baxter, III et al. Aug 2017 B2
9724163 Orban Aug 2017 B2
9730692 Shelton, IV et al. Aug 2017 B2
9730695 Leimbach et al. Aug 2017 B2
9730697 Morgan et al. Aug 2017 B2
9730717 Katsuki et al. Aug 2017 B2
9731410 Hirabayashi et al. Aug 2017 B2
9733663 Leimbach et al. Aug 2017 B2
9737297 Racenet et al. Aug 2017 B2
9737301 Baber et al. Aug 2017 B2
9737302 Shelton, IV et al. Aug 2017 B2
9737303 Shelton, IV et al. Aug 2017 B2
9737365 Hegeman et al. Aug 2017 B2
9743927 Whitman Aug 2017 B2
9743928 Shelton, IV et al. Aug 2017 B2
9743929 Leimbach et al. Aug 2017 B2
9750498 Timm et al. Sep 2017 B2
9750499 Leimbach et al. Sep 2017 B2
9750501 Shelton, IV et al. Sep 2017 B2
9750639 Barnes et al. Sep 2017 B2
9757123 Giordano et al. Sep 2017 B2
9757124 Schellin et al. Sep 2017 B2
9757126 Cappola Sep 2017 B2
9757128 Baber et al. Sep 2017 B2
9757129 Williams Sep 2017 B2
9757130 Shelton, IV Sep 2017 B2
9763662 Shelton, IV et al. Sep 2017 B2
9770245 Swayze et al. Sep 2017 B2
D800904 Leimbach et al. Oct 2017 S
9775608 Aronhalt et al. Oct 2017 B2
9775609 Shelton, IV et al. Oct 2017 B2
9775610 Nicholas et al. Oct 2017 B2
9775611 Kostrzewski Oct 2017 B2
9775613 Shelton, IV et al. Oct 2017 B2
9775614 Shelton, IV et al. Oct 2017 B2
9782170 Zemlok et al. Oct 2017 B2
9782214 Houser et al. Oct 2017 B2
9788834 Schmid et al. Oct 2017 B2
9788836 Overmyer et al. Oct 2017 B2
9788847 Jinno Oct 2017 B2
9788851 Dannaher et al. Oct 2017 B2
9795379 Leimbach et al. Oct 2017 B2
9795381 Shelton, IV Oct 2017 B2
9795382 Shelton, IV Oct 2017 B2
9795383 Aldridge et al. Oct 2017 B2
9795384 Weaner et al. Oct 2017 B2
9797486 Zergiebel et al. Oct 2017 B2
9801627 Harris et al. Oct 2017 B2
9801628 Harris et al. Oct 2017 B2
9801634 Shelton, IV et al. Oct 2017 B2
9802033 Hibner et al. Oct 2017 B2
9804618 Leimbach et al. Oct 2017 B2
9808246 Shelton, IV et al. Nov 2017 B2
9808247 Shelton, IV et al. Nov 2017 B2
9808249 Shelton, IV Nov 2017 B2
9814462 Woodard, Jr. et al. Nov 2017 B2
9820738 Lytle, IV et al. Nov 2017 B2
9820741 Kostrzewski Nov 2017 B2
9820768 Gee et al. Nov 2017 B2
9825455 Sandhu et al. Nov 2017 B2
9826977 Leimbach et al. Nov 2017 B2
9826978 Shelton, IV et al. Nov 2017 B2
9829698 Haraguchi et al. Nov 2017 B2
9833236 Shelton, IV et al. Dec 2017 B2
9833238 Baxter, III et al. Dec 2017 B2
9833239 Yates et al. Dec 2017 B2
9833241 Huitema et al. Dec 2017 B2
9833242 Baxter, III et al. Dec 2017 B2
9839420 Shelton, IV et al. Dec 2017 B2
9839421 Zerkle et al. Dec 2017 B2
9839422 Schellin et al. Dec 2017 B2
9839423 Vendely et al. Dec 2017 B2
9839427 Swayze et al. Dec 2017 B2
9839428 Baxter, III et al. Dec 2017 B2
9839429 Weisenburgh, II et al. Dec 2017 B2
9839480 Pribanic et al. Dec 2017 B2
9844369 Huitema et al. Dec 2017 B2
9844372 Shelton, IV et al. Dec 2017 B2
9844373 Swayze et al. Dec 2017 B2
9844374 Lytle, IV et al. Dec 2017 B2
9844375 Overmyer et al. Dec 2017 B2
9844376 Baxter, III et al. Dec 2017 B2
9844379 Shelton, IV et al. Dec 2017 B2
9848873 Shelton, IV Dec 2017 B2
9848875 Aronhalt et al. Dec 2017 B2
9855662 Ruiz Morales et al. Jan 2018 B2
9861261 Shahinian Jan 2018 B2
9861359 Shelton, IV et al. Jan 2018 B2
9861361 Aronhalt et al. Jan 2018 B2
9861382 Smith et al. Jan 2018 B2
9867618 Hall et al. Jan 2018 B2
9868198 Nicholas et al. Jan 2018 B2
9872682 Hess et al. Jan 2018 B2
9872683 Hopkins et al. Jan 2018 B2
9872684 Hall et al. Jan 2018 B2
9877721 Schellin et al. Jan 2018 B2
9877723 Hall et al. Jan 2018 B2
9883861 Shelton, IV et al. Feb 2018 B2
9884456 Schellin et al. Feb 2018 B2
9888924 Ebersole et al. Feb 2018 B2
9889230 Bennett et al. Feb 2018 B2
9895147 Shelton, IV Feb 2018 B2
9895148 Shelton, IV et al. Feb 2018 B2
9895813 Blumenkranz et al. Feb 2018 B2
9901341 Kostrzewski Feb 2018 B2
9901342 Shelton, IV et al. Feb 2018 B2
9901344 Moore et al. Feb 2018 B2
9901345 Moore et al. Feb 2018 B2
9901346 Moore et al. Feb 2018 B2
9907456 Miyoshi Mar 2018 B2
9907553 Cole et al. Mar 2018 B2
9907620 Shelton, IV et al. Mar 2018 B2
9913642 Leimbach et al. Mar 2018 B2
9913644 McCuen Mar 2018 B2
9913646 Shelton, IV Mar 2018 B2
9913647 Weisenburgh, II et al. Mar 2018 B2
9913648 Shelton, IV et al. Mar 2018 B2
9913694 Brisson Mar 2018 B2
9918704 Shelton, IV et al. Mar 2018 B2
9918715 Menn Mar 2018 B2
9918716 Baxter, III et al. Mar 2018 B2
9924942 Swayze et al. Mar 2018 B2
9924944 Shelton, IV et al. Mar 2018 B2
9924945 Zheng et al. Mar 2018 B2
9924946 Vendely et al. Mar 2018 B2
9924947 Shelton, IV et al. Mar 2018 B2
9924961 Shelton, IV et al. Mar 2018 B2
9931116 Racenet et al. Apr 2018 B2
9931118 Shelton, IV et al. Apr 2018 B2
9936949 Measamer et al. Apr 2018 B2
9936950 Shelton, IV et al. Apr 2018 B2
9936951 Hufnagel et al. Apr 2018 B2
9936954 Shelton, IV et al. Apr 2018 B2
9943309 Shelton, IV et al. Apr 2018 B2
9943310 Harris et al. Apr 2018 B2
9943312 Posada et al. Apr 2018 B2
9955965 Chen et al. May 2018 B2
9955966 Zergiebel May 2018 B2
9962158 Hall et al. May 2018 B2
9962159 Heinrich et al. May 2018 B2
9962161 Scheib et al. May 2018 B2
9968354 Shelton, IV et al. May 2018 B2
9968355 Shelton, IV et al. May 2018 B2
9968356 Shelton, IV et al. May 2018 B2
9968397 Taylor et al. May 2018 B2
9974529 Shelton, IV et al. May 2018 B2
9974538 Baxter et al. May 2018 B2
9974539 Yates et al. May 2018 B2
9980713 Aronhalt et al. May 2018 B2
9980729 Moore et al. May 2018 B2
9987003 Timm et al. Jun 2018 B2
10004500 Shelton, IV et al. Jun 2018 B2
10004506 Shelton, IV et al. Jun 2018 B2
10022125 (Prommersberger) Stopek et al. Jul 2018 B2
10024407 Aranyi et al. Jul 2018 B2
10028744 Shelton, IV et al. Jul 2018 B2
10029125 Shapiro et al. Jul 2018 B2
10034668 Ebner Jul 2018 B2
10039440 Fenech et al. Aug 2018 B2
10039545 Sadowski et al. Aug 2018 B2
10041822 Zemlok Aug 2018 B2
10045778 Yates et al. Aug 2018 B2
10052102 Baxter, III et al. Aug 2018 B2
10052164 Overmyer Aug 2018 B2
10058317 Fan et al. Aug 2018 B2
10064620 Gettinger et al. Sep 2018 B2
10064639 Ishida et al. Sep 2018 B2
10064649 Golebieski et al. Sep 2018 B2
10076326 Yates et al. Sep 2018 B2
10085624 Isoda et al. Oct 2018 B2
10085751 Overmyer et al. Oct 2018 B2
10085806 Hagn et al. Oct 2018 B2
10092292 Boudreaux et al. Oct 2018 B2
10098642 Baxter, III et al. Oct 2018 B2
10099303 Yoshida et al. Oct 2018 B2
20010000531 Casscells et al. Apr 2001 A1
20010025183 Shahidi Sep 2001 A1
20010044637 Jacobs et al. Nov 2001 A1
20020014510 Richter et al. Feb 2002 A1
20020022810 Urich Feb 2002 A1
20020022836 Goble et al. Feb 2002 A1
20020022861 Jacobs et al. Feb 2002 A1
20020026126 Burdorff et al. Feb 2002 A1
20020029032 Arkin Mar 2002 A1
20020029036 Goble et al. Mar 2002 A1
20020042620 Julian et al. Apr 2002 A1
20020049472 Coleman et al. Apr 2002 A1
20020091374 Cooper Jul 2002 A1
20020095175 Brock et al. Jul 2002 A1
20020103494 Pacey Aug 2002 A1
20020117534 Green et al. Aug 2002 A1
20020127265 Bowman et al. Sep 2002 A1
20020128552 Nowlin et al. Sep 2002 A1
20020128633 Brock et al. Sep 2002 A1
20020134811 Napier et al. Sep 2002 A1
20020135474 Sylliassen Sep 2002 A1
20020143340 Kaneko Oct 2002 A1
20020157481 Kogiso et al. Oct 2002 A1
20020158593 Henderson et al. Oct 2002 A1
20020165541 Whitman Nov 2002 A1
20020185514 Adams et al. Dec 2002 A1
20020188170 Santamore et al. Dec 2002 A1
20020188287 Zvuloni et al. Dec 2002 A1
20020193808 Belef et al. Dec 2002 A1
20030009193 Corsaro Jan 2003 A1
20030011245 Fiebig Jan 2003 A1
20030023316 Brown et al. Jan 2003 A1
20030066858 Holgersson Apr 2003 A1
20030078647 Vallana et al. Apr 2003 A1
20030083648 Wang et al. May 2003 A1
20030084983 Rangachari et al. May 2003 A1
20030093103 Malackowski et al. May 2003 A1
20030094356 Waldron May 2003 A1
20030096158 Takano et al. May 2003 A1
20030105478 Whitman et al. Jun 2003 A1
20030114851 Truckai et al. Jun 2003 A1
20030130677 Whitman et al. Jul 2003 A1
20030139741 Goble et al. Jul 2003 A1
20030153908 Goble et al. Aug 2003 A1
20030153968 Geis et al. Aug 2003 A1
20030163085 Tanner et al. Aug 2003 A1
20030181900 Long Sep 2003 A1
20030190584 Heasley Oct 2003 A1
20030195387 Kortenbach et al. Oct 2003 A1
20030205029 Chapolini et al. Nov 2003 A1
20030212005 Petito et al. Nov 2003 A1
20030216732 Truckai et al. Nov 2003 A1
20030220660 Kortenbach et al. Nov 2003 A1
20030236505 Bonadio et al. Dec 2003 A1
20040002726 Nunez et al. Jan 2004 A1
20040006335 Garrison Jan 2004 A1
20040006340 Latterell et al. Jan 2004 A1
20040006372 Racenet et al. Jan 2004 A1
20040006861 Haytayan Jan 2004 A1
20040007608 Ehrenfels et al. Jan 2004 A1
20040024457 Boyce et al. Feb 2004 A1
20040028502 Cummins Feb 2004 A1
20040030333 Goble Feb 2004 A1
20040032345 Kazuya et al. Feb 2004 A1
20040034357 Beane et al. Feb 2004 A1
20040034369 Sauer et al. Feb 2004 A1
20040044364 DeVries et al. Mar 2004 A1
20040049121 Yaron Mar 2004 A1
20040049172 Root et al. Mar 2004 A1
20040059362 Knodel et al. Mar 2004 A1
20040068161 Couvillon, Jr. Apr 2004 A1
20040068224 Couvillon, Jr. et al. Apr 2004 A1
20040068307 Goble Apr 2004 A1
20040070369 Sakahibara Apr 2004 A1
20040073222 Koseki Apr 2004 A1
20040078037 Batchelor et al. Apr 2004 A1
20040085180 Juang May 2004 A1
20040093024 Lousararian et al. May 2004 A1
20040094597 Whitman et al. May 2004 A1
20040097987 Pugsley et al. May 2004 A1
20040098040 Taniguchi et al. May 2004 A1
20040101822 Weisner et al. May 2004 A1
20040102783 Sutterlin, III et al. May 2004 A1
20040108357 Milliman et al. Jun 2004 A1
20040110439 Chaikof et al. Jun 2004 A1
20040111081 Whitman et al. Jun 2004 A1
20040115022 Albertson et al. Jun 2004 A1
20040116952 Sakurai et al. Jun 2004 A1
20040122423 Dycus et al. Jun 2004 A1
20040133095 Dunki-Jacobs et al. Jul 2004 A1
20040143297 Ramsey Jul 2004 A1
20040147909 Johnston et al. Jul 2004 A1
20040153100 Ahlberg et al. Aug 2004 A1
20040158261 Vu Aug 2004 A1
20040164123 Racenet et al. Aug 2004 A1
20040167572 Roth et al. Aug 2004 A1
20040173659 Green et al. Sep 2004 A1
20040181219 Goble et al. Sep 2004 A1
20040186470 Goble et al. Sep 2004 A1
20040193189 Kortenbach et al. Sep 2004 A1
20040197367 Rezania et al. Oct 2004 A1
20040199181 Knodel et al. Oct 2004 A1
20040204735 Shiroff et al. Oct 2004 A1
20040222268 Bilotti et al. Nov 2004 A1
20040225186 Horne, Jr. et al. Nov 2004 A1
20040230214 Donofrio et al. Nov 2004 A1
20040232201 Wenchell et al. Nov 2004 A1
20040236352 Wang et al. Nov 2004 A1
20040243147 Lipow Dec 2004 A1
20040243151 Demmy et al. Dec 2004 A1
20040243163 Casiano et al. Dec 2004 A1
20040243176 Hahnen et al. Dec 2004 A1
20040247415 Mangone, Jr. Dec 2004 A1
20040249366 Kunz Dec 2004 A1
20040254455 Iddan Dec 2004 A1
20040254566 Plicchi et al. Dec 2004 A1
20040254590 Hoffman et al. Dec 2004 A1
20040254608 Huitema et al. Dec 2004 A1
20040260315 Dell et al. Dec 2004 A1
20040267297 Malackowski Dec 2004 A1
20040267310 Racenet et al. Dec 2004 A1
20050010158 Brugger et al. Jan 2005 A1
20050010213 Stad et al. Jan 2005 A1
20050021078 Vleugels et al. Jan 2005 A1
20050032511 Malone et al. Feb 2005 A1
20050033352 Zeph et al. Feb 2005 A1
20050033357 Braun Feb 2005 A1
20050051163 Deem et al. Mar 2005 A1
20050054946 Krzyzanowski Mar 2005 A1
20050057225 Marquet Mar 2005 A1
20050058890 Brazell et al. Mar 2005 A1
20050059997 Bauman et al. Mar 2005 A1
20050070929 Dalessandro et al. Mar 2005 A1
20050075561 Golden Apr 2005 A1
20050080342 Gilreath et al. Apr 2005 A1
20050080454 Drews et al. Apr 2005 A1
20050085693 Belson et al. Apr 2005 A1
20050090817 Phan Apr 2005 A1
20050096683 Ellins et al. May 2005 A1
20050103819 Racenet et al. May 2005 A1
20050107814 Johnston et al. May 2005 A1
20050107824 Hillstead et al. May 2005 A1
20050113820 Goble et al. May 2005 A1
20050116673 Carl et al. Jun 2005 A1
20050119525 Takemoto Jun 2005 A1
20050119669 Demmy Jun 2005 A1
20050124855 Jaffe et al. Jun 2005 A1
20050125009 Perry et al. Jun 2005 A1
20050125897 Wyslucha et al. Jun 2005 A1
20050130682 Takara et al. Jun 2005 A1
20050131173 McDaniel et al. Jun 2005 A1
20050131211 Bayley et al. Jun 2005 A1
20050131390 Heinrich et al. Jun 2005 A1
20050131436 Johnston et al. Jun 2005 A1
20050131437 Johnston et al. Jun 2005 A1
20050131457 Douglas et al. Jun 2005 A1
20050137454 Saadat et al. Jun 2005 A1
20050137455 Ewers et al. Jun 2005 A1
20050139636 Schwemberger et al. Jun 2005 A1
20050143759 Kelly Jun 2005 A1
20050143769 White et al. Jun 2005 A1
20050145671 Viola Jul 2005 A1
20050145675 Hartwick et al. Jul 2005 A1
20050150928 Kameyama et al. Jul 2005 A1
20050154258 Tartaglia et al. Jul 2005 A1
20050154406 Bombard et al. Jul 2005 A1
20050159184 Kerner et al. Jul 2005 A1
20050159778 Heinrich et al. Jul 2005 A1
20050165419 Sauer et al. Jul 2005 A1
20050165435 Johnston et al. Jul 2005 A1
20050169974 Tenerz et al. Aug 2005 A1
20050171522 Christopherson Aug 2005 A1
20050177181 Kagan et al. Aug 2005 A1
20050177249 Kladakis et al. Aug 2005 A1
20050182298 Ikeda et al. Aug 2005 A1
20050184121 Heinrich Aug 2005 A1
20050186240 Ringeisen et al. Aug 2005 A1
20050187545 Hooven et al. Aug 2005 A1
20050187572 Johnston et al. Aug 2005 A1
20050187576 Whitman et al. Aug 2005 A1
20050189397 Jankowski Sep 2005 A1
20050192609 Whitman et al. Sep 2005 A1
20050192628 Viola Sep 2005 A1
20050203550 Laufer et al. Sep 2005 A1
20050209614 Fenter et al. Sep 2005 A1
20050216055 Scirica et al. Sep 2005 A1
20050222587 Jinno et al. Oct 2005 A1
20050222611 Weitkamp Oct 2005 A1
20050222616 Rethy et al. Oct 2005 A1
20050222665 Aranyi Oct 2005 A1
20050228224 Okada et al. Oct 2005 A1
20050228446 Mooradian et al. Oct 2005 A1
20050230453 Viola Oct 2005 A1
20050240178 Morley et al. Oct 2005 A1
20050240222 Shipp Oct 2005 A1
20050245965 Orban, III et al. Nov 2005 A1
20050251063 Basude Nov 2005 A1
20050251128 Amoah Nov 2005 A1
20050256452 DeMarchi et al. Nov 2005 A1
20050256522 Francischelli et al. Nov 2005 A1
20050261676 Hall et al. Nov 2005 A1
20050261677 Hall et al. Nov 2005 A1
20050263563 Racenet et al. Dec 2005 A1
20050267455 Eggers et al. Dec 2005 A1
20050267530 Cummins Dec 2005 A1
20050272973 Kawano et al. Dec 2005 A1
20050274034 Hayashida et al. Dec 2005 A1
20050274768 Cummins et al. Dec 2005 A1
20050283188 Loshakove et al. Dec 2005 A1
20060004407 Hiles et al. Jan 2006 A1
20060008787 Hayman et al. Jan 2006 A1
20060011699 Olson et al. Jan 2006 A1
20060015009 Jaffe et al. Jan 2006 A1
20060020247 Kagan et al. Jan 2006 A1
20060020258 Strauss et al. Jan 2006 A1
20060020336 Liddicoat Jan 2006 A1
20060025811 Shelton, IV Feb 2006 A1
20060025812 Shelton, IV Feb 2006 A1
20060041188 Dirusso et al. Feb 2006 A1
20060047275 Goble Mar 2006 A1
20060047303 Ortiz et al. Mar 2006 A1
20060047307 Ortiz et al. Mar 2006 A1
20060049229 Milliman et al. Mar 2006 A1
20060052824 Ransick et al. Mar 2006 A1
20060052825 Ransick et al. Mar 2006 A1
20060060630 Shelton, IV et al. Mar 2006 A1
20060064086 Odom Mar 2006 A1
20060079115 Aranyi et al. Apr 2006 A1
20060079735 Martone et al. Apr 2006 A1
20060079879 Faller et al. Apr 2006 A1
20060085031 Bettuchi Apr 2006 A1
20060085033 Criscuolo et al. Apr 2006 A1
20060086032 Valencic et al. Apr 2006 A1
20060087746 Lipow Apr 2006 A1
20060089535 Raz et al. Apr 2006 A1
20060100643 Laufer et al. May 2006 A1
20060100644 Viola May 2006 A1
20060100649 Hart May 2006 A1
20060108393 Heinrich et al. May 2006 A1
20060111711 Goble May 2006 A1
20060111723 Chapolini et al. May 2006 A1
20060116634 Shachar Jun 2006 A1
20060122636 Bailly et al. Jun 2006 A1
20060142772 Ralph et al. Jun 2006 A1
20060149163 Hibner et al. Jul 2006 A1
20060161050 Butler et al. Jul 2006 A1
20060161185 Saadat et al. Jul 2006 A1
20060167471 Phillips Jul 2006 A1
20060173470 Oray et al. Aug 2006 A1
20060176031 Forman et al. Aug 2006 A1
20060178556 Hasser et al. Aug 2006 A1
20060180633 Emmons Aug 2006 A1
20060180634 Shelton, IV et al. Aug 2006 A1
20060185682 Marczyk Aug 2006 A1
20060199999 Ikeda et al. Sep 2006 A1
20060200123 Ryan Sep 2006 A1
20060201989 Ojeda Sep 2006 A1
20060206100 Eskridge et al. Sep 2006 A1
20060212069 Shelton, IV Sep 2006 A1
20060217729 Eskridge et al. Sep 2006 A1
20060226196 Hueil et al. Oct 2006 A1
20060235368 Oz Oct 2006 A1
20060235469 Viola Oct 2006 A1
20060241655 Viola Oct 2006 A1
20060241692 McGuckin, Jr. et al. Oct 2006 A1
20060244460 Weaver Nov 2006 A1
20060252990 Kubach Nov 2006 A1
20060252993 Freed et al. Nov 2006 A1
20060253069 Li et al. Nov 2006 A1
20060258904 Stefanchik et al. Nov 2006 A1
20060258910 Stefanchik et al. Nov 2006 A1
20060259073 Miyamoto et al. Nov 2006 A1
20060261763 Iott et al. Nov 2006 A1
20060264831 Skwarek et al. Nov 2006 A1
20060264927 Ryan Nov 2006 A1
20060264929 Goble et al. Nov 2006 A1
20060271042 Latterell et al. Nov 2006 A1
20060271102 Bosshard et al. Nov 2006 A1
20060278680 Viola et al. Dec 2006 A1
20060278681 Viola et al. Dec 2006 A1
20060282064 Shimizu et al. Dec 2006 A1
20060284730 Schmid et al. Dec 2006 A1
20060287576 Tsuji et al. Dec 2006 A1
20060289602 Wales et al. Dec 2006 A1
20060291981 Viola et al. Dec 2006 A1
20070010702 Wang et al. Jan 2007 A1
20070010838 Shelton, IV et al. Jan 2007 A1
20070016235 Tanaka et al. Jan 2007 A1
20070023476 Whitman et al. Feb 2007 A1
20070023477 Whitman Feb 2007 A1
20070026039 Drumheller et al. Feb 2007 A1
20070026040 Crawley et al. Feb 2007 A1
20070027468 Wales et al. Feb 2007 A1
20070027472 Hiles et al. Feb 2007 A1
20070027551 Farnsworth et al. Feb 2007 A1
20070027553 Biran et al. Feb 2007 A1
20070034668 Holsten et al. Feb 2007 A1
20070043387 Vargas et al. Feb 2007 A1
20070049951 Menn Mar 2007 A1
20070049966 Bonadio et al. Mar 2007 A1
20070051375 Milliman Mar 2007 A1
20070055219 Whitman et al. Mar 2007 A1
20070055228 Berg et al. Mar 2007 A1
20070066981 Meagher Mar 2007 A1
20070070574 Nerheim et al. Mar 2007 A1
20070073341 Smith Mar 2007 A1
20070073389 Bolduc et al. Mar 2007 A1
20070078328 Ozaki et al. Apr 2007 A1
20070078484 Talarico et al. Apr 2007 A1
20070083193 Werneth et al. Apr 2007 A1
20070084897 Shelton, IV et al. Apr 2007 A1
20070090788 Hansford et al. Apr 2007 A1
20070093869 Bloom et al. Apr 2007 A1
20070102472 Shelton, IV May 2007 A1
20070106113 Ravo May 2007 A1
20070106317 Shelton, IV et al. May 2007 A1
20070113175 Butler et al. May 2007 A1
20070129605 Schaaf Jun 2007 A1
20070134251 Ashkenazi et al. Jun 2007 A1
20070135686 Pruitt, Jr. et al. Jun 2007 A1
20070135803 Belson Jun 2007 A1
20070155010 Farnsworth et al. Jul 2007 A1
20070158358 Mason, II et al. Jul 2007 A1
20070170225 Shelton, IV et al. Jul 2007 A1
20070173687 Shima et al. Jul 2007 A1
20070173806 Orszulak et al. Jul 2007 A1
20070173813 Odom Jul 2007 A1
20070175950 Shelton, IV et al. Aug 2007 A1
20070175951 Shelton, IV et al. Aug 2007 A1
20070175955 Shelton, IV et al. Aug 2007 A1
20070179477 Danger Aug 2007 A1
20070179528 Soltz et al. Aug 2007 A1
20070181632 Milliman Aug 2007 A1
20070185545 Duke Aug 2007 A1
20070190110 Pameijer et al. Aug 2007 A1
20070191868 Theroux et al. Aug 2007 A1
20070194079 Hueil et al. Aug 2007 A1
20070194082 Morgan et al. Aug 2007 A1
20070197954 Keenan Aug 2007 A1
20070198039 Jones et al. Aug 2007 A1
20070203510 Bettuchi Aug 2007 A1
20070208375 Nishizawa et al. Sep 2007 A1
20070213750 Weadock Sep 2007 A1
20070219571 Balbierz et al. Sep 2007 A1
20070225562 Spivey et al. Sep 2007 A1
20070233163 Bombard et al. Oct 2007 A1
20070239028 Houser et al. Oct 2007 A1
20070243227 Gertner Oct 2007 A1
20070244471 Malackowski Oct 2007 A1
20070246505 Pace-Floridia et al. Oct 2007 A1
20070249999 Sklar et al. Oct 2007 A1
20070250113 Hegeman et al. Oct 2007 A1
20070260278 Wheeler et al. Nov 2007 A1
20070270784 Smith et al. Nov 2007 A1
20070270884 Smith et al. Nov 2007 A1
20070275035 Herman et al. Nov 2007 A1
20070276409 Ortiz et al. Nov 2007 A1
20070279011 Jones et al. Dec 2007 A1
20070286892 Herzberg et al. Dec 2007 A1
20070287993 Hinman et al. Dec 2007 A1
20070288044 Jinno et al. Dec 2007 A1
20070296286 Avenell Dec 2007 A1
20070299427 Yeung et al. Dec 2007 A1
20080003196 Jonn et al. Jan 2008 A1
20080015598 Prommersberger Jan 2008 A1
20080021486 Oyola et al. Jan 2008 A1
20080029570 Shelton et al. Feb 2008 A1
20080029573 Shelton et al. Feb 2008 A1
20080029574 Shelton et al. Feb 2008 A1
20080029575 Shelton et al. Feb 2008 A1
20080030170 Dacquay et al. Feb 2008 A1
20080035701 Racenet et al. Feb 2008 A1
20080041916 Milliman et al. Feb 2008 A1
20080041917 Racenet et al. Feb 2008 A1
20080042861 Dacquay et al. Feb 2008 A1
20080051833 Gramuglia et al. Feb 2008 A1
20080064921 Larkin et al. Mar 2008 A1
20080065153 Allard et al. Mar 2008 A1
20080071328 Haubrich et al. Mar 2008 A1
20080078802 Hess et al. Apr 2008 A1
20080082114 McKenna et al. Apr 2008 A1
20080082125 Murray et al. Apr 2008 A1
20080082126 Murray et al. Apr 2008 A1
20080083807 Beardsley et al. Apr 2008 A1
20080083808 Scirica Apr 2008 A1
20080083813 Zemlok et al. Apr 2008 A1
20080085296 Powell et al. Apr 2008 A1
20080086078 Powell et al. Apr 2008 A1
20080091072 Omori et al. Apr 2008 A1
20080097563 Petrie et al. Apr 2008 A1
20080108443 Jinno et al. May 2008 A1
20080114250 Urbano et al. May 2008 A1
20080114315 Voegele et al. May 2008 A1
20080114385 Byrum et al. May 2008 A1
20080125749 Olson May 2008 A1
20080128469 Dalessandro et al. Jun 2008 A1
20080129253 Shiue et al. Jun 2008 A1
20080135600 Hiranuma et al. Jun 2008 A1
20080140115 Stopek Jun 2008 A1
20080140159 Bornhoft et al. Jun 2008 A1
20080154299 Linvneh Jun 2008 A1
20080154335 Thrope et al. Jun 2008 A1
20080169328 Shelton Jul 2008 A1
20080169332 Shelton et al. Jul 2008 A1
20080169333 Shelton et al. Jul 2008 A1
20080172087 Fuchs et al. Jul 2008 A1
20080172088 Smith et al. Jul 2008 A1
20080183193 Omori et al. Jul 2008 A1
20080185419 Smith et al. Aug 2008 A1
20080190989 Crews et al. Aug 2008 A1
20080196419 Dube Aug 2008 A1
20080197167 Viola et al. Aug 2008 A1
20080200755 Bakos Aug 2008 A1
20080200762 Stokes et al. Aug 2008 A1
20080200835 Monson et al. Aug 2008 A1
20080200911 Long Aug 2008 A1
20080200933 Bakos et al. Aug 2008 A1
20080200934 Fox Aug 2008 A1
20080200949 Hiles et al. Aug 2008 A1
20080228029 Mikkaichi et al. Sep 2008 A1
20080234709 Houser Sep 2008 A1
20080241667 Kohn et al. Oct 2008 A1
20080242939 Johnston Oct 2008 A1
20080245841 Smith et al. Oct 2008 A1
20080249536 Stahler et al. Oct 2008 A1
20080249608 Dave Oct 2008 A1
20080251568 Zemlok et al. Oct 2008 A1
20080251569 Smith et al. Oct 2008 A1
20080255413 Zemlok et al. Oct 2008 A1
20080255607 Zemlok Oct 2008 A1
20080262654 Omori et al. Oct 2008 A1
20080269596 Revie et al. Oct 2008 A1
20080281171 Fennell et al. Nov 2008 A1
20080281254 Humayun et al. Nov 2008 A1
20080283570 Boyden et al. Nov 2008 A1
20080287944 Pearson et al. Nov 2008 A1
20080287988 Smith et al. Nov 2008 A1
20080290134 Bettuchi et al. Nov 2008 A1
20080293910 Kapiamba et al. Nov 2008 A1
20080294179 Balbierz et al. Nov 2008 A1
20080296346 Shelton, IV et al. Dec 2008 A1
20080297287 Shachar et al. Dec 2008 A1
20080308602 Timm et al. Dec 2008 A1
20080308603 Shelton, IV et al. Dec 2008 A1
20080308608 Prommersberger Dec 2008 A1
20080312687 Blier Dec 2008 A1
20080314960 Marczyk et al. Dec 2008 A1
20080315829 Jones et al. Dec 2008 A1
20090001121 Hess et al. Jan 2009 A1
20090001130 Hess et al. Jan 2009 A1
20090004455 Gravagna et al. Jan 2009 A1
20090005809 Hess et al. Jan 2009 A1
20090012534 Madhani et al. Jan 2009 A1
20090015195 Loth-Krausser Jan 2009 A1
20090018553 McLean et al. Jan 2009 A1
20090020958 Soul Jan 2009 A1
20090047329 Stucky et al. Feb 2009 A1
20090048583 Williams et al. Feb 2009 A1
20090048589 Takashino et al. Feb 2009 A1
20090048612 Farritor et al. Feb 2009 A1
20090054908 Zand et al. Feb 2009 A1
20090069842 Lee et al. Mar 2009 A1
20090076506 Baker Mar 2009 A1
20090078736 Van Lue Mar 2009 A1
20090081313 Aghion et al. Mar 2009 A1
20090082789 Milliman et al. Mar 2009 A1
20090088659 Graham et al. Apr 2009 A1
20090088774 Swarup et al. Apr 2009 A1
20090090763 Zemlok et al. Apr 2009 A1
20090092651 Shah et al. Apr 2009 A1
20090093728 Hyde et al. Apr 2009 A1
20090099579 Nentwick et al. Apr 2009 A1
20090099876 Whitman Apr 2009 A1
20090108048 Zemlok et al. Apr 2009 A1
20090112229 Omori et al. Apr 2009 A1
20090114701 Zemlok et al. May 2009 A1
20090119011 Kondo et al. May 2009 A1
20090137952 Ramamurthy et al. May 2009 A1
20090143805 Palmer et al. Jun 2009 A1
20090143855 Weber et al. Jun 2009 A1
20090149871 Kagan et al. Jun 2009 A9
20090157067 Kane et al. Jun 2009 A1
20090157087 Wei et al. Jun 2009 A1
20090171147 Lee et al. Jul 2009 A1
20090177226 Reinprecht et al. Jul 2009 A1
20090179757 Cohn et al. Jul 2009 A1
20090181290 Baldwin et al. Jul 2009 A1
20090188964 Orlov Jul 2009 A1
20090198272 Kerver et al. Aug 2009 A1
20090204108 Steffen Aug 2009 A1
20090204109 Grove et al. Aug 2009 A1
20090206125 Huitema et al. Aug 2009 A1
20090206126 Huitema et al. Aug 2009 A1
20090206131 Weisenburgh, II et al. Aug 2009 A1
20090206133 Morgan et al. Aug 2009 A1
20090206137 Hall et al. Aug 2009 A1
20090206139 Hall et al. Aug 2009 A1
20090206141 Huitema et al. Aug 2009 A1
20090206142 Huitema et al. Aug 2009 A1
20090213685 Mak et al. Aug 2009 A1
20090221993 Sohi et al. Sep 2009 A1
20090234273 Intoccia et al. Sep 2009 A1
20090242610 Shelton, IV et al. Oct 2009 A1
20090247368 Chiang Oct 2009 A1
20090247901 Zimmer Oct 2009 A1
20090248007 Falkenstein et al. Oct 2009 A1
20090248038 Blumenkranz et al. Oct 2009 A1
20090248041 Williams et al. Oct 2009 A1
20090253959 Yoshie et al. Oct 2009 A1
20090255974 Viola Oct 2009 A1
20090255975 Zemlok et al. Oct 2009 A1
20090255976 Marczyk et al. Oct 2009 A1
20090255977 Zemlok Oct 2009 A1
20090255978 Viola et al. Oct 2009 A1
20090262078 Pizzi Oct 2009 A1
20090270895 Churchill et al. Oct 2009 A1
20090277949 Viola et al. Nov 2009 A1
20090290016 Suda Nov 2009 A1
20090292283 Odom Nov 2009 A1
20090306639 Nevo et al. Dec 2009 A1
20090308907 Nalagatla et al. Dec 2009 A1
20100010511 Harris et al. Jan 2010 A1
20100012703 Calabrese et al. Jan 2010 A1
20100012704 Tarinelli Racenet et al. Jan 2010 A1
20100016852 Manzo et al. Jan 2010 A1
20100016888 Calabrese et al. Jan 2010 A1
20100023024 Zeiner et al. Jan 2010 A1
20100030233 Whitman et al. Feb 2010 A1
20100036370 Mirel et al. Feb 2010 A1
20100041945 Isbell, Jr. Feb 2010 A1
20100049084 Nock et al. Feb 2010 A1
20100057087 Cha Mar 2010 A1
20100057107 Sorrentino et al. Mar 2010 A1
20100065604 Weng Mar 2010 A1
20100069942 Shelton, IV Mar 2010 A1
20100072254 Aranyi et al. Mar 2010 A1
20100076483 Imuta Mar 2010 A1
20100076489 Stopek et al. Mar 2010 A1
20100081883 Murray et al. Apr 2010 A1
20100087840 Ebersole et al. Apr 2010 A1
20100094289 Taylor et al. Apr 2010 A1
20100094340 Stopek et al. Apr 2010 A1
20100096431 Smith et al. Apr 2010 A1
20100100124 Calabrese et al. Apr 2010 A1
20100108740 Pastorelli et al. May 2010 A1
20100108741 Hessler et al. May 2010 A1
20100116519 Gareis May 2010 A1
20100122339 Boccacci May 2010 A1
20100133317 Shelton, IV et al. Jun 2010 A1
20100145146 Melder Jun 2010 A1
20100147921 Olson Jun 2010 A1
20100147922 Olson Jun 2010 A1
20100147923 D'Agostino et al. Jun 2010 A1
20100163598 Belzer Jul 2010 A1
20100179022 Shirokoshi Jul 2010 A1
20100179540 Marczyk et al. Jul 2010 A1
20100180711 Kilibarda et al. Jul 2010 A1
20100186219 Smith Jul 2010 A1
20100191262 Harris et al. Jul 2010 A1
20100191292 DeMeo et al. Jul 2010 A1
20100193566 Scheib et al. Aug 2010 A1
20100200637 Beetel Aug 2010 A1
20100204717 Knodel Aug 2010 A1
20100222901 Swayze et al. Sep 2010 A1
20100230465 Smith et al. Sep 2010 A1
20100243707 Olson et al. Sep 2010 A1
20100243708 Aranyi et al. Sep 2010 A1
20100249497 Peine et al. Sep 2010 A1
20100249519 Park et al. Sep 2010 A1
20100249759 Hinman et al. Sep 2010 A1
20100256675 Romans Oct 2010 A1
20100258327 Esenwein et al. Oct 2010 A1
20100258611 Smith et al. Oct 2010 A1
20100267662 Fielder et al. Oct 2010 A1
20100268030 Viola et al. Oct 2010 A1
20100274160 Yachi et al. Oct 2010 A1
20100276471 Whitman Nov 2010 A1
20100292540 Hess et al. Nov 2010 A1
20100294827 Boyden et al. Nov 2010 A1
20100298636 Casto et al. Nov 2010 A1
20100312261 Suzuki et al. Dec 2010 A1
20100318085 Austin et al. Dec 2010 A1
20100320252 Viola et al. Dec 2010 A1
20100331856 Carlson et al. Dec 2010 A1
20100331880 Stopek Dec 2010 A1
20110003528 Lam Jan 2011 A1
20110006101 Hall et al. Jan 2011 A1
20110009890 Palmer et al. Jan 2011 A1
20110011916 Levine Jan 2011 A1
20110016960 Debrailly Jan 2011 A1
20110017799 Whitman et al. Jan 2011 A1
20110021871 Berkelaar Jan 2011 A1
20110022032 Zemlok et al. Jan 2011 A1
20110024477 Hall et al. Feb 2011 A1
20110024478 Shelton, IV Feb 2011 A1
20110025311 Chauvin et al. Feb 2011 A1
20110034910 Ross et al. Feb 2011 A1
20110034918 Reschke Feb 2011 A1
20110036887 Zemlok et al. Feb 2011 A1
20110036890 Ma Feb 2011 A1
20110036891 Zemlok et al. Feb 2011 A1
20110045047 Bennett et al. Feb 2011 A1
20110046666 Sorrentino et al. Feb 2011 A1
20110046667 Culligan et al. Feb 2011 A1
20110060356 Reschke et al. Mar 2011 A1
20110060363 Hess et al. Mar 2011 A1
20110066156 McGahan et al. Mar 2011 A1
20110082538 Dahlgren et al. Apr 2011 A1
20110084112 Kostrzewski Apr 2011 A1
20110087276 Bedi et al. Apr 2011 A1
20110087278 Viola et al. Apr 2011 A1
20110087279 Shah et al. Apr 2011 A1
20110088921 Forgues et al. Apr 2011 A1
20110095064 Taylor et al. Apr 2011 A1
20110095068 Patel Apr 2011 A1
20110101065 Milliman May 2011 A1
20110101069 Bombard et al. May 2011 A1
20110101794 Schroeder et al. May 2011 A1
20110112517 Peine et al. May 2011 A1
20110112530 Keller May 2011 A1
20110114697 Baxter, III et al. May 2011 A1
20110118778 Burbank May 2011 A1
20110121049 Malinouskas et al. May 2011 A1
20110121050 Nicholas May 2011 A1
20110125138 Malinouskas et al. May 2011 A1
20110125176 Yates et al. May 2011 A1
20110127945 Yoneda Jun 2011 A1
20110129706 Takahashi et al. Jun 2011 A1
20110144640 Heinrich et al. Jun 2011 A1
20110144764 Bagga et al. Jun 2011 A1
20110147433 Shelton, IV et al. Jun 2011 A1
20110155786 Shelton, IV Jun 2011 A1
20110163146 Ortiz et al. Jul 2011 A1
20110167619 Smith et al. Jul 2011 A1
20110172495 Armstrong Jul 2011 A1
20110173536 Kostrzewski Jul 2011 A1
20110174099 Ross et al. Jul 2011 A1
20110174861 Shelton, IV et al. Jul 2011 A1
20110184459 Malkowski et al. Jul 2011 A1
20110192882 Hess et al. Aug 2011 A1
20110199225 Touchberry et al. Aug 2011 A1
20110208093 Gross et al. Aug 2011 A1
20110210156 Smith et al. Sep 2011 A1
20110218400 Ma et al. Sep 2011 A1
20110218550 Ma Sep 2011 A1
20110230713 Kleemann et al. Sep 2011 A1
20110238044 Main et al. Sep 2011 A1
20110241597 Zhu et al. Oct 2011 A1
20110253765 Nicholas et al. Oct 2011 A1
20110257650 Deville et al. Oct 2011 A1
20110264119 Bayon et al. Oct 2011 A1
20110275901 Shelton, IV Nov 2011 A1
20110276083 Shelton, IV et al. Nov 2011 A1
20110278343 Knodel et al. Nov 2011 A1
20110279268 Konishi et al. Nov 2011 A1
20110282446 Schulte et al. Nov 2011 A1
20110290855 Moore Dec 2011 A1
20110290856 Shelton, IV et al. Dec 2011 A1
20110293690 Griffin et al. Dec 2011 A1
20110295269 Swensgard et al. Dec 2011 A1
20110295295 Shelton, IV et al. Dec 2011 A1
20110307023 Tweden et al. Dec 2011 A1
20110313894 Dye et al. Dec 2011 A1
20110315413 Fisher et al. Dec 2011 A1
20120004636 Lo Jan 2012 A1
20120016239 Barthe et al. Jan 2012 A1
20120016413 Timm et al. Jan 2012 A1
20120016467 Chen et al. Jan 2012 A1
20120018326 Racenet et al. Jan 2012 A1
20120022523 Smith et al. Jan 2012 A1
20120022630 Wübbeling Jan 2012 A1
20120029272 Shelton, IV et al. Feb 2012 A1
20120033360 Hsu Feb 2012 A1
20120045303 Macdonald Feb 2012 A1
20120046692 Smith et al. Feb 2012 A1
20120059286 Hastings et al. Mar 2012 A1
20120064483 Lint et al. Mar 2012 A1
20120074200 Schmid et al. Mar 2012 A1
20120078071 Bohm et al. Mar 2012 A1
20120078139 Aldridge et al. Mar 2012 A1
20120078244 Worrell et al. Mar 2012 A1
20120078278 Bales, Jr. et al. Mar 2012 A1
20120080336 Shelton, IV et al. Apr 2012 A1
20120080340 Shelton, IV et al. Apr 2012 A1
20120080344 Shelton, IV Apr 2012 A1
20120080475 Smith et al. Apr 2012 A1
20120080478 Morgan et al. Apr 2012 A1
20120080498 Shelton, IV et al. Apr 2012 A1
20120086276 Sawyers Apr 2012 A1
20120089131 Zemlok et al. Apr 2012 A1
20120095458 Cybulski et al. Apr 2012 A1
20120109186 Parrott et al. May 2012 A1
20120110810 Houser et al. May 2012 A1
20120116261 Mumaw et al. May 2012 A1
20120116265 Houser et al. May 2012 A1
20120116266 Houser et al. May 2012 A1
20120116367 Houser et al. May 2012 A1
20120116388 Houser et al. May 2012 A1
20120116391 Houser et al. May 2012 A1
20120116395 Madan et al. May 2012 A1
20120118595 Pellenc May 2012 A1
20120123203 Riva May 2012 A1
20120125792 Cassivi May 2012 A1
20120132286 Lim et al. May 2012 A1
20120138658 Ullrich et al. Jun 2012 A1
20120171539 Rejman et al. Jul 2012 A1
20120175398 Sandborn et al. Jul 2012 A1
20120187179 Gleiman Jul 2012 A1
20120197272 Oray et al. Aug 2012 A1
20120209289 Duque et al. Aug 2012 A1
20120211542 Racenet Aug 2012 A1
20120223121 Viola et al. Sep 2012 A1
20120228355 Combrowski et al. Sep 2012 A1
20120234895 O'Connor et al. Sep 2012 A1
20120234897 Shelton, IV et al. Sep 2012 A1
20120234899 Scheib et al. Sep 2012 A1
20120239068 Morris et al. Sep 2012 A1
20120241492 Shelton, IV et al. Sep 2012 A1
20120241493 Baxter, III et al. Sep 2012 A1
20120248167 Flanagan et al. Oct 2012 A1
20120248169 Widenhouse et al. Oct 2012 A1
20120251861 Liang et al. Oct 2012 A1
20120253328 Cunningham et al. Oct 2012 A1
20120253329 Zemlok et al. Oct 2012 A1
20120265176 Braun Oct 2012 A1
20120271285 Sholev et al. Oct 2012 A1
20120273550 Scirica Nov 2012 A1
20120277780 Smith et al. Nov 2012 A1
20120283707 Giordano et al. Nov 2012 A1
20120286021 Kostrzewski et al. Nov 2012 A1
20120289979 Eskaros et al. Nov 2012 A1
20120292367 Morgan et al. Nov 2012 A1
20120296333 Twomey Nov 2012 A1
20120298719 Shelton, IV et al. Nov 2012 A1
20120298722 Hess et al. Nov 2012 A1
20120303002 Chowaniec et al. Nov 2012 A1
20120310255 Brisson et al. Dec 2012 A1
20120310256 Brisson Dec 2012 A1
20120312860 Ming et al. Dec 2012 A1
20120318842 Anim et al. Dec 2012 A1
20120325892 Kostrzewski Dec 2012 A1
20130006227 Takashino Jan 2013 A1
20130012983 Kleyman Jan 2013 A1
20130018361 Bryant Jan 2013 A1
20130018400 Milton et al. Jan 2013 A1
20130020375 Shelton, IV et al. Jan 2013 A1
20130020376 Shelton, IV et al. Jan 2013 A1
20130023861 Shelton, IV et al. Jan 2013 A1
20130023910 Solomon et al. Jan 2013 A1
20130026208 Shelton, IV et al. Jan 2013 A1
20130026210 Shelton, IV et al. Jan 2013 A1
20130026973 Luke et al. Jan 2013 A1
20130030462 Keating et al. Jan 2013 A1
20130030608 Taylor et al. Jan 2013 A1
20130032626 Smith et al. Feb 2013 A1
20130037596 Bear et al. Feb 2013 A1
20130046290 Palmer et al. Feb 2013 A1
20130060278 Bozung et al. Mar 2013 A1
20130062391 Boudreaux et al. Mar 2013 A1
20130068816 Mandakolathur Vasudevan et al. Mar 2013 A1
20130075446 Wang et al. Mar 2013 A1
20130079814 Hess et al. Mar 2013 A1
20130087597 Shelton, IV et al. Apr 2013 A1
20130087599 Krumanaker et al. Apr 2013 A1
20130087602 Olson et al. Apr 2013 A1
20130090534 Burns et al. Apr 2013 A1
20130096568 Justis Apr 2013 A1
20130098970 Racenet et al. Apr 2013 A1
20130103023 Monson et al. Apr 2013 A1
20130103024 Monson et al. Apr 2013 A1
20130105548 Hodgkinson et al. May 2013 A1
20130105552 Weir et al. May 2013 A1
20130116668 Shelton, IV et al. May 2013 A1
20130116669 Shelton, IV et al. May 2013 A1
20130119108 Altman et al. May 2013 A1
20130123816 Hodgkinson et al. May 2013 A1
20130123822 Wellman et al. May 2013 A1
20130126202 Oomori et al. May 2013 A1
20130126379 Medhal et al. May 2013 A1
20130131476 Siu et al. May 2013 A1
20130131651 Strobl et al. May 2013 A1
20130136969 Yasui et al. May 2013 A1
20130146641 Shelton, IV et al. Jun 2013 A1
20130146642 Shelton, IV et al. Jun 2013 A1
20130150832 Belson et al. Jun 2013 A1
20130153633 Casasanta, Jr. et al. Jun 2013 A1
20130153634 Carter et al. Jun 2013 A1
20130153635 Hodgkinson Jun 2013 A1
20130153636 Shelton, IV et al. Jun 2013 A1
20130153638 Carter et al. Jun 2013 A1
20130153641 Shelton, IV et al. Jun 2013 A1
20130158390 Tan et al. Jun 2013 A1
20130161374 Swayze et al. Jun 2013 A1
20130162198 Yokota et al. Jun 2013 A1
20130168431 Zemlok et al. Jul 2013 A1
20130172929 Hess et al. Jul 2013 A1
20130175317 Yates et al. Jul 2013 A1
20130175322 Yates et al. Jul 2013 A1
20130181033 Shelton, IV et al. Jul 2013 A1
20130181034 Shelton, IV et al. Jul 2013 A1
20130186933 Shelton, IV et al. Jul 2013 A1
20130186934 Shelton, IV et al. Jul 2013 A1
20130190733 Giordano et al. Jul 2013 A1
20130190757 Yates et al. Jul 2013 A1
20130193188 Shelton, IV et al. Aug 2013 A1
20130193189 Swensgard et al. Aug 2013 A1
20130197556 Shelton, IV et al. Aug 2013 A1
20130214025 Zemlok et al. Aug 2013 A1
20130214030 Aronhalt et al. Aug 2013 A1
20130221059 Racenet et al. Aug 2013 A1
20130221063 Aronhalt et al. Aug 2013 A1
20130221064 Aronhalt et al. Aug 2013 A1
20130221065 Aronhalt et al. Aug 2013 A1
20130233905 Sorrentino et al. Sep 2013 A1
20130233906 Hess et al. Sep 2013 A1
20130233908 Knodel et al. Sep 2013 A1
20130238021 Gross et al. Sep 2013 A1
20130248578 Arteaga Gonzalez Sep 2013 A1
20130253480 Kimball et al. Sep 2013 A1
20130256371 Shelton, IV et al. Oct 2013 A1
20130256373 Schmid et al. Oct 2013 A1
20130256374 Shelton, IV et al. Oct 2013 A1
20130256375 Shelton, IV et al. Oct 2013 A1
20130256377 Schmid et al. Oct 2013 A1
20130256378 Schmid et al. Oct 2013 A1
20130256379 Schmid et al. Oct 2013 A1
20130256380 Schmid et al. Oct 2013 A1
20130256382 Swayze et al. Oct 2013 A1
20130256383 Aronhalt et al. Oct 2013 A1
20130261648 Laurent et al. Oct 2013 A1
20130267945 Behnke et al. Oct 2013 A1
20130270322 Scheib et al. Oct 2013 A1
20130277410 Fernandez et al. Oct 2013 A1
20130277412 Gresham et al. Oct 2013 A1
20130282052 Aranyi et al. Oct 2013 A1
20130310873 Stopek et al. Nov 2013 A1
20130313304 Shelton, IV et al. Nov 2013 A1
20130313306 Shelton, IV et al. Nov 2013 A1
20130317753 Kamen et al. Nov 2013 A1
20130319706 Nicholas et al. Dec 2013 A1
20130324981 Smith et al. Dec 2013 A1
20130324982 Smith et al. Dec 2013 A1
20130327552 Lovelass et al. Dec 2013 A1
20130327809 Shelton, IV et al. Dec 2013 A1
20130327810 Swayze et al. Dec 2013 A1
20130333910 Tanimoto et al. Dec 2013 A1
20130334278 Kerr et al. Dec 2013 A1
20130334280 Krehel et al. Dec 2013 A1
20130334283 Swayze et al. Dec 2013 A1
20130334284 Swayze et al. Dec 2013 A1
20130334285 Swayze et al. Dec 2013 A1
20130334286 Swayze et al. Dec 2013 A1
20130334287 Shelton, IV Dec 2013 A1
20130334288 Shelton, IV Dec 2013 A1
20130341374 Shelton, IV et al. Dec 2013 A1
20140001231 Shelton, IV et al. Jan 2014 A1
20140001234 Shelton, IV et al. Jan 2014 A1
20140001237 Shelton, IV et al. Jan 2014 A1
20140001238 Shelton, IV et al. Jan 2014 A1
20140001239 Shelton, IV et al. Jan 2014 A1
20140001240 Shelton, IV et al. Jan 2014 A1
20140005640 Shelton, IV et al. Jan 2014 A1
20140005678 Shelton, IV et al. Jan 2014 A1
20140005681 Gee et al. Jan 2014 A1
20140005693 Shelton, IV et al. Jan 2014 A1
20140005694 Shelton, IV et al. Jan 2014 A1
20140005702 Timm Jan 2014 A1
20140005703 Stulen et al. Jan 2014 A1
20140005718 Shelton, IV et al. Jan 2014 A1
20140008414 Shelton, IV et al. Jan 2014 A1
20140012237 Pribanic et al. Jan 2014 A1
20140012238 Chen et al. Jan 2014 A1
20140012289 Snow et al. Jan 2014 A1
20140012299 Stoddard et al. Jan 2014 A1
20140014705 Baxter, III Jan 2014 A1
20140015782 Kim et al. Jan 2014 A1
20140018832 Shelton, IV Jan 2014 A1
20140025046 Williams et al. Jan 2014 A1
20140039549 Belsky et al. Feb 2014 A1
20140042205 Baxter, III et al. Feb 2014 A1
20140043580 Merchant et al. Feb 2014 A1
20140061279 Laurent et al. Mar 2014 A1
20140061280 Ingmanson et al. Mar 2014 A1
20140081176 Hassan Mar 2014 A1
20140100558 Schmitz et al. Apr 2014 A1
20140103093 Koch, Jr. et al. Apr 2014 A1
20140107640 Yates et al. Apr 2014 A1
20140110455 Ingmanson et al. Apr 2014 A1
20140110456 Taylor Apr 2014 A1
20140114327 Boudreaux et al. Apr 2014 A1
20140115229 Kothamasu et al. Apr 2014 A1
20140128850 Kerr et al. May 2014 A1
20140131418 Kostrzewski May 2014 A1
20140138423 Whitfield et al. May 2014 A1
20140151431 Hodgkinson et al. Jun 2014 A1
20140151433 Shelton, IV et al. Jun 2014 A1
20140158747 Measamer et al. Jun 2014 A1
20140166722 Hess et al. Jun 2014 A1
20140166724 Schellin et al. Jun 2014 A1
20140166725 Schellin et al. Jun 2014 A1
20140166726 Schellin et al. Jun 2014 A1
20140171966 Giordano et al. Jun 2014 A1
20140175147 Manoux et al. Jun 2014 A1
20140175150 Shelton, IV et al. Jun 2014 A1
20140175152 Hess et al. Jun 2014 A1
20140175154 Shelton, IV et al. Jun 2014 A1
20140188159 Steege Jul 2014 A1
20140191014 Shelton, IV Jul 2014 A1
20140191015 Shelton, IV Jul 2014 A1
20140200561 Ingmanson et al. Jul 2014 A1
20140203061 Hodgkinson Jul 2014 A1
20140205637 Widenhouse et al. Jul 2014 A1
20140207124 Aldridge et al. Jul 2014 A1
20140207125 Applegate et al. Jul 2014 A1
20140207166 Shelton, IV et al. Jul 2014 A1
20140224857 Schmid Aug 2014 A1
20140228867 Thomas et al. Aug 2014 A1
20140230595 Butt et al. Aug 2014 A1
20140232316 Philipp Aug 2014 A1
20140236184 Leimbach et al. Aug 2014 A1
20140239036 Zerkle et al. Aug 2014 A1
20140239038 Leimbach et al. Aug 2014 A1
20140243865 Swayze et al. Aug 2014 A1
20140246471 Jaworek et al. Sep 2014 A1
20140246472 Kimsey et al. Sep 2014 A1
20140246473 Auld Sep 2014 A1
20140246474 Hall et al. Sep 2014 A1
20140246475 Hall et al. Sep 2014 A1
20140246476 Hall et al. Sep 2014 A1
20140246477 Koch, Jr. et al. Sep 2014 A1
20140246478 Baber et al. Sep 2014 A1
20140246479 Baber et al. Sep 2014 A1
20140248167 Sugimoto et al. Sep 2014 A1
20140249557 Koch, Jr. et al. Sep 2014 A1
20140249573 Arav Sep 2014 A1
20140252066 Shelton, IV et al. Sep 2014 A1
20140252068 Shelton, IV et al. Sep 2014 A1
20140259591 Shelton, IV et al. Sep 2014 A1
20140263537 Leimbach et al. Sep 2014 A1
20140263538 Leimbach et al. Sep 2014 A1
20140263539 Leimbach et al. Sep 2014 A1
20140263541 Leimbach et al. Sep 2014 A1
20140263542 Leimbach et al. Sep 2014 A1
20140263543 Leimbach et al. Sep 2014 A1
20140263551 Hall et al. Sep 2014 A1
20140263552 Hall et al. Sep 2014 A1
20140263553 Leimbach et al. Sep 2014 A1
20140263554 Leimbach et al. Sep 2014 A1
20140263558 Hauser et al. Sep 2014 A1
20140263562 Patel et al. Sep 2014 A1
20140263564 Leimbach et al. Sep 2014 A1
20140263565 Lytle, IV et al. Sep 2014 A1
20140263572 Shelton, IV et al. Sep 2014 A1
20140276730 Boudreaux et al. Sep 2014 A1
20140277017 Leimbach et al. Sep 2014 A1
20140284371 Morgan et al. Sep 2014 A1
20140284373 Shelton, IV et al. Sep 2014 A1
20140288460 Ouyang et al. Sep 2014 A1
20140291378 Shelton, IV et al. Oct 2014 A1
20140291379 Schellin et al. Oct 2014 A1
20140291380 Weaner et al. Oct 2014 A1
20140291382 Lloyd et al. Oct 2014 A1
20140291383 Spivey et al. Oct 2014 A1
20140296873 Morgan et al. Oct 2014 A1
20140296874 Morgan et al. Oct 2014 A1
20140299648 Shelton, IV et al. Oct 2014 A1
20140303645 Morgan et al. Oct 2014 A1
20140303646 Morgan et al. Oct 2014 A1
20140303660 Boyden et al. Oct 2014 A1
20140305987 Parihar et al. Oct 2014 A1
20140305988 Boudreaux et al. Oct 2014 A1
20140305989 Parihar et al. Oct 2014 A1
20140305990 Shelton, IV et al. Oct 2014 A1
20140305991 Parihar et al. Oct 2014 A1
20140305992 Kimsey et al. Oct 2014 A1
20140305994 Parihar et al. Oct 2014 A1
20140309665 Parihar et al. Oct 2014 A1
20140330161 Swayze et al. Nov 2014 A1
20140339286 Motooka et al. Nov 2014 A1
20140352463 Parihar Dec 2014 A1
20140353358 Shelton, IV et al. Dec 2014 A1
20140367445 Ingmanson et al. Dec 2014 A1
20140367446 Ingmanson et al. Dec 2014 A1
20140367447 Woodard, Jr. et al. Dec 2014 A1
20140374130 Nakamura et al. Dec 2014 A1
20140378950 Chiu Dec 2014 A1
20150002089 Rejman et al. Jan 2015 A1
20150008248 Giordano et al. Jan 2015 A1
20150034696 Shelton, IV et al. Feb 2015 A1
20150038986 Swensgard et al. Feb 2015 A1
20150041518 Shelton, IV et al. Feb 2015 A1
20150053737 Leimbach et al. Feb 2015 A1
20150053738 Morgan et al. Feb 2015 A1
20150053739 Morgan et al. Feb 2015 A1
20150053740 Shelton, IV Feb 2015 A1
20150053741 Shelton, IV et al. Feb 2015 A1
20150053742 Shelton, IV et al. Feb 2015 A1
20150053743 Yates et al. Feb 2015 A1
20150053744 Swayze et al. Feb 2015 A1
20150053745 Yates et al. Feb 2015 A1
20150053746 Shelton, IV et al. Feb 2015 A1
20150053748 Yates et al. Feb 2015 A1
20150060518 Shelton, IV et al. Mar 2015 A1
20150060519 Shelton, IV et al. Mar 2015 A1
20150060520 Shelton, IV et al. Mar 2015 A1
20150060521 Weisenburgh, II et al. Mar 2015 A1
20150066000 An et al. Mar 2015 A1
20150076207 Boudreaux et al. Mar 2015 A1
20150076208 Shelton, IV Mar 2015 A1
20150076209 Shelton, IV et al. Mar 2015 A1
20150076210 Shelton, IV et al. Mar 2015 A1
20150076212 Shelton, IV Mar 2015 A1
20150080868 Kerr Mar 2015 A1
20150083780 Shelton, IV et al. Mar 2015 A1
20150083781 Giordano et al. Mar 2015 A1
20150083782 Scheib et al. Mar 2015 A1
20150083783 Shelton, IV et al. Mar 2015 A1
20150090759 Spivey et al. Apr 2015 A1
20150090760 Giordano et al. Apr 2015 A1
20150090761 Giordano et al. Apr 2015 A1
20150090762 Giordano et al. Apr 2015 A1
20150090763 Murray et al. Apr 2015 A1
20150108199 Shelton, IV et al. Apr 2015 A1
20150122869 Aronhalt et al. May 2015 A1
20150122870 Zemlok et al. May 2015 A1
20150136830 Baxter, III et al. May 2015 A1
20150136831 Baxter, III et al. May 2015 A1
20150136832 Baxter, III et al. May 2015 A1
20150136833 Shelton, IV et al. May 2015 A1
20150148830 Stulen et al. May 2015 A1
20150150554 Soltz Jun 2015 A1
20150150620 Miyamoto et al. Jun 2015 A1
20150157354 Bales, Jr. et al. Jun 2015 A1
20150173744 Shelton, IV et al. Jun 2015 A1
20150173745 Baxter, III et al. Jun 2015 A1
20150173746 Baxter, III et al. Jun 2015 A1
20150173747 Baxter, III et al. Jun 2015 A1
20150173749 Shelton, IV et al. Jun 2015 A1
20150173750 Shelton, IV et al. Jun 2015 A1
20150173751 Shelton, IV et al. Jun 2015 A1
20150173755 Baxter, III et al. Jun 2015 A1
20150173756 Baxter, III et al. Jun 2015 A1
20150173760 Shelton, IV et al. Jun 2015 A1
20150173761 Shelton, IV et al. Jun 2015 A1
20150173762 Shelton, IV et al. Jun 2015 A1
20150173789 Baxter, III et al. Jun 2015 A1
20150182220 Yates et al. Jul 2015 A1
20150182222 Swayze et al. Jul 2015 A1
20150196295 Shelton, IV et al. Jul 2015 A1
20150196296 Swayze et al. Jul 2015 A1
20150196299 Swayze et al. Jul 2015 A1
20150196347 Yates et al. Jul 2015 A1
20150196348 Yates et al. Jul 2015 A1
20150201932 Swayze et al. Jul 2015 A1
20150201935 Weisenburgh, II et al. Jul 2015 A1
20150201936 Swayze et al. Jul 2015 A1
20150201937 Swayze et al. Jul 2015 A1
20150201938 Swayze et al. Jul 2015 A1
20150201939 Swayze et al. Jul 2015 A1
20150201940 Swayze et al. Jul 2015 A1
20150201941 Swayze et al. Jul 2015 A1
20150209031 Shelton, IV et al. Jul 2015 A1
20150209038 Shelton, IV et al. Jul 2015 A1
20150209039 Shelton, IV et al. Jul 2015 A1
20150209041 Milliman et al. Jul 2015 A1
20150222212 Iwata Aug 2015 A1
20150223809 Scheib et al. Aug 2015 A1
20150223816 Morgan et al. Aug 2015 A1
20150230783 Shelton, IV et al. Aug 2015 A1
20150230784 Shelton, IV et al. Aug 2015 A1
20150231409 Racenet et al. Aug 2015 A1
20150238185 Schellin et al. Aug 2015 A1
20150238186 Aronhalt et al. Aug 2015 A1
20150238187 Schellin et al. Aug 2015 A1
20150238188 Vendely et al. Aug 2015 A1
20150238191 Schellin et al. Aug 2015 A1
20150239180 Schellin et al. Aug 2015 A1
20150245835 Racenet et al. Sep 2015 A1
20150265276 Huitema et al. Sep 2015 A1
20150265357 Shelton, IV et al. Sep 2015 A1
20150272557 Overmyer et al. Oct 2015 A1
20150272569 Leimbach et al. Oct 2015 A1
20150272570 Lytle, IV et al. Oct 2015 A1
20150272571 Leimbach et al. Oct 2015 A1
20150272572 Overmyer et al. Oct 2015 A1
20150272574 Leimbach et al. Oct 2015 A1
20150272575 Leimbach et al. Oct 2015 A1
20150272578 Leimbach et al. Oct 2015 A1
20150272579 Leimbach et al. Oct 2015 A1
20150272580 Leimbach et al. Oct 2015 A1
20150272581 Leimbach et al. Oct 2015 A1
20150272582 Leimbach et al. Oct 2015 A1
20150272583 Leimbach et al. Oct 2015 A1
20150277471 Leimbach et al. Oct 2015 A1
20150280384 Leimbach et al. Oct 2015 A1
20150280424 Leimbach et al. Oct 2015 A1
20150282809 Shelton, IV et al. Oct 2015 A1
20150282810 Shelton, IV et al. Oct 2015 A1
20150289873 Shelton, IV et al. Oct 2015 A1
20150289874 Leimbach et al. Oct 2015 A1
20150297200 Fitzsimmons et al. Oct 2015 A1
20150297210 Widenhouse et al. Oct 2015 A1
20150297217 Huitema et al. Oct 2015 A1
20150297218 Shelton, IV et al. Oct 2015 A1
20150297219 Shelton, IV et al. Oct 2015 A1
20150297221 Kerr et al. Oct 2015 A1
20150297222 Huitema et al. Oct 2015 A1
20150297223 Huitema et al. Oct 2015 A1
20150297224 Hall et al. Oct 2015 A1
20150297225 Huitema et al. Oct 2015 A1
20150297226 Hall et al. Oct 2015 A1
20150297227 Huitema et al. Oct 2015 A1
20150297228 Huitema et al. Oct 2015 A1
20150297229 Schellin et al. Oct 2015 A1
20150297230 Schellin et al. Oct 2015 A1
20150297231 Huitema et al. Oct 2015 A1
20150297232 Huitema et al. Oct 2015 A1
20150297233 Huitema et al. Oct 2015 A1
20150297234 Schellin et al. Oct 2015 A1
20150297235 Harris et al. Oct 2015 A1
20150297236 Harris et al. Oct 2015 A1
20150303417 Koeder et al. Oct 2015 A1
20150305729 Fitzsimmons et al. Oct 2015 A1
20150305744 Moore et al. Oct 2015 A1
20150305745 Baxter, III et al. Oct 2015 A1
20150313591 Baxter, III et al. Nov 2015 A1
20150313594 Shelton, IV et al. Nov 2015 A1
20150324317 Collins et al. Nov 2015 A1
20150327853 Aronhalt et al. Nov 2015 A1
20150327864 Hodgkinson et al. Nov 2015 A1
20150335328 Shelton, IV et al. Nov 2015 A1
20150335329 Shelton, IV et al. Nov 2015 A1
20150336249 Iwata et al. Nov 2015 A1
20150342606 Schmid et al. Dec 2015 A1
20150342607 Shelton, IV et al. Dec 2015 A1
20150351758 Shelton, IV et al. Dec 2015 A1
20150351762 Vendely et al. Dec 2015 A1
20150352699 Sakai et al. Dec 2015 A1
20150359536 Cropper et al. Dec 2015 A1
20150372265 Morisaku et al. Dec 2015 A1
20150374360 Scheib et al. Dec 2015 A1
20150374361 Gettinger et al. Dec 2015 A1
20150374363 Laurent, IV et al. Dec 2015 A1
20150374367 Hall et al. Dec 2015 A1
20150374368 Swayze et al. Dec 2015 A1
20150374369 Yates et al. Dec 2015 A1
20150374371 Richard et al. Dec 2015 A1
20150374374 Shelton, IV et al. Dec 2015 A1
20150374375 Shelton, IV et al. Dec 2015 A1
20150374376 Shelton, IV Dec 2015 A1
20150374377 Shelton, IV Dec 2015 A1
20150374378 Giordano et al. Dec 2015 A1
20150374379 Shelton, IV Dec 2015 A1
20150380187 Zergiebel et al. Dec 2015 A1
20160000430 Ming et al. Jan 2016 A1
20160000431 Giordano et al. Jan 2016 A1
20160000432 Huang et al. Jan 2016 A1
20160000437 Giordano et al. Jan 2016 A1
20160000438 Swayze et al. Jan 2016 A1
20160000439 Weisenburgh, II et al. Jan 2016 A1
20160000440 Weisenburgh, II et al. Jan 2016 A1
20160000441 Shelton, IV et al. Jan 2016 A1
20160000442 Shelton, IV Jan 2016 A1
20160000452 Yates et al. Jan 2016 A1
20160000453 Yates et al. Jan 2016 A1
20160000513 Shelton, IV et al. Jan 2016 A1
20160007992 Yates et al. Jan 2016 A1
20160008023 Yates et al. Jan 2016 A1
20160015390 Timm et al. Jan 2016 A1
20160015391 Shelton, IV et al. Jan 2016 A1
20160023342 Koenig et al. Jan 2016 A1
20160030042 Heinrich et al. Feb 2016 A1
20160030103 Manwaring et al. Feb 2016 A1
20160051257 Shelton, IV et al. Feb 2016 A1
20160058443 Yates et al. Mar 2016 A1
20160066909 Baber et al. Mar 2016 A1
20160066910 Baber et al. Mar 2016 A1
20160066911 Babel et al. Mar 2016 A1
20160066912 Baber et al. Mar 2016 A1
20160066913 Swayze et al. Mar 2016 A1
20160066914 Baber et al. Mar 2016 A1
20160066915 Baber et al. Mar 2016 A1
20160066916 Overmyer et al. Mar 2016 A1
20160069449 Kanai et al. Mar 2016 A1
20160073909 Zand et al. Mar 2016 A1
20160074038 Leimbach et al. Mar 2016 A1
20160074040 Widenhouse et al. Mar 2016 A1
20160082161 Zilberman et al. Mar 2016 A1
20160089137 Hess et al. Mar 2016 A1
20160089141 Harris et al. Mar 2016 A1
20160089142 Harris et al. Mar 2016 A1
20160089143 Harris et al. Mar 2016 A1
20160089146 Harris et al. Mar 2016 A1
20160089147 Harris et al. Mar 2016 A1
20160089148 Harris et al. Mar 2016 A1
20160089149 Harris et al. Mar 2016 A1
20160089198 Arya et al. Mar 2016 A1
20160095585 Zergiebel et al. Apr 2016 A1
20160100837 Huang et al. Apr 2016 A1
20160106426 Shelton, IV et al. Apr 2016 A1
20160106427 Shelton, IV et al. Apr 2016 A1
20160106431 Shelton, IV et al. Apr 2016 A1
20160113653 Zingman Apr 2016 A1
20160120544 Shelton, IV et al. May 2016 A1
20160120545 Shelton, IV et al. May 2016 A1
20160120547 Schmid et al. May 2016 A1
20160128694 Baxter, III et al. May 2016 A1
20160135812 Shelton, IV et al. May 2016 A1
20160166256 Baxter, III et al. Jun 2016 A1
20160166308 Manwaring et al. Jun 2016 A1
20160174969 Kerr et al. Jun 2016 A1
20160174970 Shelton, IV et al. Jun 2016 A1
20160174971 Baxter, III et al. Jun 2016 A1
20160174972 Shelton, IV et al. Jun 2016 A1
20160174973 Shelton, IV et al. Jun 2016 A1
20160174974 Schmid et al. Jun 2016 A1
20160174975 Shelton, IV et al. Jun 2016 A1
20160174976 Morgan et al. Jun 2016 A1
20160174977 Lytle, IV et al. Jun 2016 A1
20160174978 Overmyer et al. Jun 2016 A1
20160174983 Shelton, IV et al. Jun 2016 A1
20160174984 Smith et al. Jun 2016 A1
20160174985 Baxter, III et al. Jun 2016 A1
20160183939 Shelton, IV et al. Jun 2016 A1
20160183943 Shelton, IV Jun 2016 A1
20160183944 Swensgard et al. Jun 2016 A1
20160183945 Shelton, IV et al. Jun 2016 A1
20160183947 Shelton, IV et al. Jun 2016 A1
20160183948 Shelton, IV et al. Jun 2016 A1
20160183950 Shelton, IV et al. Jun 2016 A1
20160184039 Shelton, IV et al. Jun 2016 A1
20160192916 Shelton, IV et al. Jul 2016 A1
20160192917 Shelton, IV et al. Jul 2016 A1
20160192918 Shelton, IV et al. Jul 2016 A1
20160192929 Schmid et al. Jul 2016 A1
20160192933 Shelton, IV Jul 2016 A1
20160192936 Leimbach et al. Jul 2016 A1
20160192977 Manwaring et al. Jul 2016 A1
20160192996 Spivey et al. Jul 2016 A1
20160192997 Spivey et al. Jul 2016 A1
20160199059 Shelton, IV et al. Jul 2016 A1
20160199061 Shelton, IV et al. Jul 2016 A1
20160199063 Mandakolathur Vasudevan et al. Jul 2016 A1
20160199064 Shelton, IV et al. Jul 2016 A1
20160199088 Shelton, IV et al. Jul 2016 A1
20160199089 Hess et al. Jul 2016 A1
20160199956 Shelton, IV et al. Jul 2016 A1
20160206309 Hess et al. Jul 2016 A1
20160206310 Shelton, IV Jul 2016 A1
20160206314 Scheib et al. Jul 2016 A1
20160220246 Timm et al. Aug 2016 A1
20160220247 Timm et al. Aug 2016 A1
20160220248 Timm et al. Aug 2016 A1
20160220249 Shelton, IV et al. Aug 2016 A1
20160220254 Baxter, III et al. Aug 2016 A1
20160220266 Shelton, IV et al. Aug 2016 A1
20160220268 Shelton, IV et al. Aug 2016 A1
20160235403 Shelton, IV et al. Aug 2016 A1
20160235404 Shelton, IV Aug 2016 A1
20160235405 Shelton, IV et al. Aug 2016 A1
20160235406 Shelton, IV et al. Aug 2016 A1
20160235408 Shelton, IV et al. Aug 2016 A1
20160235409 Shelton, IV et al. Aug 2016 A1
20160235494 Shelton, IV et al. Aug 2016 A1
20160238108 Kanai et al. Aug 2016 A1
20160242768 Moore et al. Aug 2016 A1
20160242769 Moore et al. Aug 2016 A1
20160242770 Moore et al. Aug 2016 A1
20160242775 Shelton, IV et al. Aug 2016 A1
20160242776 Shelton, IV et al. Aug 2016 A1
20160242777 Shelton, IV et al. Aug 2016 A1
20160242780 Shelton, IV et al. Aug 2016 A1
20160242781 Shelton, IV et al. Aug 2016 A1
20160242782 Shelton, IV et al. Aug 2016 A1
20160242783 Shelton, IV et al. Aug 2016 A1
20160249908 Shelton, IV et al. Sep 2016 A1
20160249909 Shelton, IV et al. Sep 2016 A1
20160249910 Shelton, IV et al. Sep 2016 A1
20160249911 Timm et al. Sep 2016 A1
20160249915 Beckman et al. Sep 2016 A1
20160249916 Shelton, IV et al. Sep 2016 A1
20160249917 Beckman et al. Sep 2016 A1
20160249918 Shelton, IV et al. Sep 2016 A1
20160249919 Savage et al. Sep 2016 A1
20160249922 Morgan et al. Sep 2016 A1
20160249927 Beckman et al. Sep 2016 A1
20160249930 Hall et al. Sep 2016 A1
20160249945 Shelton, IV et al. Sep 2016 A1
20160256071 Shelton, IV et al. Sep 2016 A1
20160256153 Shelton, IV et al. Sep 2016 A1
20160256154 Shelton, IV et al. Sep 2016 A1
20160256155 Shelton, IV et al. Sep 2016 A1
20160256156 Shelton, IV et al. Sep 2016 A1
20160256159 Pinjala et al. Sep 2016 A1
20160256160 Shelton, IV et al. Sep 2016 A1
20160256161 Overmyer et al. Sep 2016 A1
20160256162 Shelton, IV et al. Sep 2016 A1
20160256163 Shelton, IV et al. Sep 2016 A1
20160256184 Shelton, IV et al. Sep 2016 A1
20160256185 Shelton, IV et al. Sep 2016 A1
20160256186 Shelton, IV et al. Sep 2016 A1
20160256187 Shelton, IV et al. Sep 2016 A1
20160256229 Morgan et al. Sep 2016 A1
20160262745 Morgan et al. Sep 2016 A1
20160262746 Shelton, IV et al. Sep 2016 A1
20160262760 Shelton, IV et al. Sep 2016 A1
20160270780 Hall et al. Sep 2016 A1
20160278765 Shelton, IV et al. Sep 2016 A1
20160278775 Shelton, IV et al. Sep 2016 A1
20160287249 Alexander, III et al. Oct 2016 A1
20160287250 Shelton, IV et al. Oct 2016 A1
20160287251 Shelton, IV et al. Oct 2016 A1
20160287253 Shelton, IV et al. Oct 2016 A1
20160287254 Baxter, III et al. Oct 2016 A1
20160310143 Bettuchi Oct 2016 A1
20160331375 Shelton, IV et al. Nov 2016 A1
20160345976 Gonzalez et al. Dec 2016 A1
20160346034 Arya et al. Dec 2016 A1
20160354085 Shelton, IV et al. Dec 2016 A1
20160367122 Ichimura et al. Dec 2016 A1
20160367245 Wise et al. Dec 2016 A1
20160367246 Baxter, III et al. Dec 2016 A1
20160367247 Weaner et al. Dec 2016 A1
20160367254 Baxter, III et al. Dec 2016 A1
20160367255 Wise et al. Dec 2016 A1
20160367256 Hensel et al. Dec 2016 A1
20160374675 Shelton, IV et al. Dec 2016 A1
20170000485 Shelton, IV et al. Jan 2017 A1
20170007236 Shelton, IV et al. Jan 2017 A1
20170007237 Yates et al. Jan 2017 A1
20170007238 Yates et al. Jan 2017 A1
20170007239 Shelton, IV Jan 2017 A1
20170007241 Shelton, IV et al. Jan 2017 A1
20170007242 Shelton, IV et al. Jan 2017 A1
20170007243 Shelton, IV et al. Jan 2017 A1
20170007244 Shelton, IV et al. Jan 2017 A1
20170007245 Shelton, IV et al. Jan 2017 A1
20170007246 Shelton, IV et al. Jan 2017 A1
20170007247 Shelton, IV et al. Jan 2017 A1
20170007248 Shelton, IV et al. Jan 2017 A1
20170007249 Shelton, IV et al. Jan 2017 A1
20170007250 Shelton, IV et al. Jan 2017 A1
20170007251 Yates et al. Jan 2017 A1
20170007254 Jaworek et al. Jan 2017 A1
20170007255 Jaworek et al. Jan 2017 A1
20170007338 Swensgard et al. Jan 2017 A1
20170007340 Swensgard et al. Jan 2017 A1
20170007341 Swensgard et al. Jan 2017 A1
20170007347 Jaworek et al. Jan 2017 A1
20170014125 Shelton, IV et al. Jan 2017 A1
20170014129 Shelton, IV et al. Jan 2017 A1
20170049444 Schellin et al. Feb 2017 A1
20170049447 Barton et al. Feb 2017 A1
20170049448 Widenhouse et al. Feb 2017 A1
20170055986 Harris et al. Mar 2017 A1
20170055989 Shelton, IV et al. Mar 2017 A1
20170055997 Swayze et al. Mar 2017 A1
20170055998 Baxter, III et al. Mar 2017 A1
20170055999 Baxter, III et al. Mar 2017 A1
20170056000 Nalagatla et al. Mar 2017 A1
20170056001 Shelton, IV et al. Mar 2017 A1
20170056002 Nalagatla et al. Mar 2017 A1
20170056004 Shelton, IV et al. Mar 2017 A1
20170056005 Shelton, IV et al. Mar 2017 A1
20170056006 Shelton, IV et al. Mar 2017 A1
20170056007 Eckert et al. Mar 2017 A1
20170079640 Overmyer et al. Mar 2017 A1
20170079642 Overmyer et al. Mar 2017 A1
20170079643 Yates et al. Mar 2017 A1
20170079644 Overmyer et al. Mar 2017 A1
20170079647 Yates et al. Mar 2017 A1
20170086823 Leimbach et al. Mar 2017 A1
20170086827 Vendely et al. Mar 2017 A1
20170086829 Vendely et al. Mar 2017 A1
20170086830 Yates et al. Mar 2017 A1
20170086831 Shelton, IV et al. Mar 2017 A1
20170086832 Harris et al. Mar 2017 A1
20170086835 Harris et al. Mar 2017 A1
20170086836 Harris et al. Mar 2017 A1
20170086837 Vendely et al. Mar 2017 A1
20170086838 Harris et al. Mar 2017 A1
20170086839 Vendely et al. Mar 2017 A1
20170086840 Harris et al. Mar 2017 A1
20170086841 Vendely et al. Mar 2017 A1
20170086842 Shelton, IV et al. Mar 2017 A1
20170086843 Vendely et al. Mar 2017 A1
20170086844 Vendely et al. Mar 2017 A1
20170086845 Vendely et al. Mar 2017 A1
20170086936 Shelton, IV et al. Mar 2017 A1
20170119390 Schellin et al. May 2017 A1
20170119397 Harris et al. May 2017 A1
20170128149 Heinrich et al. May 2017 A1
20170135695 Shelton, IV et al. May 2017 A1
20170135697 Mozdzierz et al. May 2017 A1
20170150983 Ingmanson et al. Jun 2017 A1
20170172672 Bailey et al. Jun 2017 A1
20170182211 Raxworthy et al. Jun 2017 A1
20170189018 Harris et al. Jul 2017 A1
20170189019 Harris et al. Jul 2017 A1
20170189020 Harris et al. Jul 2017 A1
20170196558 Morgan et al. Jul 2017 A1
20170196560 Leimbach et al. Jul 2017 A1
20170196561 Shelton, IV et al. Jul 2017 A1
20170196562 Shelton, IV et al. Jul 2017 A1
20170196637 Shelton, IV et al. Jul 2017 A1
20170196649 Yates et al. Jul 2017 A1
20170202596 Shelton, IV et al. Jul 2017 A1
20170209145 Swayze et al. Jul 2017 A1
20170209146 Yates et al. Jul 2017 A1
20170209226 Overmyer et al. Jul 2017 A1
20170215881 Shelton, IV et al. Aug 2017 A1
20170224330 Worthington et al. Aug 2017 A1
20170224331 Worthington et al. Aug 2017 A1
20170224332 Hunter et al. Aug 2017 A1
20170224333 Hunter et al. Aug 2017 A1
20170224334 Worthington et al. Aug 2017 A1
20170224335 Weaner et al. Aug 2017 A1
20170224336 Hunter et al. Aug 2017 A1
20170224339 Huang et al. Aug 2017 A1
20170224342 Worthington et al. Aug 2017 A1
20170224343 Baxter, III et al. Aug 2017 A1
20170231623 Shelton, IV et al. Aug 2017 A1
20170231626 Shelton, IV et al. Aug 2017 A1
20170231627 Shelton, IV et al. Aug 2017 A1
20170231628 Shelton, IV et al. Aug 2017 A1
20170238928 Morgan et al. Aug 2017 A1
20170238929 Yates et al. Aug 2017 A1
20170245952 Shelton, IV et al. Aug 2017 A1
20170245953 Shelton, IV et al. Aug 2017 A1
20170249431 Shelton, IV et al. Aug 2017 A1
20170258469 Shelton, IV et al. Sep 2017 A1
20170265856 Shelton, IV et al. Sep 2017 A1
20170281167 Shelton, IV et al. Oct 2017 A1
20170281180 Morgan et al. Oct 2017 A1
20170290585 Shelton, IV et al. Oct 2017 A1
20170296169 Yates et al. Oct 2017 A1
20170296170 Shelton, IV et al. Oct 2017 A1
20170296171 Shelton, IV et al. Oct 2017 A1
20170296172 Harris et al. Oct 2017 A1
20170296173 Shelton, IV et al. Oct 2017 A1
20170296177 Harris et al. Oct 2017 A1
20170296178 Miller et al. Oct 2017 A1
20170296179 Shelton, IV et al. Oct 2017 A1
20170296180 Harris et al. Oct 2017 A1
20170296183 Shelton, IV et al. Oct 2017 A1
20170296184 Harris et al. Oct 2017 A1
20170296185 Swensgard et al. Oct 2017 A1
20170296189 Vendely et al. Oct 2017 A1
20170296190 Aronhalt et al. Oct 2017 A1
20170296191 Shelton, IV et al. Oct 2017 A1
20170296213 Swensgard et al. Oct 2017 A1
20170311944 Morgan et al. Nov 2017 A1
20170311949 Shelton, IV Nov 2017 A1
20170311950 Shelton, IV et al. Nov 2017 A1
20170312040 Giordano et al. Nov 2017 A1
20170312041 Giordano et al. Nov 2017 A1
20170312042 Giordano et al. Nov 2017 A1
20170319201 Morgan et al. Nov 2017 A1
20170319207 Shelton, IV et al. Nov 2017 A1
20170319209 Morgan et al. Nov 2017 A1
20170319777 Shelton, IV et al. Nov 2017 A1
20170333034 Morgan et al. Nov 2017 A1
20170333035 Morgan et al. Nov 2017 A1
20170333070 Laurent et al. Nov 2017 A1
20170348043 Wang et al. Dec 2017 A1
20170354415 Casasanta, Jr. et al. Dec 2017 A1
20170360442 Shelton, IV et al. Dec 2017 A1
20170367700 Leimbach et al. Dec 2017 A1
20170367991 Widenhouse et al. Dec 2017 A1
20180000483 Leimbach et al. Jan 2018 A1
20180000545 Giordano et al. Jan 2018 A1
20180008269 Moore et al. Jan 2018 A1
20180008270 Moore et al. Jan 2018 A1
20180008271 Moore et al. Jan 2018 A1
20180008356 Giordano et al. Jan 2018 A1
20180008357 Giordano et al. Jan 2018 A1
20180028184 Shelton, IV et al. Feb 2018 A1
20180028185 Shelton, IV et al. Feb 2018 A1
20180042611 Swayze et al. Feb 2018 A1
20180049824 Harris et al. Feb 2018 A1
20180049883 Moskowitz et al. Feb 2018 A1
20180055510 Schmid et al. Mar 2018 A1
20180055513 Shelton, IV et al. Mar 2018 A1
20180055524 Shelton, IV et al. Mar 2018 A1
20180055525 Shelton, IV et al. Mar 2018 A1
20180055526 Shelton, IV et al. Mar 2018 A1
20180064437 Yates et al. Mar 2018 A1
20180064440 Shelton, IV et al. Mar 2018 A1
20180064441 Shelton, IV et al. Mar 2018 A1
20180064442 Shelton, IV et al. Mar 2018 A1
20180064443 Shelton, IV et al. Mar 2018 A1
20180070939 Giordano et al. Mar 2018 A1
20180070942 Shelton, IV et al. Mar 2018 A1
20180070946 Shelton, IV et al. Mar 2018 A1
20180074535 Shelton, IV et al. Mar 2018 A1
20180078248 Swayze et al. Mar 2018 A1
20180085116 Yates et al. Mar 2018 A1
20180085117 Shelton, IV et al. Mar 2018 A1
20180085123 Shelton, IV et al. Mar 2018 A1
20180095487 Leimbach et al. Apr 2018 A1
20180103952 Aronhalt et al. Apr 2018 A1
20180103953 Shelton, IV et al. Apr 2018 A1
20180103955 Shelton, IV et al. Apr 2018 A1
20180110516 Baxter, III et al. Apr 2018 A1
20180110518 Overmyer et al. Apr 2018 A1
20180110519 Lytle, IV et al. Apr 2018 A1
20180110520 Shelton, IV et al. Apr 2018 A1
20180110521 Shelton, IV et al. Apr 2018 A1
20180110522 Shelton, IV et al. Apr 2018 A1
20180110523 Shelton, IV Apr 2018 A1
20180110574 Shelton, IV et al. Apr 2018 A1
20180110575 Shelton, IV et al. Apr 2018 A1
20180116658 Aronhalt, IV et al. May 2018 A1
20180116662 Shelton, IV et al. May 2018 A1
20180116665 Hall et al. May 2018 A1
20180125481 Yates et al. May 2018 A1
20180125488 Morgan et al. May 2018 A1
20180125489 Leimbach et al. May 2018 A1
20180125590 Giordano et al. May 2018 A1
20180126504 Shelton, IV et al. May 2018 A1
20180132845 Schmid et al. May 2018 A1
20180132850 Leimbach et al. May 2018 A1
20180132851 Hall et al. May 2018 A1
20180132952 Spivey et al. May 2018 A1
20180133856 Shelton, IV et al. May 2018 A1
20180140299 Weaner et al. May 2018 A1
20180140368 Shelton, IV et al. May 2018 A1
20180146960 Shelton, IV et al. May 2018 A1
20180153542 Shelton, IV et al. Jun 2018 A1
20180161034 Scheib et al. Jun 2018 A1
20180168575 Simms et al. Jun 2018 A1
20180168576 Hunter et al. Jun 2018 A1
20180168577 Aronhalt et al. Jun 2018 A1
20180168578 Aronhalt et al. Jun 2018 A1
20180168579 Aronhalt et al. Jun 2018 A1
20180168580 Hunter et al. Jun 2018 A1
20180168581 Hunter et al. Jun 2018 A1
20180168582 Swayze et al. Jun 2018 A1
20180168583 Hunter et al. Jun 2018 A1
20180168584 Harris et al. Jun 2018 A1
20180168589 Swayze et al. Jun 2018 A1
20180168590 Overmyer et al. Jun 2018 A1
20180168591 Swayze et al. Jun 2018 A1
20180168592 Overmyer et al. Jun 2018 A1
20180168593 Overmyer et al. Jun 2018 A1
20180168594 Shelton, IV et al. Jun 2018 A1
20180168595 Overmyer et al. Jun 2018 A1
20180168596 Beckman et al. Jun 2018 A1
20180168597 Fanelli et al. Jun 2018 A1
20180168598 Shelton, IV et al. Jun 2018 A1
20180168599 Bakos et al. Jun 2018 A1
20180168600 Shelton, IV et al. Jun 2018 A1
20180168601 Bakos et al. Jun 2018 A1
20180168602 Bakos et al. Jun 2018 A1
20180168603 Morgan et al. Jun 2018 A1
20180168604 Shelton, IV et al. Jun 2018 A1
20180168605 Baber et al. Jun 2018 A1
20180168606 Shelton, IV et al. Jun 2018 A1
20180168607 Shelton, IV et al. Jun 2018 A1
20180168608 Shelton, IV et al. Jun 2018 A1
20180168609 Fanelli et al. Jun 2018 A1
20180168610 Shelton, IV et al. Jun 2018 A1
20180168611 Shelton, IV et al. Jun 2018 A1
20180168612 Shelton, IV et al. Jun 2018 A1
20180168613 Shelton, IV et al. Jun 2018 A1
20180168614 Shelton, IV et al. Jun 2018 A1
20180168615 Shelton, IV et al. Jun 2018 A1
20180168618 Scott et al. Jun 2018 A1
20180168619 Scott et al. Jun 2018 A1
20180168620 Huang et al. Jun 2018 A1
20180168621 Shelton, IV et al. Jun 2018 A1
20180168622 Shelton, IV et al. Jun 2018 A1
20180168623 Simms et al. Jun 2018 A1
20180168624 Shelton, IV et al. Jun 2018 A1
20180168625 Posada et al. Jun 2018 A1
20180168626 Shelton, IV et al. Jun 2018 A1
20180168627 Weaner et al. Jun 2018 A1
20180168628 Hunter et al. Jun 2018 A1
20180168629 Shelton, IV et al. Jun 2018 A1
20180168630 Shelton, IV et al. Jun 2018 A1
20180168631 Harris et al. Jun 2018 A1
20180168632 Harris et al. Jun 2018 A1
20180168633 Shelton, IV et al. Jun 2018 A1
20180168634 Harris et al. Jun 2018 A1
20180168635 Shelton, IV et al. Jun 2018 A1
20180168636 Shelton, IV et al. Jun 2018 A1
20180168637 Harris et al. Jun 2018 A1
20180168638 Harris et al. Jun 2018 A1
20180168639 Shelton, IV et al. Jun 2018 A1
20180168640 Shelton, IV et al. Jun 2018 A1
20180168641 Harris et al. Jun 2018 A1
20180168642 Shelton, IV et al. Jun 2018 A1
20180168644 Shelton, IV et al. Jun 2018 A1
20180168645 Shelton, IV et al. Jun 2018 A1
20180168646 Shelton, IV et al. Jun 2018 A1
20180168649 Shelton, IV et al. Jun 2018 A1
20180168651 Shelton, IV et al. Jun 2018 A1
20180199940 Zergiebel et al. Jul 2018 A1
20180206843 Yates et al. Jul 2018 A1
20180206906 Moua et al. Jul 2018 A1
20180214147 Merchant et al. Aug 2018 A1
20180221046 Demmy et al. Aug 2018 A1
20180221050 Kostrzewski et al. Aug 2018 A1
20180228490 Richard et al. Aug 2018 A1
20180250001 Aronhalt et al. Sep 2018 A1
20180256184 Shelton, IV et al. Sep 2018 A1
20180256185 Shelton, IV et al. Sep 2018 A1
20180271520 Shelton, IV et al. Sep 2018 A1
20180280020 Hess et al. Oct 2018 A1
20180280021 Timm et al. Oct 2018 A1
20180280022 Timm et al. Oct 2018 A1
20180280023 Timm et al. Oct 2018 A1
Foreign Referenced Citations (1347)
Number Date Country
2008207624 Mar 2009 AU
2010214687 Sep 2010 AU
2011218702 Jun 2013 AU
2012200178 Jul 2013 AU
1015829 Aug 1977 CA
1125615 Jun 1982 CA
2458946 Mar 2003 CA
2477181 Apr 2004 CA
2512960 Jan 2006 CA
2514274 Jan 2006 CA
2639177 Feb 2009 CA
2576347 Aug 2015 CA
86100996 Sep 1986 CN
1163558 Oct 1997 CN
2488482 May 2002 CN
1424891 Jun 2003 CN
1523725 Aug 2004 CN
1545154 Nov 2004 CN
1634601 Jul 2005 CN
1636525 Jul 2005 CN
1636526 Jul 2005 CN
2716900 Aug 2005 CN
2738962 Nov 2005 CN
1726874 Feb 2006 CN
1726878 Feb 2006 CN
1868411 Nov 2006 CN
1915180 Feb 2007 CN
2868212 Feb 2007 CN
1960679 May 2007 CN
101011286 Aug 2007 CN
200942099 Sep 2007 CN
101073509 Nov 2007 CN
200991269 Dec 2007 CN
101095621 Jan 2008 CN
101111196 Jan 2008 CN
201001747 Jan 2008 CN
101137402 Mar 2008 CN
101143105 Mar 2008 CN
201029899 Mar 2008 CN
101224122 Jul 2008 CN
101224124 Jul 2008 CN
101254126 Sep 2008 CN
101507620 Aug 2009 CN
101507622 Aug 2009 CN
101507623 Aug 2009 CN
101507625 Aug 2009 CN
101507628 Aug 2009 CN
101534724 Sep 2009 CN
101541251 Sep 2009 CN
101626731 Jan 2010 CN
101669833 Mar 2010 CN
101675898 Mar 2010 CN
101683280 Mar 2010 CN
101721236 Jun 2010 CN
101801284 Aug 2010 CN
101828940 Sep 2010 CN
101868203 Oct 2010 CN
101873834 Oct 2010 CN
101912285 Dec 2010 CN
101028205 Jan 2011 CN
101933824 Jan 2011 CN
201719298 Jan 2011 CN
101934098 May 2011 CN
102038531 May 2011 CN
102038532 May 2011 CN
101534722 Jun 2011 CN
201879759 Jun 2011 CN
101361666 Aug 2011 CN
201949071 Aug 2011 CN
101224119 Sep 2011 CN
101336835 Sep 2011 CN
102188270 Sep 2011 CN
101779977 Dec 2011 CN
101534723 Jan 2012 CN
101310680 Apr 2012 CN
101912284 Jul 2012 CN
202397539 Aug 2012 CN
202426586 Sep 2012 CN
101317782 Oct 2012 CN
202489990 Oct 2012 CN
101507639 Nov 2012 CN
102835977 Dec 2012 CN
101507633 Feb 2013 CN
101023879 Mar 2013 CN
101507624 Mar 2013 CN
101327137 Jun 2013 CN
101401736 Jun 2013 CN
101332110 Jul 2013 CN
101683281 Jan 2014 CN
103648408 Mar 2014 CN
203564285 Apr 2014 CN
203564287 Apr 2014 CN
203597997 May 2014 CN
103829983 Jun 2014 CN
103908313 Jul 2014 CN
203736251 Jul 2014 CN
102783741 Oct 2014 CN
102973300 Oct 2014 CN
102793571 Dec 2014 CN
104337556 Feb 2015 CN
102166129 Mar 2015 CN
102469995 Mar 2015 CN
102113902 Apr 2015 CN
102247177 Feb 2016 CN
103750872 May 2016 CN
273689 May 1914 DE
1775926 Jul 1972 DE
3036217 Apr 1982 DE
3212828 Nov 1982 DE
3210466 Sep 1983 DE
3709067 Sep 1988 DE
4228909 Mar 1994 DE
9412228 Sep 1994 DE
19509116 Sep 1996 DE
19534043 Mar 1997 DE
19707373 Feb 1998 DE
19851291 Jan 2000 DE
19924311 Nov 2000 DE
69328576 Jan 2001 DE
20016423 Feb 2001 DE
19941859 Mar 2001 DE
10052679 May 2001 DE
20112837 Oct 2001 DE
20121753 Apr 2003 DE
10314827 Apr 2004 DE
10314072 Oct 2004 DE
202004012389 Nov 2004 DE
2020073114 Jun 2007 DE
102010013150 Sep 2011 DE
0000756 Feb 1979 EP
0033633 Aug 1981 EP
0122046 Oct 1984 EP
0070230 Oct 1985 EP
0156774 Oct 1985 EP
0072754 Apr 1986 EP
0033548 May 1986 EP
0077262 Aug 1986 EP
0189807 Aug 1986 EP
0212278 Mar 1987 EP
0129442 Nov 1987 EP
0255631 Feb 1988 EP
0276104 Jul 1988 EP
0379721 Aug 1990 EP
0178940 Jan 1991 EP
0178941 Jan 1991 EP
0169044 Jun 1991 EP
0248844 Jan 1993 EP
0539762 May 1993 EP
0541950 May 1993 EP
0545029 Jun 1993 EP
0548998 Jun 1993 EP
0277959 Oct 1993 EP
0591946 Oct 1993 EP
0233940 Nov 1993 EP
0261230 Nov 1993 EP
0639349 Feb 1994 EP
0324636 Mar 1994 EP
0593920 Apr 1994 EP
0594148 Apr 1994 EP
0427949 Jun 1994 EP
0523174 Jun 1994 EP
0600182 Jun 1994 EP
0310431 Nov 1994 EP
0375302 Nov 1994 EP
0376562 Nov 1994 EP
0623311 Nov 1994 EP
0630612 Dec 1994 EP
0630614 Dec 1994 EP
0634144 Jan 1995 EP
0646356 Apr 1995 EP
0646357 Apr 1995 EP
0505036 May 1995 EP
0653189 May 1995 EP
0669104 Aug 1995 EP
0387980 Oct 1995 EP
0511470 Oct 1995 EP
0674876 Oct 1995 EP
0679367 Nov 1995 EP
0392547 Dec 1995 EP
0685204 Dec 1995 EP
0686374 Dec 1995 EP
0364216 Jan 1996 EP
0699418 Mar 1996 EP
0702937 Mar 1996 EP
0488768 Apr 1996 EP
0705571 Apr 1996 EP
0528478 May 1996 EP
0711611 May 1996 EP
0484677 Jun 1996 EP
0541987 Jul 1996 EP
0667119 Jul 1996 EP
0737446 Oct 1996 EP
0748614 Dec 1996 EP
0708618 Mar 1997 EP
0770355 May 1997 EP
0503662 Jun 1997 EP
0447121 Jul 1997 EP
0621009 Jul 1997 EP
0625077 Jul 1997 EP
0633749 Aug 1997 EP
0710090 Aug 1997 EP
0578425 Sep 1997 EP
0623312 Sep 1997 EP
0621006 Oct 1997 EP
0625335 Nov 1997 EP
0552423 Jan 1998 EP
0592244 Jan 1998 EP
0648476 Jan 1998 EP
0649290 Mar 1998 EP
0598618 Sep 1998 EP
0676173 Sep 1998 EP
0678007 Sep 1998 EP
0869104 Oct 1998 EP
0603472 Nov 1998 EP
0605351 Nov 1998 EP
0878169 Nov 1998 EP
0879742 Nov 1998 EP
0695144 Dec 1998 EP
0722296 Dec 1998 EP
0760230 Feb 1999 EP
0623316 Mar 1999 EP
0650701 Mar 1999 EP
0537572 Jun 1999 EP
0923907 Jun 1999 EP
0640317 Sep 1999 EP
0843906 Mar 2000 EP
0552050 May 2000 EP
0833592 May 2000 EP
0832605 Jun 2000 EP
0830094 Sep 2000 EP
1034747 Sep 2000 EP
1034748 Sep 2000 EP
0726632 Oct 2000 EP
0694290 Nov 2000 EP
1050278 Nov 2000 EP
1053719 Nov 2000 EP
1053720 Nov 2000 EP
1055399 Nov 2000 EP
1055400 Nov 2000 EP
1058177 Dec 2000 EP
1080694 Mar 2001 EP
1090592 Apr 2001 EP
1095627 May 2001 EP
0806914 Sep 2001 EP
0768840 Dec 2001 EP
0908152 Jan 2002 EP
0717959 Feb 2002 EP
0872213 May 2002 EP
0862386 Jun 2002 EP
0949886 Sep 2002 EP
1238634 Sep 2002 EP
0858295 Dec 2002 EP
0656188 Jan 2003 EP
0717960 Feb 2003 EP
1284120 Feb 2003 EP
1287788 Mar 2003 EP
0717966 Apr 2003 EP
0717967 May 2003 EP
0869742 May 2003 EP
0829235 Jun 2003 EP
0887046 Jul 2003 EP
1323384 Jul 2003 EP
0852480 Aug 2003 EP
0891154 Sep 2003 EP
0813843 Oct 2003 EP
0873089 Oct 2003 EP
0856326 Nov 2003 EP
1374788 Jan 2004 EP
0741996 Feb 2004 EP
0814712 Feb 2004 EP
1402837 Mar 2004 EP
0705570 Apr 2004 EP
0959784 Apr 2004 EP
1407719 Apr 2004 EP
1411626 Apr 2004 EP
1086713 May 2004 EP
0996378 Jun 2004 EP
1426012 Jun 2004 EP
0833593 Jul 2004 EP
1442694 Aug 2004 EP
0888749 Sep 2004 EP
0959786 Sep 2004 EP
1453432 Sep 2004 EP
1459695 Sep 2004 EP
1254636 Oct 2004 EP
1473819 Nov 2004 EP
1477119 Nov 2004 EP
1479345 Nov 2004 EP
1479347 Nov 2004 EP
1479348 Nov 2004 EP
0754437 Dec 2004 EP
1025807 Dec 2004 EP
1001710 Jan 2005 EP
1496805 Jan 2005 EP
1256318 Feb 2005 EP
1520521 Apr 2005 EP
1520522 Apr 2005 EP
1520523 Apr 2005 EP
1520525 Apr 2005 EP
1522264 Apr 2005 EP
1523942 Apr 2005 EP
1550408 Jul 2005 EP
1557129 Jul 2005 EP
1064883 Aug 2005 EP
1067876 Aug 2005 EP
0870473 Sep 2005 EP
1157666 Sep 2005 EP
0880338 Oct 2005 EP
1158917 Nov 2005 EP
1344498 Nov 2005 EP
0906764 Dec 2005 EP
1330989 Dec 2005 EP
0771176 Jan 2006 EP
1621138 Feb 2006 EP
1621139 Feb 2006 EP
1621141 Feb 2006 EP
1621143 Feb 2006 EP
1621145 Feb 2006 EP
1621151 Feb 2006 EP
1034746 Mar 2006 EP
1201196 Mar 2006 EP
1632191 Mar 2006 EP
1647231 Apr 2006 EP
1065981 May 2006 EP
1082944 May 2006 EP
1230899 May 2006 EP
1652481 May 2006 EP
1382303 Jun 2006 EP
1253866 Jul 2006 EP
1676539 Jul 2006 EP
1032318 Aug 2006 EP
1045672 Aug 2006 EP
1617768 Aug 2006 EP
1693015 Aug 2006 EP
1400214 Sep 2006 EP
1702567 Sep 2006 EP
1129665 Nov 2006 EP
1400206 Nov 2006 EP
1721568 Nov 2006 EP
1723914 Nov 2006 EP
1256317 Dec 2006 EP
1285633 Dec 2006 EP
1728473 Dec 2006 EP
1728475 Dec 2006 EP
1736105 Dec 2006 EP
1011494 Jan 2007 EP
1479346 Jan 2007 EP
1484024 Jan 2007 EP
1749485 Feb 2007 EP
1754445 Feb 2007 EP
1759812 Mar 2007 EP
1767157 Mar 2007 EP
1767163 Mar 2007 EP
1563792 Apr 2007 EP
1769756 Apr 2007 EP
1769758 Apr 2007 EP
1581128 May 2007 EP
1780825 May 2007 EP
1785097 May 2007 EP
1790293 May 2007 EP
1790294 May 2007 EP
1563793 Jun 2007 EP
1791473 Jun 2007 EP
1800610 Jun 2007 EP
1300117 Aug 2007 EP
1813199 Aug 2007 EP
1813200 Aug 2007 EP
1813201 Aug 2007 EP
1813202 Aug 2007 EP
1813203 Aug 2007 EP
1813207 Aug 2007 EP
1813209 Aug 2007 EP
1815950 Aug 2007 EP
1330991 Sep 2007 EP
1806103 Sep 2007 EP
1837041 Sep 2007 EP
0922435 Oct 2007 EP
1487359 Oct 2007 EP
1599146 Oct 2007 EP
1839596 Oct 2007 EP
2110083 Oct 2007 EP
1679096 Nov 2007 EP
1857057 Nov 2007 EP
1402821 Dec 2007 EP
1872727 Jan 2008 EP
1550410 Feb 2008 EP
1671593 Feb 2008 EP
1897502 Mar 2008 EP
1611856 Apr 2008 EP
1908417 Apr 2008 EP
1917929 May 2008 EP
1330201 Jun 2008 EP
1702568 Jul 2008 EP
1943955 Jul 2008 EP
1943957 Jul 2008 EP
1943959 Jul 2008 EP
1943962 Jul 2008 EP
1943964 Jul 2008 EP
1943976 Jul 2008 EP
1593337 Aug 2008 EP
1970014 Sep 2008 EP
1974678 Oct 2008 EP
1980213 Oct 2008 EP
1980214 Oct 2008 EP
1759645 Nov 2008 EP
1987780 Nov 2008 EP
1990014 Nov 2008 EP
1992296 Nov 2008 EP
1552795 Dec 2008 EP
1693008 Dec 2008 EP
1759640 Dec 2008 EP
1997439 Dec 2008 EP
2000101 Dec 2008 EP
2000102 Dec 2008 EP
2005894 Dec 2008 EP
2005897 Dec 2008 EP
2005901 Dec 2008 EP
2008595 Dec 2008 EP
2025293 Feb 2009 EP
1736104 Mar 2009 EP
1749486 Mar 2009 EP
1782743 Mar 2009 EP
2039302 Mar 2009 EP
2039308 Mar 2009 EP
2039316 Mar 2009 EP
1721576 Apr 2009 EP
1733686 Apr 2009 EP
2044890 Apr 2009 EP
2055243 May 2009 EP
1550409 Jun 2009 EP
1550413 Jun 2009 EP
1719461 Jun 2009 EP
1834594 Jun 2009 EP
1709911 Jul 2009 EP
2077093 Jul 2009 EP
1745748 Aug 2009 EP
2090231 Aug 2009 EP
2090237 Aug 2009 EP
2090241 Aug 2009 EP
2090244 Aug 2009 EP
2090245 Aug 2009 EP
2090254 Aug 2009 EP
2090256 Aug 2009 EP
2095777 Sep 2009 EP
2098170 Sep 2009 EP
2100562 Sep 2009 EP
2110082 Oct 2009 EP
2110084 Oct 2009 EP
2111803 Oct 2009 EP
1762190 Nov 2009 EP
1813208 Nov 2009 EP
1908426 Nov 2009 EP
2116195 Nov 2009 EP
2116197 Nov 2009 EP
1607050 Dec 2009 EP
1815804 Dec 2009 EP
1875870 Dec 2009 EP
1878395 Jan 2010 EP
2151204 Feb 2010 EP
1813211 Mar 2010 EP
2165654 Mar 2010 EP
2165656 Mar 2010 EP
2165660 Mar 2010 EP
2165663 Mar 2010 EP
2165664 Mar 2010 EP
1566150 Apr 2010 EP
1813206 Apr 2010 EP
2184014 May 2010 EP
1769754 Jun 2010 EP
1854416 Jun 2010 EP
1911408 Jun 2010 EP
2198787 Jun 2010 EP
2214610 Aug 2010 EP
2218409 Aug 2010 EP
1647286 Sep 2010 EP
1825821 Sep 2010 EP
1535565 Oct 2010 EP
1702570 Oct 2010 EP
1785098 Oct 2010 EP
2005896 Oct 2010 EP
2030578 Nov 2010 EP
2036505 Nov 2010 EP
2245993 Nov 2010 EP
2245994 Nov 2010 EP
2253280 Nov 2010 EP
1627605 Dec 2010 EP
2027811 Dec 2010 EP
2130498 Dec 2010 EP
2258282 Dec 2010 EP
2263568 Dec 2010 EP
1994890 Jan 2011 EP
2005900 Jan 2011 EP
2277667 Jan 2011 EP
2283780 Feb 2011 EP
2286738 Feb 2011 EP
1494595 Mar 2011 EP
1690502 Mar 2011 EP
1884201 Mar 2011 EP
2292153 Mar 2011 EP
1769755 Apr 2011 EP
2090240 Apr 2011 EP
2305135 Apr 2011 EP
2308388 Apr 2011 EP
2314254 Apr 2011 EP
2316345 May 2011 EP
2316366 May 2011 EP
2319443 May 2011 EP
2324776 May 2011 EP
1813205 Jun 2011 EP
2042107 Jun 2011 EP
2090243 Jun 2011 EP
2329773 Jun 2011 EP
2090239 Jul 2011 EP
2340771 Jul 2011 EP
1728475 Aug 2011 EP
2353545 Aug 2011 EP
2361562 Aug 2011 EP
2377472 Oct 2011 EP
1836986 Nov 2011 EP
1908414 Nov 2011 EP
2153781 Nov 2011 EP
2387943 Nov 2011 EP
2389928 Nov 2011 EP
1847225 Dec 2011 EP
2397079 Dec 2011 EP
2399538 Dec 2011 EP
1785102 Jan 2012 EP
1316290 Feb 2012 EP
1962711 Feb 2012 EP
2415416 Feb 2012 EP
2090253 Mar 2012 EP
2430986 Mar 2012 EP
1347638 May 2012 EP
1943956 May 2012 EP
2446834 May 2012 EP
2455007 May 2012 EP
2457519 May 2012 EP
2462878 Jun 2012 EP
2462880 Jun 2012 EP
1813204 Jul 2012 EP
2189121 Jul 2012 EP
2248475 Jul 2012 EP
2478845 Jul 2012 EP
2005895 Aug 2012 EP
2090248 Aug 2012 EP
2481359 Aug 2012 EP
2484304 Aug 2012 EP
2486860 Aug 2012 EP
2486862 Aug 2012 EP
2486868 Aug 2012 EP
1908412 Sep 2012 EP
1935351 Sep 2012 EP
2497431 Sep 2012 EP
1550412 Oct 2012 EP
1616549 Oct 2012 EP
2030579 Oct 2012 EP
2090252 Oct 2012 EP
2517637 Oct 2012 EP
2517638 Oct 2012 EP
2517642 Oct 2012 EP
2517645 Oct 2012 EP
2517649 Oct 2012 EP
2517651 Oct 2012 EP
2526877 Nov 2012 EP
2526883 Nov 2012 EP
1884206 Mar 2013 EP
2286735 Mar 2013 EP
2090238 Apr 2013 EP
2586380 May 2013 EP
2586383 May 2013 EP
2606812 Jun 2013 EP
2606834 Jun 2013 EP
1982657 Jul 2013 EP
2614782 Jul 2013 EP
2617369 Jul 2013 EP
2620117 Jul 2013 EP
2090234 Sep 2013 EP
2633830 Sep 2013 EP
2644124 Oct 2013 EP
2644209 Oct 2013 EP
2649948 Oct 2013 EP
2649949 Oct 2013 EP
1997438 Nov 2013 EP
2684529 Jan 2014 EP
2687164 Jan 2014 EP
2700367 Feb 2014 EP
2713902 Apr 2014 EP
1772105 May 2014 EP
2743042 Jun 2014 EP
2759267 Jul 2014 EP
2764826 Aug 2014 EP
2764827 Aug 2014 EP
2767243 Aug 2014 EP
2772206 Sep 2014 EP
2772209 Sep 2014 EP
2777520 Sep 2014 EP
2777524 Sep 2014 EP
2777528 Sep 2014 EP
2777537 Sep 2014 EP
2777538 Sep 2014 EP
2786714 Oct 2014 EP
2792313 Oct 2014 EP
2803324 Nov 2014 EP
2815704 Dec 2014 EP
2446835 Jan 2015 EP
2842500 Mar 2015 EP
2845545 Mar 2015 EP
1943960 Apr 2015 EP
2090255 Apr 2015 EP
2853220 Apr 2015 EP
2923647 Sep 2015 EP
2923653 Sep 2015 EP
2923660 Sep 2015 EP
2932913 Oct 2015 EP
2944270 Nov 2015 EP
1774914 81 Dec 2015 EP
2090235 Apr 2016 EP
2823773 Apr 2016 EP
2131750 May 2016 EP
2298220 Jun 2016 EP
2510891 Jun 2016 EP
1915957 Aug 2016 EP
2296559 Aug 2016 EP
2586379 Aug 2016 EP
2777533 Oct 2016 EP
2364651 Nov 2016 EP
2747235 Nov 2016 EP
2116192 Mar 2017 EP
2789299 May 2017 EP
2311386 Jun 2017 EP
2839787 Jun 2017 EP
2745782 Oct 2017 EP
2396594 Feb 2013 ES
459743 Nov 1913 FR
999646 Feb 1952 FR
1112936 Mar 1956 FR
2452275 Apr 1983 FR
2598905 Nov 1987 FR
2689749 Jul 1994 FR
2765794 Jan 1999 FR
2815842 Oct 2000 FR
939929 Oct 1963 GB
1210522 Oct 1970 GB
1217159 Dec 1970 GB
1339394 Dec 1973 GB
2024012 Jan 1980 GB
2109241 Jun 1983 GB
2090534 Jun 1984 GB
2272159 May 1994 GB
2284242 May 1995 GB
2286435 Aug 1995 GB
2336214 Oct 1999 GB
2425903 Nov 2006 GB
2426391 Nov 2006 GB
2423199 May 2009 GB
2509523 Jul 2014 GB
930100110 Nov 1993 GR
S 47-11908 May 1972 JP
S 50-33988 Apr 1975 JP
S 56-112235 Sep 1981 JP
S 58500053 Jan 1983 JP
S 58-501360 Aug 1983 JP
S 59-174920 Mar 1984 JP
S 60-100955 Jun 1985 JP
S 60-212152 Oct 1985 JP
S 61-98249 May 1986 JP
S 61502036 Sep 1986 JP
S 62-170011 Oct 1987 JP
S 63-59764 Mar 1988 JP
S 63-147449 Jun 1988 JP
S 63-203149 Aug 1988 JP
S63270040 Nov 1988 JP
H0129503 Jun 1989 JP
H 03-12126 Jan 1991 JP
H 03-18354 Jan 1991 JP
H 03-78514 Aug 1991 JP
H 03-85009 Aug 1991 JP
H 02-279149 Nov 1991 JP
H 04-215747 Aug 1992 JP
H 04-131860 Dec 1992 JP
H 05-84252 Apr 1993 JP
H 05-123325 May 1993 JP
H05212039 Aug 1993 JP
H 05226945 Sep 1993 JP
H067357 Jan 1994 JP
H 06-30945 Feb 1994 JP
H 06-54857 Mar 1994 JP
H 06-63054 Mar 1994 JP
H 06-26812 Apr 1994 JP
H 06-121798 May 1994 JP
H 06-125913 May 1994 JP
H 06-197901 Jul 1994 JP
H 06-237937 Aug 1994 JP
H 06-327684 Nov 1994 JP
H 07-9622 Feb 1995 JP
H 07-31623 Feb 1995 JP
H 07-47070 Feb 1995 JP
H 07-51273 Feb 1995 JP
H 07-124166 May 1995 JP
H 07-163573 Jun 1995 JP
H 07-163574 Jun 1995 JP
H 07-171163 Jul 1995 JP
H 07-255735 Oct 1995 JP
H 07-285089 Oct 1995 JP
H 07-299074 Nov 1995 JP
H 08-33641 Feb 1996 JP
H 08-33642 Feb 1996 JP
H 08-164141 Jun 1996 JP
H 08-173437 Jul 1996 JP
H 08-182684 Jul 1996 JP
H 08-215201 Aug 1996 JP
H 08-507708 Aug 1996 JP
H 08-229050 Sep 1996 JP
H 08-289895 Nov 1996 JP
H 08-336540 Dec 1996 JP
H 08-336544 Dec 1996 JP
H 09-501081 Feb 1997 JP
H 09-501577 Feb 1997 JP
H 09-164144 Jun 1997 JP
H09-323068 Dec 1997 JP
H 10-113352 May 1998 JP
H 10-118090 May 1998 JP
H10-200699 Jul 1998 JP
H 10-296660 Nov 1998 JP
H 10-512465 Dec 1998 JP
H 10-512469 Dec 1998 JP
2000-014632 Jan 2000 JP
2000-033071 Feb 2000 JP
2000-112002 Apr 2000 JP
2000-166932 Jun 2000 JP
2000-171730 Jun 2000 JP
3056672 Jun 2000 JP
2000-287987 Oct 2000 JP
2000-325303 Nov 2000 JP
2001-037763 Feb 2001 JP
2001-046384 Feb 2001 JP
2001-087272 Apr 2001 JP
2001-514541 Sep 2001 JP
2001-276091 Oct 2001 JP
2001-286477 Oct 2001 JP
2001-517473 Oct 2001 JP
2002-051974 Feb 2002 JP
2002-085415 Mar 2002 JP
2002-143078 May 2002 JP
2002-204801 Jul 2002 JP
2002-528161 Sep 2002 JP
2002-314298 Oct 2002 JP
2002-369820 Dec 2002 JP
2002-542186 Dec 2002 JP
2003-000603 Jan 2003 JP
2003-500153 Jan 2003 JP
2003-521304 Feb 2003 JP
2003-135473 May 2003 JP
2003-148903 May 2003 JP
2003-164066 Jun 2003 JP
2003-521301 Jul 2003 JP
2003-521304 Jul 2003 JP
2003-523251 Aug 2003 JP
2003-523254 Aug 2003 JP
2003-524431 Aug 2003 JP
3442423 Sep 2003 JP
2003-300416 Oct 2003 JP
2004-147701 May 2004 JP
2004-162035 Jun 2004 JP
2004-229976 Aug 2004 JP
2004-524076 Aug 2004 JP
2004-531280 Oct 2004 JP
2004-532084 Oct 2004 JP
2004-532676 Oct 2004 JP
2004-329624 Nov 2004 JP
2004-535217 Nov 2004 JP
2004-337617 Dec 2004 JP
2004-344662 Dec 2004 JP
2004-344663 Dec 2004 JP
2005-013573 Jan 2005 JP
2005-028147 Feb 2005 JP
2005-028148 Feb 2005 JP
2005-028149 Feb 2005 JP
2005-505309 Feb 2005 JP
2005-505322 Feb 2005 JP
2005-505334 Feb 2005 JP
2005-080702 Mar 2005 JP
2005-103280 Apr 2005 JP
2005-103281 Apr 2005 JP
2005-103293 Apr 2005 JP
2005-511131 Apr 2005 JP
2005-511137 Apr 2005 JP
2005-131163 May 2005 JP
2005-131164 May 2005 JP
2005-131173 May 2005 JP
2005-131211 May 2005 JP
2005-131212 May 2005 JP
2005-137423 Jun 2005 JP
2005-137919 Jun 2005 JP
2005-144183 Jun 2005 JP
2005-152416 Jun 2005 JP
2005-516714 Jun 2005 JP
2005-187954 Jul 2005 JP
2005-521109 Jul 2005 JP
2005-523105 Aug 2005 JP
2005-524474 Aug 2005 JP
4461008 Aug 2005 JP
2005-296412 Oct 2005 JP
2005-529675 Oct 2005 JP
2005-529677 Nov 2005 JP
2005-328882 Dec 2005 JP
2005-335432 Dec 2005 JP
2005-342267 Dec 2005 JP
2006-034975 Feb 2006 JP
2006-034977 Feb 2006 JP
2006-034978 Feb 2006 JP
2006-034980 Feb 2006 JP
2006-043451 Feb 2006 JP
2006-506106 Feb 2006 JP
2006-510879 Mar 2006 JP
3791856 Jun 2006 JP
2006-187649 Jul 2006 JP
2006-218228 Aug 2006 JP
2006-218297 Aug 2006 JP
2006-223872 Aug 2006 JP
2006-281405 Oct 2006 JP
2006-289064 Oct 2006 JP
2006-334412 Dec 2006 JP
2006-334417 Dec 2006 JP
2006-346445 Dec 2006 JP
2007-000634 Jan 2007 JP
2007-050253 Mar 2007 JP
2007-061628 Mar 2007 JP
2007-083051 Apr 2007 JP
2007-098130 Apr 2007 JP
2007-105481 Apr 2007 JP
3906843 Apr 2007 JP
2007-117725 May 2007 JP
2007-130471 May 2007 JP
2007-130479 May 2007 JP
2007-222615 Jun 2007 JP
3934161 Jun 2007 JP
2007-203047 Aug 2007 JP
2007-203049 Aug 2007 JP
2007-203051 Aug 2007 JP
2007-203055 Aug 2007 JP
2007-203057 Aug 2007 JP
2007-524435 Aug 2007 JP
2007-229448 Sep 2007 JP
2007-526026 Sep 2007 JP
2007-252916 Oct 2007 JP
4001860 Oct 2007 JP
5162595 Oct 2007 JP
2007-307373 Nov 2007 JP
2007-325922 Dec 2007 JP
2008-068073 Mar 2008 JP
2008-510515 Apr 2008 JP
2008-516669 May 2008 JP
2008-528203 Jul 2008 JP
2008-206967 Sep 2008 JP
2008-212637 Sep 2008 JP
2008-212638 Sep 2008 JP
2008-212640 Sep 2008 JP
2008-220032 Sep 2008 JP
2008-220956 Sep 2008 JP
2008-237881 Oct 2008 JP
2008-259860 Oct 2008 JP
2008-264535 Nov 2008 JP
2008-283459 Nov 2008 JP
2008-307393 Dec 2008 JP
2009-000531 Jan 2009 JP
2009-006137 Jan 2009 JP
2009-502351 Jan 2009 JP
2009-502352 Jan 2009 JP
2009-022742 Feb 2009 JP
2009-506799 Feb 2009 JP
2009-507526 Feb 2009 JP
2009-072595 Apr 2009 JP
2009-072599 Apr 2009 JP
2009-090113 Apr 2009 JP
2009-106752 May 2009 JP
2009-189821 Aug 2009 JP
2009-189823 Aug 2009 JP
2009-189836 Aug 2009 JP
2009-189837 Aug 2009 JP
2009-189838 Aug 2009 JP
2009-189846 Aug 2009 JP
2009-189847 Aug 2009 JP
2009-201998 Sep 2009 JP
2009207260 Sep 2009 JP
2009-536082 Oct 2009 JP
2009226028 Oct 2009 JP
2009-261944 Nov 2009 JP
2009-268908 Nov 2009 JP
2009-538684 Nov 2009 JP
2009-539420 Nov 2009 JP
2009-291604 Dec 2009 JP
2010-504808 Feb 2010 JP
2010-504809 Feb 2010 JP
2010-504813 Feb 2010 JP
2010-504846 Feb 2010 JP
2010-505524 Feb 2010 JP
2010-069307 Apr 2010 JP
2010-069310 Apr 2010 JP
2010-075694 Apr 2010 JP
2010-075695 Apr 2010 JP
2010-088876 Apr 2010 JP
2010-094514 Apr 2010 JP
2010-098844 Apr 2010 JP
2010-520025 Jun 2010 JP
2010-142636 Jul 2010 JP
2010-148879 Jul 2010 JP
2010-214166 Sep 2010 JP
4549018 Sep 2010 JP
2010-240411 Oct 2010 JP
2010-240429 Oct 2010 JP
2010-246948 Nov 2010 JP
2010-279690 Dec 2010 JP
2010-540041 Dec 2010 JP
2010-540192 Dec 2010 JP
2011-005260 Jan 2011 JP
2011-504391 Feb 2011 JP
2011-509786 Mar 2011 JP
2011-072797 Apr 2011 JP
2011-078763 Apr 2011 JP
2011072574 Apr 2011 JP
2011-115594 Jun 2011 JP
2011-520564 Jul 2011 JP
4722849 Jul 2011 JP
2011-524199 Sep 2011 JP
4783373 Sep 2011 JP
2011-251156 Dec 2011 JP
2012-040398 Mar 2012 JP
2012-507356 Mar 2012 JP
2012-517289 Aug 2012 JP
5140421 Feb 2013 JP
5154710 Feb 2013 JP
2013-517891 May 2013 JP
2013-526342 Jun 2013 JP
2013-128791 Jul 2013 JP
5212039 Jul 2013 JP
5333899 Nov 2013 JP
2016-512057 Apr 2016 JP
6007357 Oct 2016 JP
20100110134 Oct 2010 KR
20110003229 Jan 2011 KR
1814161 May 1993 RU
2008830 Mar 1994 RU
2052979 Jan 1996 RU
2066128 Sep 1996 RU
2098025 Dec 1997 RU
2141279 Nov 1999 RU
2144791 Jan 2000 RU
2161450 Jan 2001 RU
2181566 Apr 2002 RU
2187249 Aug 2002 RU
2189091 Sep 2002 RU
32984 Oct 2003 RU
2225170 Mar 2004 RU
42750 Dec 2004 RU
61114 Feb 2007 RU
61122 Feb 2007 RU
2007-103563 Aug 2008 RU
189517 Jan 1967 SU
297156 May 1971 SU
328636 Sep 1972 SU
511939 Apr 1976 SU
674747 Jul 1979 SU
728848 Apr 1980 SU
886900 Dec 1981 SU
1009439 Apr 1983 SU
1022703 Jun 1983 SU
1271497 Nov 1986 SU
1333319 Aug 1987 SU
1377052 Feb 1988 SU
1377053 Feb 1988 SU
1443874 Dec 1988 SU
1509051 Sep 1989 SU
1561964 May 1990 SU
1708312 Jan 1992 SU
1722476 Mar 1992 SU
1752361 Aug 1992 SU
1814161 May 1993 SU
WO 8202824 Sep 1982 WO
WO 8602254 Apr 1986 WO
WO 9115157 Oct 1991 WO
WO 9220295 Nov 1992 WO
WO 9221300 Dec 1992 WO
WO 9308755 May 1993 WO
WO 9313718 Jul 1993 WO
WO 9314690 Aug 1993 WO
WO 9315648 Aug 1993 WO
WO 9315850 Aug 1993 WO
WO 9319681 Oct 1993 WO
WO 9400060 Jan 1994 WO
WO 9411057 May 1994 WO
WO 9412108 Jun 1994 WO
WO-9414129 Jun 1994 WO
WO 9417737 Aug 1994 WO
WO 9418893 Sep 1994 WO
WO 9420030 Sep 1994 WO
WO 9422378 Oct 1994 WO
WO 9423659 Oct 1994 WO
WO 9424943 Nov 1994 WO
WO 9424947 Nov 1994 WO
WO 9502369 Jan 1995 WO
WO 9503743 Feb 1995 WO
WO 9506817 Mar 1995 WO
WO 9509576 Apr 1995 WO
WO 9509577 Apr 1995 WO
WO 9514436 Jun 1995 WO
WO 9517855 Jul 1995 WO
WO 9518383 Jul 1995 WO
WO 9518572 Jul 1995 WO
WO 9519739 Jul 1995 WO
WO 9520360 Aug 1995 WO
WO 9523557 Sep 1995 WO
WO 9524865 Sep 1995 WO
WO 9525471 Sep 1995 WO
WO 9526562 Oct 1995 WO
WO 9529639 Nov 1995 WO
WO 9604858 Feb 1996 WO
WO 9618344 Jun 1996 WO
WO 9619151 Jun 1996 WO
WO 9619152 Jun 1996 WO
WO 9620652 Jul 1996 WO
WO 9621119 Jul 1996 WO
WO 9622055 Jul 1996 WO
WO 9623448 Aug 1996 WO
WO 9624301 Aug 1996 WO
WO 9627337 Sep 1996 WO
WO 9631155 Oct 1996 WO
WO 9635464 Nov 1996 WO
WO 9639085 Dec 1996 WO
WO 9639086 Dec 1996 WO
WO 9639087 Dec 1996 WO
WO 9639088 Dec 1996 WO
WO 9639089 Dec 1996 WO
WO 9700646 Jan 1997 WO
WO 9700647 Jan 1997 WO
WO 9701989 Jan 1997 WO
WO 9706582 Feb 1997 WO
WO 9710763 Mar 1997 WO
WO 9710764 Mar 1997 WO
WO 9711648 Apr 1997 WO
WO 9711649 Apr 1997 WO
WO 9715237 May 1997 WO
WO 9724073 Jul 1997 WO
WO 9724993 Jul 1997 WO
WO 9730644 Aug 1997 WO
WO 9730659 Aug 1997 WO
WO 9734533 Sep 1997 WO
WO 9737598 Oct 1997 WO
WO 9739688 Oct 1997 WO
WO 9741767 Nov 1997 WO
WO 9801080 Jan 1998 WO
WO 9817180 Apr 1998 WO
WO 9822154 May 1998 WO
WO 9830153 Jul 1998 WO
WO 9847436 Oct 1998 WO
WO 9858589 Dec 1998 WO
WO 9902090 Jan 1999 WO
WO 9903407 Jan 1999 WO
WO 9903408 Jan 1999 WO
WO 9903409 Jan 1999 WO
WO 9912483 Mar 1999 WO
WO 9912487 Mar 1999 WO
WO 9912488 Mar 1999 WO
WO 9915086 Apr 1999 WO
WO 9915091 Apr 1999 WO
WO 9923933 May 1999 WO
WO 9923959 May 1999 WO
WO 9925261 May 1999 WO
WO 9929244 Jun 1999 WO
WO 9934744 Jul 1999 WO
WO 9945849 Sep 1999 WO
WO 9948430 Sep 1999 WO
WO 9951158 Oct 1999 WO
WO 0024322 May 2000 WO
WO 0024330 May 2000 WO
WO 0033755 Jun 2000 WO
WO 0041638 Jul 2000 WO
WO 0048506 Aug 2000 WO
WO 0053112 Sep 2000 WO
WO 0054653 Sep 2000 WO
WO 00057796 Oct 2000 WO
WO 0064365 Nov 2000 WO
WO 0072762 Dec 2000 WO
WO 0072765 Dec 2000 WO
WO 0078222 Dec 2000 WO
WO 0105702 Jan 2001 WO
WO 01010482 Feb 2001 WO
WO 0135845 May 2001 WO
WO 0154594 Aug 2001 WO
WO 0158371 Aug 2001 WO
WO 0162158 Aug 2001 WO
WO 0162161 Aug 2001 WO
WO 0162162 Aug 2001 WO
WO 0162163 Aug 2001 WO
WO 0162164 Aug 2001 WO
WO 0162169 Aug 2001 WO
WO 0178605 Oct 2001 WO
WO 0103587 Nov 2001 WO
WO 0180757 Nov 2001 WO
WO 0191646 Dec 2001 WO
WO 0200121 Jan 2002 WO
WO 0207608 Jan 2002 WO
WO 0207618 Jan 2002 WO
WO 0217799 Mar 2002 WO
WO 0219920 Mar 2002 WO
WO 0219932 Mar 2002 WO
WO 0226143 Apr 2002 WO
WO 0230297 Apr 2002 WO
WO 0232322 Apr 2002 WO
WO 0236028 May 2002 WO
WO 0243571 Jun 2002 WO
WO 02058568 Aug 2002 WO
WO 02060328 Aug 2002 WO
WO 02065933 Aug 2002 WO
WO 02067785 Sep 2002 WO
WO 02080781 Oct 2002 WO
WO 02085218 Oct 2002 WO
WO 02087586 Nov 2002 WO
WO 02098302 Dec 2002 WO
WO 03000138 Jan 2003 WO
WO 03001329 Jan 2003 WO
WO 03001986 Jan 2003 WO
WO 03013363 Feb 2003 WO
WO 03013372 Feb 2003 WO
WO 03015604 Feb 2003 WO
WO 03020106 Mar 2003 WO
WO 03020139 Mar 2003 WO
WO 03024339 Mar 2003 WO
WO 2003079909 Mar 2003 WO
WO 03030743 Apr 2003 WO
WO 03037193 May 2003 WO
WO 2003047436 Jun 2003 WO
WO 03055402 Jul 2003 WO
WO 03057048 Jul 2003 WO
WO 03057058 Jul 2003 WO
WO 2003063694 Aug 2003 WO
WO 03077769 Sep 2003 WO
WO 03079911 Oct 2003 WO
WO 03082126 Oct 2003 WO
WO 03086206 Oct 2003 WO
WO 03088845 Oct 2003 WO
WO 03090630 Nov 2003 WO
WO 03094743 Nov 2003 WO
WO 03094745 Nov 2003 WO
WO 2003094746 Nov 2003 WO
WO 2003094747 Nov 2003 WO
WO 03101313 Dec 2003 WO
WO 03105698 Dec 2003 WO
WO 03105702 Dec 2003 WO
WO 2004004578 Jan 2004 WO
WO 2004006980 Jan 2004 WO
WO 2004011037 Feb 2004 WO
WO 2004014238 Feb 2004 WO
WO 2004019769 Mar 2004 WO
WO 2004019803 Mar 2004 WO
WO 2004021868 Mar 2004 WO
WO 2004028585 Apr 2004 WO
WO 2004030554 Apr 2004 WO
WO 2004032754 Apr 2004 WO
WO 2004032760 Apr 2004 WO
WO 2004032762 Apr 2004 WO
WO 2004032763 Apr 2004 WO
WO 2004032783 Apr 2004 WO
WO 2004034875 Apr 2004 WO
WO 2004047626 Jun 2004 WO
WO 2004047653 Jun 2004 WO
WO 2004049956 Jun 2004 WO
WO 2004050971 Jun 2004 WO
WO 2004052426 Jun 2004 WO
WO 2004056276 Jul 2004 WO
WO 2004056277 Jul 2004 WO
WO 2004062516 Jul 2004 WO
WO 2004064600 Aug 2004 WO
WO 2004078050 Sep 2004 WO
WO 2004078051 Sep 2004 WO
WO 2004078236 Sep 2004 WO
WO 2004086987 Oct 2004 WO
WO 2004096015 Nov 2004 WO
WO 2004096057 Nov 2004 WO
WO 2004103157 Dec 2004 WO
WO 2004105593 Dec 2004 WO
WO 2004105621 Dec 2004 WO
WO 2004112618 Dec 2004 WO
WO 2004112652 Dec 2004 WO
WO 2005027983 Mar 2005 WO
WO 2005037329 Apr 2005 WO
WO 2005042041 May 2005 WO
WO 2005044078 May 2005 WO
WO 2005048809 Jun 2005 WO
WO 2005055846 Jun 2005 WO
WO 2005072634 Aug 2005 WO
WO 2005078892 Aug 2005 WO
WO 2005079675 Sep 2005 WO
WO 2005087128 Sep 2005 WO
WO 2005096954 Oct 2005 WO
WO 2005110243 Nov 2005 WO
WO 2005112806 Dec 2005 WO
WO 2005112808 Dec 2005 WO
WO 2005115251 Dec 2005 WO
WO 2005115253 Dec 2005 WO
WO 2005117735 Dec 2005 WO
WO 2005122936 Dec 2005 WO
WO 2006023486 Mar 2006 WO
WO 2006023578 Mar 2006 WO
WO-2006026520 Mar 2006 WO
WO 2006027014 Mar 2006 WO
WO 2006028314 Mar 2006 WO
WO 2006044490 Apr 2006 WO
WO 2006044581 Apr 2006 WO
WO 2006044810 Apr 2006 WO
WO 2006049852 May 2006 WO
WO 2006050360 May 2006 WO
WO 2006051252 May 2006 WO
WO-2006057702 Jun 2006 WO
WO 2006059067 Jun 2006 WO
WO 2006073581 Jul 2006 WO
WO 2006083748 Aug 2006 WO
WO 2006085389 Aug 2006 WO
WO 2006092563 Sep 2006 WO
WO 2006092565 Sep 2006 WO
WO 2006115958 Nov 2006 WO
WO 2006125940 Nov 2006 WO
WO 2006132992 Dec 2006 WO
WO 2007002180 Jan 2007 WO
WO 2007016290 Feb 2007 WO
WO 2007018898 Feb 2007 WO
WO 2007034161 Mar 2007 WO
WO 2007051000 May 2007 WO
WO 2007059233 May 2007 WO
WO 2007074430 Jul 2007 WO
WO 2007089603 Aug 2007 WO
WO 2007098220 Aug 2007 WO
WO 2007121579 Nov 2007 WO
WO 2007131110 Nov 2007 WO
WO 2007137304 Nov 2007 WO
WO 2007139734 Dec 2007 WO
WO 2007142625 Dec 2007 WO
WO 2007145825 Dec 2007 WO
WO 2007146987 Dec 2007 WO
WO 2007147439 Dec 2007 WO
WO 2008020964 Feb 2008 WO
WO 2008021687 Feb 2008 WO
WO 2008021969 Feb 2008 WO
WO 2008027972 Mar 2008 WO
WO 2008039237 Apr 2008 WO
WO 2008039249 Apr 2008 WO
WO 2008039270 Apr 2008 WO
WO 2008045383 Apr 2008 WO
WO 2008057281 May 2008 WO
WO-2008061566 May 2008 WO
WO 2008070763 Jun 2008 WO
WO 2008080148 Jul 2008 WO
WO 2008089404 Jul 2008 WO
WO 2008101080 Aug 2008 WO
WO 2008101228 Aug 2008 WO
WO 2008103797 Aug 2008 WO
WO 2008109123 Sep 2008 WO
WO 2008109125 Sep 2008 WO
WO 2008112912 Sep 2008 WO
WO 2008118728 Oct 2008 WO
WO 2008118928 Oct 2008 WO
WO 2008124748 Oct 2008 WO
WO 2008131357 Oct 2008 WO
WO 2009005969 Jan 2009 WO
WO 2009022614 Feb 2009 WO
WO 2009023851 Feb 2009 WO
WO 2009033057 Mar 2009 WO
WO 2009039506 Mar 2009 WO
WO 2009046394 Apr 2009 WO
WO 2009066105 May 2009 WO
WO 2009067649 May 2009 WO
WO 2009091497 Jul 2009 WO
WO 2009120944 Oct 2009 WO
WO 2009137761 Nov 2009 WO
WO 2009143092 Nov 2009 WO
WO 2009143331 Nov 2009 WO
WO 2009150650 Dec 2009 WO
WO 2009152307 Dec 2009 WO
WO 2010028332 Mar 2010 WO
WO 2010030434 Mar 2010 WO
WO 2010045425 Apr 2010 WO
WO 2010050771 May 2010 WO
WO 2010054404 May 2010 WO
WO 2010056714 May 2010 WO
WO 2010063795 Jun 2010 WO
WO 2010090940 Aug 2010 WO
WO 2010093333 Aug 2010 WO
WO 2010098871 Sep 2010 WO
WO-2010134913 Nov 2010 WO
WO 2011008672 Jan 2011 WO
WO 2011013103 Feb 2011 WO
WO 2011044343 Apr 2011 WO
WO 2011060311 May 2011 WO
WO-2011056458 May 2011 WO
WO 2011084969 Jul 2011 WO
WO 2011127137 Oct 2011 WO
WO 2012006306 Jan 2012 WO
WO 2012009431 Jan 2012 WO
WO-2012013577 Feb 2012 WO
WO 2012021671 Feb 2012 WO
WO 2012040438 Mar 2012 WO
WO 2012044551 Apr 2012 WO
WO 2012044554 Apr 2012 WO
WO 2012044597 Apr 2012 WO
WO 2012044606 Apr 2012 WO
WO 2012044820 Apr 2012 WO
WO 2012044844 Apr 2012 WO
WO 2012044853 Apr 2012 WO
WO 2012044854 Apr 2012 WO
WO 2012058213 May 2012 WO
WO 2012068156 May 2012 WO
WO 2012109760 Aug 2012 WO
WO 2012127462 Sep 2012 WO
WO 2012135705 Oct 2012 WO
WO 2012143913 Oct 2012 WO
WO 2012148667 Nov 2012 WO
WO 2012148668 Nov 2012 WO
WO 2012148703 Nov 2012 WO
WO 2012160163 Nov 2012 WO
WO 2012166503 Dec 2012 WO
WO 2013009252 Jan 2013 WO
WO 2013009699 Jan 2013 WO
WO 2013023114 Feb 2013 WO
WO 2013036409 Mar 2013 WO
WO 2013043707 Mar 2013 WO
WO 2013043717 Mar 2013 WO
WO 2013043721 Mar 2013 WO
WO-2013043717 Mar 2013 WO
WO 2013062978 May 2013 WO
WO 2013116869 Aug 2013 WO
WO 2013148762 Oct 2013 WO
WO-2013151888 Oct 2013 WO
WO 2013167427 Nov 2013 WO
WO 2013188130 Dec 2013 WO
WO 2014004199 Jan 2014 WO
WO 2014004294 Jan 2014 WO
WO-2014008289 Jan 2014 WO
WO-2014113438 Jul 2014 WO
WO-2014134034 Sep 2014 WO
WO-2014172213 Oct 2014 WO
WO-2014158882 Oct 2014 WO
WO-2015032797 Mar 2015 WO
WO-2015148136 Oct 2015 WO
WO 2015153642 Oct 2015 WO
WO-2015148141 Oct 2015 WO
WO-2015187107 Dec 2015 WO
WO 2007014355 Feb 2017 WO
Non-Patent Literature Citations (107)
Entry
U.S. Appl. No. 12/031,573, filed Feb. 14, 2008.
U.S. Appl. No. 14/226,106, filed Mar. 26, 2014.
U.S. Appl. No. 14/226,099, filed Mar. 26, 2014.
U.S. Appl. No. 14/226,094, filed Mar. 26, 2014.
U.S. Appl. No. 14/226,117, filed Mar. 26, 2014.
U.S. Appl. No. 14/226,075, filed Mar. 26, 2014.
U.S. Appl. No. 14/226,093, filed Mar. 26, 2014.
U.S. Appl. No. 14/226,116, filed Mar. 26, 2014.
U.S. Appl. No. 14/226,071, filed Mar. 26, 2014.
U.S. Appl. No. 14/226,097, filed Mar. 26, 2014.
U.S. Appl. No. 14/226,126, filed Mar. 26, 2014.
U.S. Appl. No. 14/226,133, filed Mar. 26, 2014.
U.S. Appl. No. 14/226,081, filed Mar. 26, 2014.
U.S. Appl. No. 14/226,076, filed Mar. 26, 2014.
U.S. Appl. No. 14/226,111, filed Mar. 26, 2014.
U.S. Appl. No. 14/226,125, filed Mar. 26, 2014.
European Search Report for Application No. 14164924.4, dated Dec. 5, 2014 (6 pages).
International Search Report for PCT/US2014/033893, dated Oct. 1, 2014 (4 pages).
International Search Report for PCT/US2014/033894, dated Feb. 12, 2015 (5 pages).
International Search Report for PCT/US2014/033895, dated Jan. 26, 2015 (9 pages).
International Search Report for PCT/US2014/033896, dated Jan. 22, 2015 (8 pages).
International Search Report for PCT/US2014/033897, dated Feb. 11, 2015 (9 pages).
International Search Report for PCT/US2014/033898, dated Nov. 19, 2014 (6 pages).
International Search Report for PCT/US2014/033899, dated Feb. 5, 2015 (5 pages).
International Search Report for PCT/US2014/033900, dated Nov. 19, 2014 (5 pages).
International Search Report for PCT/US2014/033901, dated Sep. 8, 2014 (3 pages).
International Preliminary Report on Patentability for PCT/US2014/033893 dated Oct. 20, 2015 (7 pages).
International Preliminary Report on Patentability for PCT/US2014/033894 dated Oct. 20, 2015 (8 pages).
International Preliminary Report on Patentability for PCT/US2014/033895, dated Oct. 20, 2015 (16 pages).
International Preliminary Report on Patentability for PCT/US2014/033896, dated Oct. 20, 2015 (13 pages).
International Preliminary Report on Patentability for PCT/US2014/033897, dated Oct. 20, 2015 (13 pages).
International Preliminary Report on Patentability for PCT/US2014/033898, dated Oct. 20, 2015 (9 pages).
International Preliminary Report on Patentability for PCT/US2014/033899, dated Oct. 20, 2015 (8 pages).
International Preliminary Report on Patentability for PCT/US2014/033900, dated Oct. 20, 2015 (9 pages).
International Preliminary Report on Patentability for PCT/US2014/033901, dated Oct. 20, 2015 (5 pages).
European Examination Report for Application No. 14164924.4, dated Aug. 4, 2016 (6 pages).
European Search Report for Application No. 14165011.9, dated Nov. 12, 2014 (6 pages).
European Examination Report for Application No. 14165011.9, dated Jan. 19, 2017 (5 pages).
Partial European Search Report for Application No. 14164975.6, dated Sep. 17, 2014 (5 pages).
European Search Report for Application No. 14164975.6, dated Feb. 5, 2015 (8 pages).
Partial European Search Report for Application No. 14164936.8, dated Feb. 3, 2015 (7 pages).
European Search Report for Application No. 14164982.2, dated Nov. 26, 2014 (8 pages).
European Search Report for Application No. 14164968.1, dated Nov. 21, 2014 (8 pages).
Partial European Search Report for Application No. 14164935.0, dated Dec. 17, 2014 (5 pages).
European Search Report for Application No. 14164935.0, dated Apr. 13, 2015 (7 pages).
European Search Report for Application No. 14164925.1, dated Sep. 10, 2014 (5 pages).
European Search Report for Application No. 14164948.3, dated Nov. 18, 2014 (10 pages).
European Examination Report for Application No. 14164925.1, dated Jan. 23, 2017 (3 pages).
European Search Report for Application No. 14164936.8, dated Jun. 5, 2015 (14 pages).
European Search Report for Application No. 14185832.4, dated Jun. 17, 2015 (12 pages).
European Search Report for Application No. 17162440.6, dated Jul. 21, 2017 (7 pages).
Disclosed Anonymously, “Motor-Driven Surgical Stapler Improvements,” Research Disclosure Database No. 526041, Published: Feb. 2008.
C.C. Thompson et al., “Peroral Endoscopic Reduction of Dilated Gastrojejunal Anastomosis After Roux-en-Y Gastric Bypass: A Possible New Option for Patients with Weight Regain,” Surg Endosc (2006) vol. 20, pp. 1744-1748.
B.R. Coolman, DVM, MS et al., “Comparison of Skin Staples With Sutures for Anastomosis of the Small Intestine in Dogs,” Abstract; http://www.blackwell-synergy.com/doi/abs/10.1053/jvet.2000.7539?cookieSet=1&journalCode=vsu which redirects to http://www3.interscience.wiley.com/journal/119040681/abstract?CRETRY=1&SRETRY=0; [online] accessed: Sep. 22, 2008 (2 pages).
The Sodem Aseptic Battery Transfer Kit, Sodem Systems, (2000), 3 pages.
“Biomedical Coatings,” Fort Wayne Metals, Research Products Corporation, obtained online at www.fwmetals.com on Jun. 21, 2010 (1 page).
Van Meer et al., “A Disposable Plastic Compact Wrist for Smart Minimally Invasive Surgical Tools,” LAAS/CNRS (Aug. 2005).
Breedveld et al., “A New, Easily Miniaturized Sterrable Endoscope,” IEEE Engineering in Medicine and Biology Magazine (Nov./Dec. 2005).
D. Tuite, Ed., “Get the Lowdown on Ultracapacitors,” Nov. 15, 2007; [online] URL: http://electronicdesign.com/Articles/Print.cfm?ArticleID=17465 accessed Jan. 15, 2008 (5 pages).
Datasheet for Panasonic TK Relays Ultra Low Profile 2 A Polarized Relay, Copyright Matsushita Electric Works, Ltd. (Known of at least as early as Aug. 17, 2010), 5 pages.
ASTM procedure D2240-00, “Standard Test Method for Rubber Property—Durometer Hardness,” (Published Aug. 2000).
ASTM procedure D2240-05, “Standard Test Method for Rubber Property-Durometer Hardness,” (Published Apr. 2010).
Covidien Brochure, “Endo GIA™ Reloads with Tri-Staple™ Technology,” (2010), 1 page.
Covidien Brochure, “Endo GIA™ Reloads with Tri-Staple™ Technology and Endo GIA™ Ultra Universal Staplers,” (2010), 2 pages.
Covidien Brochure, “Endo GIA™ Black Reload with Tri-Staple™ Technology,” (2012), 2 pages.
Covidien Brochure, “Endo GIA™ Curved Tip Reload with Tri-Staple™ Technology,” (2012), 2 pages.
Covidien Brochure, “Endo GIA™ Reloads with Tri-Staple™ Technology,” (2010), 2 pages.
Covidien Brochure, “Endo GIA™ Ultra Universal Stapler,” (2010), 2 pages.
Miyata et al., “Biomolecule-Sensitive Hydrogels,” Advanced Drug Delivery Reviews, 54 (2002) pp. 79-98.
Jeong et al., “Thermosensitive Sol-Gel Reversible Hydrogels,” Advanced Drug Delivery Reviews, 54 (2002) pp. 37-51.
Byrne et al., “Molecular Imprinting Within Hydrogels,” Advanced Drug Delivery Reviews, 54 (2002) pp. 149-161.
Qiu et al., “Environment-Sensitive Hydrogels for Drug Delivery,” Advanced Drug Delivery Reviews, 53 (2001) pp. 321-339.
Hoffman, “Hydrogels for Biomedical Applications,” Advanced Drug Delivery Reviews, 43 (2002) pp. 3-12.
Hoffman, “Hydrogels for Biomedical Applications,” Advanced Drug Delivery Reviews, 54 (2002) pp. 3-12.
Peppas, “Physiologically Responsive Hydrogels,” Journal of Bioactive and Compatible Polymers, vol. 6 (Jul. 1991) pp. 241-246.
Ebara, “Carbohydrate-Derived Hydrogels and Microgels,” Engineered Carbohydrate-Based Materials for Biomedical Applications: Polymers, Surfaes, Dendrimers, Nanoparticles, and Hydrogels, Edited by Ravin Narain, 2011, pp. 337-345.
Peppas, Editor “Hydrogels in Medicine and Pharmacy,” vol. I, Fundamentals, CRC Press, 1986.
Matsuda, “Thermodynamics of Formation of Porous Polymeric Membrane from Solutions,” Polymer Journal, vol. 23, No. 5, pp. 435-444 (1991).
Young, “Microcellular foams via phase separation,” Journal of Vacuum Science & Technology A 4(3), (May/Jun. 1986).
Chen et al., “Elastomeric Biomaterials for Tissue Engineering,” Progress in Polymer Science 38(2013), pp. 584-671.
Pitt et al., “Attachment of Hyaluronan to Metallic Surfaces,” J. Biomed. Mater. Res. 68A: pp. 95-106, 2004.
Schellhammer et al., “Poly-Lactic-Acid for Coating of Endovascular Stents: Preliminary Results in Canine Experimental Av-Fistulae,” Mat.-wiss. u. Werkstofftech., 32, pp. 193-199 (2001).
Solorio et al., “Gelatin Microspheres Crosslinked with Genipin for Local Delivery of Growth Factors,” J. Tissue Eng. Regen. Med. (2010), 4(7): pp. 514-523.
http://ninpgan.net/publications/51-100/89.pdf; 2004. Ning Pan, On Uniqueness of Fibrous Materials, Design & Nature II. Eds: Colins, M. and Brebbia, C. WIT Press, Boston, 493-504.
Covidien iDrive™ Ultra in Service Reference Card, “iDrive™ Ultra Powered Stapling Device,” (4 pages).
Covidien iDrive™ Ultra Powered Stapling System ibrochure “The Power of iDrive™ Ultra Powered Stapling System and Tri-Staple™ Technology,” (23 pages).
Seils et al., Covidien Summary: Clinical Study “UCONN Biodynamics: Final Report on Results,” (2 pages).
Covidien “iDrive™ Ultra Powered Stapling System, A Guide for Surgeons,” (6 pages).
Covidien “iDrive™ Ultra Powered Stapling System, Cleaning and Sterilization Guide,” (2 pages).
Covidien brochure “iDrive™ Ultra Powered Stapling System,” (6 pages).
“Indian Standard: Automotive Vehicles—Brakes and Braking Systems (IS 11852-1:2001)”, Mar. 1, 2001.
Fast, Versatile Blackfin Processors Handle Advanced RFID Reader Applications; Analog Dialogue: vol. 40—Sep. 2006; http://www.analog.com/library/analogDialogue/archives/40-09/rfid.pdf; Wayback Machine to Feb. 15, 2012.
Serial Communication Protocol; Michael Lemmon Feb. 1, 2009; http://www3.nd.edu/˜lemmon/courses/ee224/web-manual/web-manual/lab12/node2.html; Wayback Machine to Apr. 29, 2012.
Allegro MicroSystems, LLC, Automotive Full Bridge MOSFET Driver, A3941-DS, Rev. 5, 21 pages, http://www.allegromicro.com/˜/media/Files/Datasheets/A3941-Datasheet.ashx?la=en.
Patrick J. Sweeney: “RFID for Dummies”, Mar. 11, 2010, pp. 365-365, XP055150775, ISBN: 978-1-11-805447-5, Retrieved from the Internet: URL: books.google.de/books?isbn=1118054474 [retrieved on Nov. 4, 2014]—book not attached.
Data Sheet of LM4F230H5QR. 2007.
Lyon et al. “The Relationship Between Current Load and Temperature for Quasi-Steady State and Transient Conditions,” SPIE—International Society for Optical Engineering. Proceedings, vol. 4020, (pp. 62-70), Mar. 30, 2000.
Anonymous: “Sense & Control Application Note Current Sensing Using Linear Hall Sensors,” Feb. 3, 2009, pp. 1-18. Retrieved from the Internet: URL: http://www.infineon.com/dgdl/Current_Sensing_Rev.1.1.pdf?fileId=db3a304332d040720132d939503e5f17 [retrieved on Oct. 18, 2016].
Mouser Electronics, “LM317M 3—Terminal Adjustable Regulator with Overcurrent/Overtemperature Self Protection”, Mar. 31, 2014 (Mar. 31, 2014), XP0555246104, Retrieved from the Internet: URL: http://www.mouser.com/ds/2/405/lm317m-440423.pdf, pp. 1-8.
Mouser Electronics, “LM317 3—Terminal Adjustable Regulator with Overcurrent/Overtemperature Self Protection”, Sep. 30, 2016 (Sep. 30, 2016), XP0555246104, Retrieved from the Internet: URL: http://www.mouser.com/ds/2/405/lm317m-440423.pdf, pp. 1-9.
Cuper et al., “The Use of Near-Infrared Light for Safe and Effective Visualization of Subsurface Blood Vessels to Facilitate Blood Withdrawal in Children,” Medical Engineering & Physics, vol. 35, No. 4, pp. 433-440 (2013).
Anonymous, Analog Devices Wiki, Chapter 11: The Current Mirror, Aug. 20, 2017, 22 pages. https://wiki.analog.com/university/courses/electronics/text/chapter-11?rev=1503222341.
Yan et al, Comparison of the effects of Mg—6Zn and Ti—3Al-2.5V alloys on TGF-β/TNF-α/VEGF/b-FGF in the healing of the intestinal track in vivo, Biomed. Mater. 9 (2014), 11 pages.
Yan et al., “Comparison of the effects of Mg—6Zn and titanium on intestinal tract in vivo,” J Mater Sci: Mater Med (2013), 11 pages.
Brar et al., “Investigation of the mechanical and degradation properties of Mg—Sr and Mg—Zn—Sr alloys for use as potential biodegradable implant materials,” J. Mech. Behavior of Biomed. Mater. 7 (2012) pp. 87-95.
Pellicer et al. “On the biodegradability, mechanical behavior, and cytocompatibility of amorphous Mg72Zn23Ca5 and crystalline Mg70Zn23Ca5Pd2 alloys as temporary implant materials,” J Biomed Mater Res Part A ,2013:101A:502-517.
Texas Instruments: “Current Recirculation and Decay Modes,” Application Report SLVA321—Mar. 2009; Retrieved from the Internet: URL:http://www.ti.com/lit/an/slva321/slva321 [retrieved on Apr. 25, 2017], 7 pages.
Related Publications (1)
Number Date Country
20140309666 A1 Oct 2014 US
Provisional Applications (5)
Number Date Country
61812365 Apr 2013 US
61812376 Apr 2013 US
61812382 Apr 2013 US
61812385 Apr 2013 US
61812372 Apr 2013 US