1. Technical Field of the Invention
The present invention generally relates to roof ridge vents. More specifically, the present invention is directed to a powered ridge ventilation system and method for actively ventilating an upper part (e.g., attic) of a structure (e.g., building or house).
2. Description of the Prior Art
Ventilation systems have been used in buildings for ventilation of inner parts of the buildings. These ventilation systems include combinations of roof vents, ridge vents, gable vents, soffit vents and the like. In particular, a roof ridge vent is incorporated into a ridge or apex of a roof that encloses the attic to ventilate (exhaust) excessive heated air that becomes trapped therein. More specifically, as solar heat becomes incident on the roof, the air in the attic is heated and becomes trapped if it remains unventilated.
Known roof ridge vents are static vents. More specifically, a fraction of the trapped hot air escapes through the static roof ridge vent from air currents in the surrounding environment and from hot air expanding and escaping through the roof ridge vent. However, the static roof ridge vent cannot ventilate all the excess heated air in the attic. In addition, the roof ridge vent depends on incoming external air through a soffit/eave vent to ventilate the hotter air trapped in the attic. The incoming cooler air entering the attic displaces the heated air, which is exhausted through the roof ridge vent. However the static roof ridge vent's ability to exhaust air is reduced by the transiency of wind speed, which affects the volume of air entering the soffit/eave vent. This increases energy costs associated with the cooling and the heating of the building.
Therefore, there is a need in the art for providing a ridge ventilation system and method to overcome the limitation imposed by the transient wind speed and to improve the efficiency of the ventilation achieved by a roof ridge vent.
The present invention is directed to a powered ridge venting system and method for actively ventilating the attic of a building.
According to an embodiment of the present invention, there is provided a ridge ventilation system comprising a ridge slot disposed longitudinally in a ridge of a roof and a fan disposed in the ridge slot for actively exhausting air from an attic substantially enclosed by the roof, sidewalls and a ceiling into the ambient atmosphere.
According to another embodiment of the present invention, there is provided a method for ventilating an attic substantially enclosed by a root sidewalls and a ceiling, the method comprising disposing a ridge slot longitudinally in a ridge of the roof and operating a fan disposed in the ridge slot to actively exhaust air from the attic or crawl space into the ambient atmosphere.
According to a further embodiment of the present invention, there is provided a method for installing a ridge ventilation system for ventilating an attic substantially enclosed by a roof, sidewalls and a ceiling, the method comprising constructing a ridge slot longitudinally disposed in a ridge of the roof and disposing a fan in the ridge slot to actively exhaust air from the attic into the ambient atmosphere.
The features and advantages of the present invention will become apparent to one skilled in the art, in view of the following detailed description taken in combination with the attached drawings, in which:
The ridge slot 112 is an opening in the ridge 118 of the roof 104. More specifically, the ridge slot 112 is constructed at the ridge of the roof 104. The fan 122 is disposed within the ridge slot 112 and the roof ridge vent 106 covers the ridge slot 112 and overlaps the roof 104 to prevent precipitation (e.g., rain, snow), insects and debris from entering the attic 114. The roof ridge vent 106 is conventionally secured to the roof 104.
For best operation, it is preferable that the fan 122 is vertically disposed in the ridge slot 112 to be within a close, predetermined distance to the roof ridge vent 106. The fan 122 is preferably disposed from about one to about twelve inches below the roof ridge vent 106 in the ridge slot 112.
The roof ridge vent 106 comprises a plurality of vent slots 108 on both sides of the roof ridge vent 106 to exhaust or ventilate air from the attic 114 into the ambient atmosphere and a plurality of external baffles 110 to control the flow of precipitation that is incident on the roof ridge vent 106. Although the roof ridge vent 106 is depicted with external baffles, it is to be noted that the roof ridge vent 106 may instead comprise a plurality of internal baffles (not shown). However, any other known apparatus, device or vent that allows the exhaust of air from the attic 114 into the ambient atmosphere, while preventing precipitation and other unwanted elements from entering the ridge slot 112 from the ambient atmosphere is applicable herein and is considered within the scope of the present invention. The powered ridge ventilation system 120 will be described in greater detail with reference to
Further with reference to
Alternatively to the preferred centrifugal fan 122 of the powered ridge ventilation system 120, an axial fan (not shown) may be disposed in the ridge slot 112 perpendicularly to the ridge 118 of the roof 104, to provide flow of air from the attic 114 through the roof ridge vent 106 into the ambient atmosphere. In addition, a plurality of axial fans and roof ridge vents 106 may be disposed along the ridge 118 of the roof 104. Furthermore, other known types of fans and combinations thereof may easily be incorporated into the powered ridge ventilation system 120 and are considered to be within the scope of the present invention.
The power ridge ventilation system 120 can also be installed for ridge board applications and truss style attic designs.
In operation of the roof ventilation system 120 in accordance with the preferred implementation of
While the invention has been particularly shown and described with regard to a preferred embodiment thereof it will be understood by those skilled in the art that the foregoing and other changes in form and details may be made therein without departing from the spirit and scope of the invention.