Not Applicable.
Not Applicable.
This Invention relates to a device and method for preventing damage from collisions occurring during the operation of a powered wheelchair or similar mobility device. Powered wheelchairs and similar powered mobility devices are self-powered vehicles which are commonly used by handicapped individuals to give them mobility, most particularly within the confines of the individual's home or within businesses the individual visits. These vehicles have greatly enhanced the lives of those affected by disease, stroke, injury, or the ravages of aging; however, the typical user is often restricted in head movement, visual and auditory acuity, and other sensory perception (including vibration) such that it becomes impossible for the typical user to adequately observe the boundaries of the vehicle as the user maneuvers among furniture, around corners, and through doors of the home or business. It is very common for these vehicles to cause severe damage to their surroundings, even when maneuvered at very low speeds, because of the great power capabilities of these vehicles necessary to overcome slopes, door thresholds, and other obstacles in normal use. It is especially common for a person with hearing difficulties, upon colliding with a door frame or piece of furniture, to continue to apply power in the same direction, rather than to ease the mobility device away from the object. The result is that severe damage often results from these collisions, both to the object collided with as well as the vehicle, with deep scratches, gouges, and holes left in the former, or bent operating handles and other damage done to the latter. Problems are not limited to those with hearing difficulties, however; even for those who realize that a collision has occurred, the controls of common mobility devices are often counterintuitive regarding the direction the user needs to move to avoid damage. A need therefore exists for a system which will detect an impending collision between a handicapped mobility device and an object which will stop the mobility device from causing damage to the object, alert the user to the impending collision, and guide the user towards making appropriate course modifications to prevent damage to the mobility device and the object.
The present Invention is therefore directed remedying these problems by providing a device and method for modifying an existing powered mobility device which, when installed on such a powered mobility device, will detect an impending collision, will prevent damage to the object collided with and will alert the user by stopping the vehicle and/or sounding an alarm, and will give the user guidance on the appropriate corrective action to take before the object is damaged.
In accordance with the present Invention, a peripheral sensor system having a tape switch or bumper switch or similar device is attached to the outer periphery of the powered mobility device. The peripheral sensor system includes the tape switch, bumper switch, or similar switch as described, which is mounted to a sensor support framework, plus an electronic control module which interfaces with the power control of the powered mobility device on which the Invention is installed. The sensor support framework consists essentially of a bumper mounted to the vehicle by means of existing bolts and is made from spring steel or other resilient, damage resistant material. The electronic control module further includes a reset timer and an output panel with a series of light-emitting diodes or similar lighting devices. Upon contact with an object, the tape switch or bumper switch closes, energizing the electronic control module which then shuts down the vehicle, displays a light to alert the user that a collision has occurred, further displays a light to alert the user as to what corrective action needs to be taken to prevent damage, and starts the reset timer, which will automatically reset the system after a predetermined delay period.
The preferred sensor in this arrangement is a pneumatic sensor, both due to cost and ease of use considerations. Referring particularly to
In operation, when the rubber bumper 410 contacts an object, the deformation of the bumper causes an increase in the air pressure within the bumper. This pressure is communicated through the hollow set screw 416 and connecting tubing 430 to the switch diaphragm 424, depressing the diaphragm. As the diaphragm 424 is depressed, it operates upon the switch actuator plate 426, thus tripping the switch 420 and closing the circuit, which thus alerts the central control module 300 that a collision has occurred. The capillary tube 432 provides a route for a controlled release or leakage of air pressure from within the pneumatic sensor 400, thereby allowing the system to self-compensate for gradual variations in air pressure due to a variety of non-collision circumstances, including heating of the pneumatic sensor 400 (either due to exposure to sunlight or simply due to external temperature variations) as well as changes in the external barometric pressure.
After a collision has occurred, thereby operating the pneumatic sensor 400 and pneumatic switch 420, the central control module 300 receives input from the pneumatic switch 420. The central control module 300 then automatically switches the powered mobility vehicle 10's power off and/or applies the vehicle's brakes to prevent collision damage from occurring. At the same time, the control module input/output interface displays a number of things: first, the reset switch LED 328 is lighted intermittently, causing it to blink on and off, and second, the directional instruction LED 332 corresponding to the sensor registering a collision is also intermittently lighted, causing it to blink on and off, thereby signifying that there is contact between the corresponding sensor and an object. The user must then press the reset switch 326 in order to restore power to the powered mobility vehicle 10. Upon activating the reset switch 326, the reset switch LED 328 is turned off, power to the vehicle 10 is restored, and the unprotected ready-to-move LED 330 is lit, indicating to the user that the vehicle is ready to move with the shutdown system deactivated and that corrective action is needed as indicated by the appropriate directional information LED 332. Furthermore, upon activation of the reset switch 326, the central control module 300 starts an internal, adjustable timer which provides a delay period for the user to take corrective action as indicated by the input/output interface 320. At the end of the delay period, the system automatically resets itself, and the ready-to-move LED 330 and the directional information LED 332 both turn off.
It will be understood that the system 100 is intended to be mounted to a powered mobility vehicle 10 through the use of existing bolts as much as possible in order to minimize, and preferably to eliminate, any modifications to the vehicle 10. This is desirable so as to avoid voiding any warranties. Ideally, the only modification necessary is the addition of an electrical interface to the standard user steering control module 30 to power the central control module 300. It will be further readily apparent that the particular input/output interface 320 as described, with the automatic reset timer, are designed to avoid operator confusion or frustration which would cause the operator to disable the system.
Those familiar with the art will understand the components of the invention, their methods of manufacture, and the methods of connecting them to form the complete Invention. While the preferred embodiment has been described, it will furthermore be understood that various changes can be made therein without departing from the spirit and scope of the invention.
Reference is hereby made to provisional application number 60/466,320, filed on Apr. 29, 2003, and to utility application number 10/834,692 filed Apr. 29, 2004, now abandoned of which this application is a divisional, from which priority is hereby claimed pursuant to 35 U.S.C. §120.
Number | Name | Date | Kind |
---|---|---|---|
6108592 | Kurtzberg et al. | Aug 2000 | A |
6409196 | McFarland | Jun 2002 | B1 |
6655503 | Moody | Dec 2003 | B1 |
6842692 | Fehr et al. | Jan 2005 | B2 |
7204328 | LoPresti | Apr 2007 | B2 |
20040006422 | Fehr et al. | Jan 2004 | A1 |
20040220735 | Adams | Nov 2004 | A1 |
20050173888 | Stamps et al. | Aug 2005 | A1 |
20070093963 | Adams | Apr 2007 | A1 |
Number | Date | Country | |
---|---|---|---|
20070093963 A1 | Apr 2007 | US |
Number | Date | Country | |
---|---|---|---|
60466320 | Apr 2003 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10834692 | Apr 2004 | US |
Child | 11637434 | US |