Technical Field
The present disclosure relates to a powered stapling apparatus. More particularly, the present disclosure relates to a powered stapling apparatus including a spring loaded cartridge assembly configured to provide a consistent and specific compressive force for stapling tissue.
Description of Related Art
Powered staplers are known, as are their use in closed procedures, i.e., endoscopic, laparoscopic or through natural body orifices. The powered staplers may include a tool assembly that is configured to operably couple to a distal end of an elongate body that extends from a handle assembly. The handle assembly is reusable and the tool assembly is, typically, disposable. The tool assembly may include an anvil assembly and a cartridge assembly that houses one or more staples therein. In use, the anvil and cartridge assemblies are approximated toward one another and the staple(s) are ejected from the cartridge assembly into the anvil assembly to form the staple(s) in tissue.
A motor powered by one or more suitable power sources (e.g., battery, outlet, etc.) may be utilized to effectuate ejecting the staple(s). One or more safe guards are typically utilized to ensure that the motor does not draw too much current. For example, prior to ejecting the staple(s), a microcontroller may be provided in the handle assembly and utilized to measure the amount of current that is being drawn from the power source by the motor. The microcontroller utilizes this current measurement to ensure that the motor does not draw an excessive amount of current which could cause damage to one or more component of the circular stapler.
As noted above, the handle assembly may be reusable. In this respect, the handle may be sterilized and re-used. As can be appreciated, the handle assembly and/or operative components associated therewith that are operable to effectuate movement of the anvil and cartridge assemblies (e.g., gears, links, etc.) may become worn and/or compromised as a result of the sterilization process and/or prolonged use of the handle assembly; this may result in these components not functioning in a manner as intended.
Conventional microcontrollers may not be configured to or capable of testing increased or decreased operational efficacy of the handle assembly and/or operative components associated therewith to determine if the handle assembly and/or operative components associated therewith are in proper working order.
As can be appreciated, a powered stapling apparatus that includes a spring loaded cartridge assembly configured to provide a consistent and specific compressive force for stapling tissue may prove useful in the surgical arena.
Embodiments of the present disclosure are described in detail with reference to the drawing figures wherein like reference numerals identify similar or identical elements. As used herein, the term “distal” refers to the portion that is being described which is further from a user, while the term “proximal” refers to the portion that is being described which is closer to a user.
An embodiment of the instant disclosure provides a circular stapler. The circular stapler can include a handle assembly. A shaft may extend distally from the handle assembly. A tool assembly may be configured to selectively couple to the shaft and includes a cartridge assembly and an anvil assembly. The cartridge assembly may include a staple guide defining a tissue contacting surface. A resilient member may be operably positioned within the cartridge assembly and configured to bias the staple guide distally; this provides a predetermined compressive force against tissue when the cartridge assembly and anvil are approximated toward one another.
The resilient member may couple to an underside of the tissue contacting surface of the staple guide. The resilient member may be a wave spring or a compression spring. The resilient member may be shaped to complement the tissue contacting surface of the staple guide. The staple guide may be movable with respect the tool assembly along a longitudinal axis defined therethrough.
A microcontroller may be configured to operably communicate with a motor, for example in the handle assembly (or shaft) and a power source that is configured to energize the motor. The microcontroller may be in operable communication with the cartridge assembly and configured to test a spring constant of the resilient member.
The cartridge assembly may be configured to move through a test stroke for testing the spring constant of the resilient member. In this instance, the microcontroller may be configured to compare a tested spring constant with known spring constants compiled in a data look-up table that is stored in memory and accessible to the microcontroller. Moreover, the microcontroller may control an amount of current that is supplied to the motor based on the tested spring constant of the spring.
An embodiment of the instant disclosure provides a tool assembly that is adapted to selectively couple to handle assembly. The tool assembly includes a cartridge assembly and an anvil assembly. The cartridge assembly includes a staple guide defining a tissue contacting surface and a plurality of staple retaining slots therein. A resilient member operably positioned within the cartridge assembly is configured to bias the staple guide distally; this provides a predetermined compressive force against tissue when the cartridge assembly and anvil are approximated toward one another via the handle assembly.
The resilient member may couple to an underside of the tissue contacting surface of the staple guide. The resilient member may be a wave spring or a compression spring. The resilient member may be shaped to complement the tissue contacting surface of the guide. The staple guide may be movable with respect the tool assembly along a longitudinal axis defined therethrough.
An embodiment of the instant disclosure provides a method for stapling tissue. A handle assembly and a tool assembly are provided. The tool assembly is configured to operably couple to the handle assembly and includes a cartridge assembly, an anvil assembly and a resilient member. A wave spring or compression spring may be utilized for the resilient member. The resilient member is operably positioned within the cartridge assembly and configured to bias a staple guide of the cartridge assembly distally to provide a predetermined compressive force against tissue. The tool assembly is coupled to the handle assembly. A test stroke for testing a spring constant of the resilient member is then performed. In this instance, an amount of current that is supplied to a motor of the handle assembly is adjusted based on the tested spring constant of the spring. The cartridge assembly and anvil are then approximated toward one another and tissue is stapled.
The handle assembly may be provided with a microcontroller that is configured to operably communicate with a motor, for example in the handle assembly and a power source may be configured to energize the motor. A tested spring constant may be compared with known spring constants compiled in a data look-up table that is stored in a memory and is accessible to the microcontroller. When the spring constant is above a predetermined threshold, the amount of current that is supplied to the motor may be increased. And, when the spring constant is below a predetermined threshold, the amount of current to the motor may be decreased.
The foregoing features of the invention will be more readily understood by reference to the following detailed description, taken with reference to the accompanying drawings, in which:
Detailed embodiments of the present disclosure are disclosed herein; however, the disclosed embodiments are merely examples of the disclosure, which may be embodied in various forms. Therefore, specific structural and functional details disclosed herein are not to be interpreted as limiting, but merely as a basis for the claims and as a representative basis for teaching one skilled in the art to variously employ the present disclosure in virtually any appropriately detailed structure.
In accordance with an embodiment of the invention,
Reference is made to U.S. Patent Application Ser. No. 61/774,071, filed on Mar. 7, 2013, entitled “CIRCULAR STAPLING DEVICE INCLUDING BUTTRESS RELEASE MECHANISM;” U.S. patent application Ser. No. 13/739,246, filed on Jan. 11, 2013, entitled “Circular Stapling Instrument;” and U.S. patent application Ser. No. 12/946,082, filed Nov. 15, 2010, entitled “Adapters for Use Between Surgical Handle Assembly and Surgical End Effector;” the entire contents of each of which are hereby incorporated by reference.
Making reference to
As the fastener(s) engage the staple-forming pockets of anvil assembly 18, the fastener(s) is/are formed and fasten tissue closed or to adjacent tissue. In an embodiment of the invention, staple guide 17 is movable with respect tool assembly 10 along a longitudinal axis “A-A” defined through tool assembly 10.
As seen in
With continued reference to
Prior to use, the handle assembly 4 and tool assembly 10 perform an empty calibration clamp stroke (e.g., with no tissue positioned between the cartridge assembly 16 and anvil assembly 18) to establish a needed clamping stroke of the cartridge assembly 16 and anvil assembly 18 (e.g., with tissue positioned between the cartridge assembly 16 and anvil assembly 18). In accordance with the instant disclosure, this calibration clamp stroke fully compress the spring 21, enabling the handle assembly 4 to correctly associate current to force regardless of the age or number of cycles of the components (e.g., adapters, gears, motor, etc) on the stapler 2 and utilized to fire the stapler 2. Upon clamping the stapler 2 on tissue, the spring 21 may be compressed partially or completely if the compressive forces exceed the spring force of the spring 21. In either instance, the stapler 2 would be capable of measuring the correct target compression of captured tissues to deliver a staple crimped to contain the optimally compressed tissue.
In an embodiment, spring 21 is seated around circumferential wall 29 and positioned between an underside 34 of tissue contacting surface 22 and a distal face 22 of shell 14. In an assembled configuration, spring 21 rests against underside 34 and distal face 22, as best seen in
The spring 21 may disposed on or contained within other components that are configured to establish a compressive load on the tissue. For example, while the spring 21 has been described herein as being disposed within the cartridge assembly 16, the spring 21 may disposed on or contained in the anvil assembly 18, the handle assembly 4, tool assembly 10 and/or adapters (not shown) configured for use with the stapler 2.
With reference again to
The gearing and/or motors in the handle assembly 4 and tool assembly 10 translate the motor's 31 power into torque. As noted above, with conventional staplers, many cycles of use, and the gearing and/or motors in the handle assembly and tool assembly may “wear in” resulting in increased efficiency of current to torque. As cycling continues one or more of the gearing and/or motors, may start to degrade in their performance showing a loss of efficiency. If the efficiency of the gearing changes, the current to pressure relationship, control of pressure may also change.
As can be appreciated, it may prove advantageous to monitor and control pressure at the tissue when tissue is being stapled. In accordance therewith, the spring 21 exhibits a constant and unchanging force curve regardless of the number of cycles. Specifically, the handle assembly 4 monitors and controls current input into the motor 31. Thus, by calibrating the cartridge assembly 16 and anvil assembly 18 against the spring 21, the microcontroller 30 may set to a value of current that corresponds to a force of a spring constant to be the assigned value of the spring 21. Thus, when the stapler 2 is cycled through a clamping and stapling stroke, the current that the microcontroller is reading, monitoring, and controlling can be controlled for in terms of force as opposed to current.
Microcontroller 30 may be in operable communication with cartridge assembly 16 and configured to test a spring constant of spring 21. Specifically, microcontroller 30 may be configured to compare a tested spring constant with known spring constants that are compiled in one or more data look-up tables 36 and stored in memory 35 (shown in phantom) that is accessible by microcontroller 30. The known spring constants may be acquired through measurement of a range of different resilient members that may be utilized with cartridge assembly 16.
In embodiments, application software that is executable by the microcontroller 30 may be utilized to calculate a desired force. In such an embodiment, tool assembly 10 may include an identification chip or electrically erasable programmable read-only memory device (EEPROM) which will communicate with the microcontroller 30. Information on the tool assembly 10 may include, for example, staple sizes, tool assembly type, etc., and the spring type/load can be communicated to the handle assembly 4 to enable the application software to establish running parameters of current to actual forces. Additionally or alternatively, a separate spring loaded device (not explicitly shown) may be used to interpose between the anvil assembly 18 and a staple guide of the tool assembly 10 to establish the necessary force to current relationship.
In an embodiment, memory 35 may be a module or component of microcontroller 30. Memory 35 may be any suitable computer readable medium and may include both volatile and/or nonvolatile memory and data storage components. Memory 35 may include, for example, random access memory (RAM) and/or read-only memory (ROM). The RAM may include, for example, static random access memory (SRAM), dynamic random access memory (DRAM), or magnetic random access memory (MRAM) and other such devices. The ROM may include, for example, a programmable read-only memory (PROM), an erasable programmable read-only memory (EPROM), an EEPROM, and other like memory device.
One or more sensors 37 (or other suitable device(s)) may be operably coupled to spring 21 and are configured to measure a spring constant of spring 21 (
In an embodiment, cartridge assembly 16 is configured to move through a test or calibration stroke for testing a spring constant of spring 21. Specifically, microcontroller 30 controls an amount of current that is supplied to motor 31 based on the tested spring constant of spring 21. More specifically, microcontroller 30 provides more current to motor 31 when the spring constant is above a predetermined threshold and provides less current to motor 31 when the spring constant is below a predetermined threshold.
In use, tool assembly 10 may be coupled to elongated shaft 8. Thereafter, a test stroke for testing a spring constant of spring 21 may be performed. During the test stroke, anvil 18 is approximated a predetermined distance towards cartridge assembly 16 against the bias of spring 21. Subsequently, microcontroller 30 may utilize one or more suitable control algorithms to determine the spring constant of spring 21.
Thereafter, microcontroller 30 accesses data look-up table 36 in memory 33 and compares the determined spring constant with the known spring constants of data look-up table 36. Microcontroller 30 provides more current to motor 31 if the spring constant is above a predetermined threshold and provides less current to motor 31 if the spring constant is below a predetermined threshold.
As can be appreciated, utilization of microcontroller 30 and sensor 37 to determine a spring constant of spring 21 that is coupled to cartridge assembly 16 overcomes the aforementioned drawbacks that may be associated with conventional circular anastomosis staplers. Specifically, microcontroller 30, through the test or calibration stroke, can detect degradation of handle assembly 4 and/or operative components associated therewith. As can be appreciated, this may extend the operable shelf life of stapler 2 and/or tool assembly 10.
Thereafter, tissue can be positioned between the tissue contacting surface 22 of the cartridge assembly 16 and the anvil assembly 18 and then the anvil assembly 18 may be approximated towards the tissue contacting surface 22 of the cartridge assembly 16. Actuator 6 may then be actuated to staple the tissue.
Current stapling is done based upon experienced surgeons choosing a cartridge with a set staple height. Incorrect estimation of tissue thickness versus cartridge selection can lead to either: tissue insufficiently compressed leading to bleeding and/or dehiscence and leakages or over compressed tissue which may damage serosal/mucosal membranes and even potentials results in ischemic tissue.
In accordance with the instant disclosure, however, a predetermined clamping force is established to increase/decrease the clamping force of the cartridge assembly 16 and anvil assembly 18 that are holding tissue in place before staples are fired to maintain a specific clamping force. As can be appreciated, to be able to provide a surgeon with clamping information and suggested ranges, will enable the surgeon to use that information and, if need be, tweak compression between the cartridge assembly 16 and anvil assembly 18 prior to stapling tissue.
From the foregoing and with reference to the various figure drawings, those skilled in the art will appreciate that certain modifications can also be made to the present disclosure without departing from the scope of the same. For example, while the microcontroller 30, spring 21 and sensor 37 have been described herein configured for use with a circular stapler 2, the microcontroller 30, spring 21 and sensor 37 may be configured for use with other types of staplers, e.g., linear stapling devices, etc.
While several embodiments of the disclosure have been shown in the drawings, it is not intended that the disclosure be limited thereto, as it is intended that the disclosure be as broad in scope as the art will allow and that the specification be read likewise. Therefore, the above description should not be construed as limiting, but merely as exemplifications of particular embodiments. Those skilled in the art will envision other modifications within the scope and spirit of the claims appended hereto.
This application is a continuation of U.S. patent application Ser. No. 14/197,817, filed Mar. 5, 2014 (now U.S. Pat. No. 9,592,056), which claims the benefit of and priority to U.S. Provisional Patent Application No. 61/781,487, filed Mar. 14, 2013, the entire contents of each of which are hereby incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
3193165 | Akhalaya et al. | Jul 1965 | A |
3388847 | Kasulin et al. | Jun 1968 | A |
3552626 | Astafiev et al. | Jan 1971 | A |
3638652 | Kelley | Feb 1972 | A |
3771526 | Rudie | Nov 1973 | A |
4198982 | Fortner et al. | Apr 1980 | A |
4207898 | Becht | Jun 1980 | A |
4289133 | Rothfuss | Sep 1981 | A |
4304236 | Conta et al. | Dec 1981 | A |
4319576 | Rothfuss | Mar 1982 | A |
4350160 | Kolesov et al. | Sep 1982 | A |
4351466 | Noiles | Sep 1982 | A |
4379457 | Gravener et al. | Apr 1983 | A |
4473077 | Noiles et al. | Sep 1984 | A |
4476863 | Kanshin et al. | Oct 1984 | A |
4485817 | Swiggett | Dec 1984 | A |
4488523 | Shichman | Dec 1984 | A |
4505272 | Utyamyshev et al. | Mar 1985 | A |
4505414 | Filipi | Mar 1985 | A |
4520817 | Green | Jun 1985 | A |
4550870 | Krumme et al. | Nov 1985 | A |
4573468 | Conta et al. | Mar 1986 | A |
4576167 | Noiles | Mar 1986 | A |
4592354 | Rothfuss | Jun 1986 | A |
4603693 | Conta et al. | Aug 1986 | A |
4606343 | Conta et al. | Aug 1986 | A |
4646745 | Noiles | Mar 1987 | A |
4665917 | Clanton et al. | May 1987 | A |
4667673 | Li | May 1987 | A |
4671445 | Barker et al. | Jun 1987 | A |
4700703 | Resnick et al. | Oct 1987 | A |
4703887 | Clanton et al. | Nov 1987 | A |
4708141 | Inoue et al. | Nov 1987 | A |
4717063 | Ebihara | Jan 1988 | A |
4752024 | Green et al. | Jun 1988 | A |
4754909 | Barker et al. | Jul 1988 | A |
4776506 | Green | Oct 1988 | A |
4817847 | Redtenbacher et al. | Apr 1989 | A |
4873977 | Avant et al. | Oct 1989 | A |
4893622 | Green et al. | Jan 1990 | A |
4903697 | Resnick et al. | Feb 1990 | A |
4907591 | Vasconcellos et al. | Mar 1990 | A |
4917114 | Green et al. | Apr 1990 | A |
4957499 | Lipatov et al. | Sep 1990 | A |
4962877 | Hervas | Oct 1990 | A |
5005749 | Aranyi | Apr 1991 | A |
5042707 | Taheri | Aug 1991 | A |
5047039 | Avant et al. | Sep 1991 | A |
5104025 | Main et al. | Apr 1992 | A |
5119983 | Green et al. | Jun 1992 | A |
5122156 | Granger et al. | Jun 1992 | A |
5139513 | Segato | Aug 1992 | A |
5158222 | Green et al. | Oct 1992 | A |
5188638 | Tzakis | Feb 1993 | A |
5193731 | Aranyi | Mar 1993 | A |
5197648 | Gingold | Mar 1993 | A |
5197649 | Bessler et al. | Mar 1993 | A |
5205459 | Brinkerhoff et al. | Apr 1993 | A |
5221036 | Takase | Jun 1993 | A |
5222963 | Brinkerhoff et al. | Jun 1993 | A |
5253793 | Green et al. | Oct 1993 | A |
5261920 | Main et al. | Nov 1993 | A |
5271543 | Grant et al. | Dec 1993 | A |
5271544 | Fox et al. | Dec 1993 | A |
5275322 | Brinkerhoff et al. | Jan 1994 | A |
5282810 | Allen et al. | Feb 1994 | A |
5285944 | Green et al. | Feb 1994 | A |
5285945 | Brinkerhoff et al. | Feb 1994 | A |
5292053 | Bilotti et al. | Mar 1994 | A |
5309927 | Welch | May 1994 | A |
5312024 | Grant et al. | May 1994 | A |
5314435 | Green et al. | May 1994 | A |
5314436 | Wilk | May 1994 | A |
5330486 | Wilk | Jul 1994 | A |
5333773 | Main et al. | Aug 1994 | A |
5344059 | Green et al. | Sep 1994 | A |
5346115 | Perouse et al. | Sep 1994 | A |
5348259 | Blanco et al. | Sep 1994 | A |
5350104 | Main et al. | Sep 1994 | A |
5355897 | Pietrafitta et al. | Oct 1994 | A |
5360154 | Green | Nov 1994 | A |
5368215 | Green et al. | Nov 1994 | A |
5392979 | Green et al. | Feb 1995 | A |
5395030 | Kuramoto et al. | Mar 1995 | A |
5403333 | Kaster et al. | Apr 1995 | A |
5404870 | Brinkerhoff et al. | Apr 1995 | A |
5411508 | Bessler et al. | May 1995 | A |
5425738 | Gustafson et al. | Jun 1995 | A |
5433721 | Hooven et al. | Jul 1995 | A |
5437684 | Calabrese et al. | Aug 1995 | A |
5439156 | Grant et al. | Aug 1995 | A |
5443198 | Viola et al. | Aug 1995 | A |
5447514 | Gerry et al. | Sep 1995 | A |
5454825 | Van Leeuwen et al. | Oct 1995 | A |
5464415 | Chen | Nov 1995 | A |
5470006 | Rodak | Nov 1995 | A |
5474223 | Viola et al. | Dec 1995 | A |
5484095 | Green et al. | Jan 1996 | A |
5497934 | Brady et al. | Mar 1996 | A |
5503635 | Sauer et al. | Apr 1996 | A |
5522534 | Viola et al. | Jun 1996 | A |
5533661 | Main et al. | Jul 1996 | A |
5588579 | Schnut et al. | Dec 1996 | A |
5609285 | Grant et al. | Mar 1997 | A |
5626591 | Kockerling et al. | May 1997 | A |
5632433 | Grant et al. | May 1997 | A |
5639008 | Gallagher et al. | Jun 1997 | A |
5641111 | Ahrens et al. | Jun 1997 | A |
5658300 | Bito et al. | Aug 1997 | A |
5669918 | Balazs et al. | Sep 1997 | A |
5685474 | Seeber | Nov 1997 | A |
5709335 | Heck | Jan 1998 | A |
5715987 | Kelley et al. | Feb 1998 | A |
5718360 | Green et al. | Feb 1998 | A |
5720755 | Dakov | Feb 1998 | A |
5732872 | Bolduc et al. | Mar 1998 | A |
5749896 | Cook | May 1998 | A |
5758814 | Gallagher et al. | Jun 1998 | A |
5799857 | Robertson et al. | Sep 1998 | A |
5814055 | Knodel et al. | Sep 1998 | A |
5833698 | Hinchliffe et al. | Nov 1998 | A |
5836503 | Ehrenfels et al. | Nov 1998 | A |
5839639 | Sauer et al. | Nov 1998 | A |
5855312 | Toledano | Jan 1999 | A |
5860581 | Robertson et al. | Jan 1999 | A |
5868760 | McGuckin, Jr. | Feb 1999 | A |
5881943 | Heck et al. | Mar 1999 | A |
5915616 | Viola et al. | Jun 1999 | A |
5947363 | Bolduc et al. | Sep 1999 | A |
5951576 | Wakabayashi | Sep 1999 | A |
5957363 | Heck | Sep 1999 | A |
5993468 | Rygaard | Nov 1999 | A |
6024748 | Manzo et al. | Feb 2000 | A |
6050472 | Shibata | Apr 2000 | A |
6053390 | Green et al. | Apr 2000 | A |
6068636 | Chen | May 2000 | A |
6083241 | Longo et al. | Jul 2000 | A |
6102271 | Longo et al. | Aug 2000 | A |
6117148 | Ravo et al. | Sep 2000 | A |
6119913 | Adams et al. | Sep 2000 | A |
6126058 | Adams et al. | Oct 2000 | A |
6142933 | Longo et al. | Nov 2000 | A |
6149667 | Hovland et al. | Nov 2000 | A |
6176413 | Heck et al. | Jan 2001 | B1 |
6179195 | Adams et al. | Jan 2001 | B1 |
6193129 | Bittner et al. | Feb 2001 | B1 |
6203553 | Robertson et al. | Mar 2001 | B1 |
6209773 | Bolduc et al. | Apr 2001 | B1 |
6241140 | Adams et al. | Jun 2001 | B1 |
6253984 | Heck et al. | Jul 2001 | B1 |
6258107 | Balazs et al. | Jul 2001 | B1 |
6264086 | McGuckin, Jr. | Jul 2001 | B1 |
6269997 | Balazs et al. | Aug 2001 | B1 |
6273897 | Dalessandro et al. | Aug 2001 | B1 |
6279809 | Nicolo | Aug 2001 | B1 |
6302311 | Adams et al. | Oct 2001 | B1 |
6338737 | Toledano | Jan 2002 | B1 |
6343731 | Adams et al. | Feb 2002 | B1 |
6387105 | Gifford, III et al. | May 2002 | B1 |
6398795 | McAlister et al. | Jun 2002 | B1 |
6402008 | Lucas | Jun 2002 | B1 |
6439446 | Perry et al. | Aug 2002 | B1 |
6443973 | Whitman | Sep 2002 | B1 |
6450390 | Heck et al. | Sep 2002 | B2 |
6478210 | Adams et al. | Nov 2002 | B2 |
6488197 | Whitman | Dec 2002 | B1 |
6491201 | Whitman | Dec 2002 | B1 |
6494877 | Odell et al. | Dec 2002 | B2 |
6503259 | Huxel et al. | Jan 2003 | B2 |
6517566 | Hovland et al. | Feb 2003 | B1 |
6520398 | Nicolo | Feb 2003 | B2 |
6533157 | Whitman | Mar 2003 | B1 |
6551334 | Blatter et al. | Apr 2003 | B2 |
6578751 | Hartwick | Jun 2003 | B2 |
6585144 | Adams et al. | Jul 2003 | B2 |
6588643 | Bolduc et al. | Jul 2003 | B2 |
6592596 | Geitz | Jul 2003 | B1 |
6601749 | Sullivan et al. | Aug 2003 | B2 |
6605078 | Adams | Aug 2003 | B2 |
6605098 | Nobis et al. | Aug 2003 | B2 |
6626921 | Blatter et al. | Sep 2003 | B2 |
6629630 | Adams | Oct 2003 | B2 |
6631837 | Heck | Oct 2003 | B1 |
6632227 | Adams | Oct 2003 | B2 |
6632237 | Ben-David et al. | Oct 2003 | B2 |
6652542 | Blatter et al. | Nov 2003 | B2 |
6659327 | Heck et al. | Dec 2003 | B2 |
6676671 | Robertson et al. | Jan 2004 | B2 |
6681979 | Whitman | Jan 2004 | B2 |
6685079 | Sharma et al. | Feb 2004 | B2 |
6695198 | Adams et al. | Feb 2004 | B2 |
6695199 | Whitman | Feb 2004 | B2 |
6698643 | Whitman | Mar 2004 | B2 |
6716222 | McAlister et al. | Apr 2004 | B2 |
6716233 | Whitman | Apr 2004 | B1 |
6726697 | Nicholas et al. | Apr 2004 | B2 |
6742692 | Hartwick | Jun 2004 | B2 |
6743244 | Blatter et al. | Jun 2004 | B2 |
6763993 | Bolduc et al. | Jul 2004 | B2 |
6769590 | Vresh et al. | Aug 2004 | B2 |
6769594 | Orban, III | Aug 2004 | B2 |
6820791 | Adams | Nov 2004 | B2 |
6821282 | Perry et al. | Nov 2004 | B2 |
6827246 | Sullivan et al. | Dec 2004 | B2 |
6840423 | Adams et al. | Jan 2005 | B2 |
6843403 | Whitman | Jan 2005 | B2 |
6846308 | Whitman et al. | Jan 2005 | B2 |
6852122 | Rush | Feb 2005 | B2 |
6866178 | Adams et al. | Mar 2005 | B2 |
6872214 | Sonnenschein et al. | Mar 2005 | B2 |
6874669 | Adams et al. | Apr 2005 | B2 |
6884250 | Monassevitch et al. | Apr 2005 | B2 |
6905504 | Vargas | Jun 2005 | B1 |
6938814 | Sharma et al. | Sep 2005 | B2 |
6942675 | Vargas | Sep 2005 | B1 |
6945444 | Gresham et al. | Sep 2005 | B2 |
6953138 | Dworak et al. | Oct 2005 | B1 |
6957758 | Aranyi | Oct 2005 | B2 |
6959851 | Heinrich | Nov 2005 | B2 |
6978922 | Bilotti et al. | Dec 2005 | B2 |
6981941 | Whitman et al. | Jan 2006 | B2 |
6981979 | Nicolo | Jan 2006 | B2 |
7032798 | Whitman et al. | Apr 2006 | B2 |
7059331 | Adams et al. | Jun 2006 | B2 |
7059510 | Orban, III | Jun 2006 | B2 |
7077856 | Whitman | Jul 2006 | B2 |
7080769 | Vresh et al. | Jul 2006 | B2 |
7086267 | Dworak et al. | Aug 2006 | B2 |
7114642 | Whitman | Oct 2006 | B2 |
7118528 | Piskun | Oct 2006 | B1 |
7122044 | Bolduc et al. | Oct 2006 | B2 |
7128748 | Mooradian et al. | Oct 2006 | B2 |
7141055 | Abrams et al. | Nov 2006 | B2 |
7168604 | Milliman et al. | Jan 2007 | B2 |
7179267 | Nolan et al. | Feb 2007 | B2 |
7182239 | Myers | Feb 2007 | B1 |
7195142 | Orban, III | Mar 2007 | B2 |
7207168 | Doepker et al. | Apr 2007 | B2 |
7220237 | Gannoe et al. | May 2007 | B2 |
7234624 | Gresham et al. | Jun 2007 | B2 |
7235089 | McGuckin, Jr. | Jun 2007 | B1 |
RE39841 | Bilotti et al. | Sep 2007 | E |
7285125 | Viola | Oct 2007 | B2 |
7303106 | Milliman et al. | Dec 2007 | B2 |
7303107 | Milliman et al. | Dec 2007 | B2 |
7309341 | Ortiz et al. | Dec 2007 | B2 |
7322994 | Nicholas et al. | Jan 2008 | B2 |
7325713 | Aranyi | Feb 2008 | B2 |
7334718 | McAlister et al. | Feb 2008 | B2 |
7335212 | Edoga et al. | Feb 2008 | B2 |
7364060 | Milliman | Apr 2008 | B2 |
7398908 | Holsten et al. | Jul 2008 | B2 |
7399305 | Csiky et al. | Jul 2008 | B2 |
7401721 | Holsten et al. | Jul 2008 | B2 |
7401722 | Hur | Jul 2008 | B2 |
7407075 | Holsten et al. | Aug 2008 | B2 |
7410086 | Ortiz et al. | Aug 2008 | B2 |
7422137 | Manzo | Sep 2008 | B2 |
7422138 | Bilotti et al. | Sep 2008 | B2 |
7431191 | Milliman | Oct 2008 | B2 |
7438718 | Milliman et al. | Oct 2008 | B2 |
7455676 | Holsten et al. | Nov 2008 | B2 |
7455682 | Viola | Nov 2008 | B2 |
7481347 | Roy | Jan 2009 | B2 |
7494038 | Milliman | Feb 2009 | B2 |
7506791 | Omaits et al. | Mar 2009 | B2 |
7516877 | Aranyi | Apr 2009 | B2 |
7527185 | Harari | May 2009 | B2 |
7537602 | Whitman | May 2009 | B2 |
7546939 | Adams et al. | Jun 2009 | B2 |
7546940 | Milliman et al. | Jun 2009 | B2 |
7547312 | Bauman et al. | Jun 2009 | B2 |
7556186 | Milliman | Jul 2009 | B2 |
7559451 | Sharma et al. | Jul 2009 | B2 |
7585306 | Abbott et al. | Sep 2009 | B2 |
7588174 | Holsten et al. | Sep 2009 | B2 |
7600663 | Green | Oct 2009 | B2 |
7611038 | Racenet et al. | Nov 2009 | B2 |
7635385 | Milliman et al. | Dec 2009 | B2 |
7669747 | Weisenburgh, II et al. | Mar 2010 | B2 |
7686201 | Csiky | Mar 2010 | B2 |
7694864 | Okada et al. | Apr 2010 | B2 |
7699204 | Viola | Apr 2010 | B2 |
7708181 | Cole et al. | May 2010 | B2 |
7717313 | Criscuolo et al. | May 2010 | B2 |
7721932 | Cole et al. | May 2010 | B2 |
7726539 | Holsten et al. | Jun 2010 | B2 |
7743958 | Orban, III | Jun 2010 | B2 |
7744627 | Orban, III et al. | Jun 2010 | B2 |
7770776 | Chen et al. | Aug 2010 | B2 |
7771440 | Ortiz et al. | Aug 2010 | B2 |
7776060 | Mooradian et al. | Aug 2010 | B2 |
7793813 | Bettuchi | Sep 2010 | B2 |
7802712 | Milliman et al. | Sep 2010 | B2 |
7823592 | Bettuchi et al. | Nov 2010 | B2 |
7837079 | Holsten et al. | Nov 2010 | B2 |
7837080 | Schwemberger | Nov 2010 | B2 |
7837081 | Holsten et al. | Nov 2010 | B2 |
7845536 | Viola et al. | Dec 2010 | B2 |
7845538 | Whitman | Dec 2010 | B2 |
7857187 | Milliman | Dec 2010 | B2 |
7886951 | Hessler | Feb 2011 | B2 |
7896215 | Adams et al. | Mar 2011 | B2 |
7900806 | Chen et al. | Mar 2011 | B2 |
7909039 | Hur | Mar 2011 | B2 |
7909219 | Cole et al. | Mar 2011 | B2 |
7909222 | Cole et al. | Mar 2011 | B2 |
7909223 | Cole et al. | Mar 2011 | B2 |
7913892 | Cole et al. | Mar 2011 | B2 |
7918377 | Measamer et al. | Apr 2011 | B2 |
7922062 | Cole et al. | Apr 2011 | B2 |
7922743 | Heinrich et al. | Apr 2011 | B2 |
7931183 | Orban, III | Apr 2011 | B2 |
7938307 | Bettuchi | May 2011 | B2 |
7942302 | Roby et al. | May 2011 | B2 |
7951166 | Orban, III et al. | May 2011 | B2 |
7959050 | Smith et al. | Jun 2011 | B2 |
7967181 | Viola et al. | Jun 2011 | B2 |
7975895 | Milliman | Jul 2011 | B2 |
8002795 | Beetel | Aug 2011 | B2 |
8006701 | Bilotti et al. | Aug 2011 | B2 |
8006889 | Adams et al. | Aug 2011 | B2 |
8011551 | Marczyk et al. | Sep 2011 | B2 |
8011554 | Milliman | Sep 2011 | B2 |
8016177 | Bettuchi et al. | Sep 2011 | B2 |
8016858 | Whitman | Sep 2011 | B2 |
8020741 | Cole et al. | Sep 2011 | B2 |
8025199 | Whitman et al. | Sep 2011 | B2 |
8028885 | Smith et al. | Oct 2011 | B2 |
8038046 | Smith et al. | Oct 2011 | B2 |
8043207 | Adams | Oct 2011 | B2 |
8066167 | Measamer et al. | Nov 2011 | B2 |
8066169 | Viola | Nov 2011 | B2 |
8070035 | Holsten et al. | Dec 2011 | B2 |
8070037 | Csiky | Dec 2011 | B2 |
8740038 | Shelton, IV et al. | Jun 2014 | B2 |
9592056 | Mozdzierz | Mar 2017 | B2 |
20030111507 | Nunez | Jun 2003 | A1 |
20050051597 | Toledano | Mar 2005 | A1 |
20050107813 | Gilete Garcia | May 2005 | A1 |
20050125009 | Perry et al. | Jun 2005 | A1 |
20050145674 | Sonnenschein et al. | Jul 2005 | A1 |
20050145675 | Hartwick et al. | Jul 2005 | A1 |
20060000869 | Fontayne | Jan 2006 | A1 |
20060011698 | Okada et al. | Jan 2006 | A1 |
20060047307 | Ortiz et al. | Mar 2006 | A1 |
20060144897 | Jankowski et al. | Jul 2006 | A1 |
20060201989 | Ojeda | Sep 2006 | A1 |
20060241692 | McGuckin et al. | Oct 2006 | A1 |
20070027473 | Vresh et al. | Feb 2007 | A1 |
20070029363 | Popov | Feb 2007 | A1 |
20070060952 | Roby et al. | Mar 2007 | A1 |
20070270790 | Smith | Nov 2007 | A1 |
20080015617 | Harari et al. | Jan 2008 | A1 |
20090230170 | Milliman | Sep 2009 | A1 |
20090236392 | Cole et al. | Sep 2009 | A1 |
20090236398 | Cole et al. | Sep 2009 | A1 |
20090236401 | Cole et al. | Sep 2009 | A1 |
20090255976 | Marczyk et al. | Oct 2009 | A1 |
20090302089 | Harari et al. | Dec 2009 | A1 |
20100001037 | Racenet et al. | Jan 2010 | A1 |
20100019016 | Edoga et al. | Jan 2010 | A1 |
20100038401 | Milliman et al. | Feb 2010 | A1 |
20100051668 | Milliman et al. | Mar 2010 | A1 |
20100065607 | Orban, III et al. | Mar 2010 | A1 |
20100084453 | Hu | Apr 2010 | A1 |
20100089971 | Milliman et al. | Apr 2010 | A1 |
20100108739 | Holsten et al. | May 2010 | A1 |
20100108740 | Pastorelli et al. | May 2010 | A1 |
20100108741 | Hessler et al. | May 2010 | A1 |
20100133319 | Milliman et al. | Jun 2010 | A1 |
20100147923 | D'Agostino et al. | Jun 2010 | A1 |
20100163598 | Belzer | Jul 2010 | A1 |
20100170932 | Wenchell et al. | Jul 2010 | A1 |
20100224668 | Fontayne et al. | Sep 2010 | A1 |
20100230465 | Smith et al. | Sep 2010 | A1 |
20100230466 | Criscuolo et al. | Sep 2010 | A1 |
20100230467 | Criscuolo et al. | Sep 2010 | A1 |
20100258611 | Smith et al. | Oct 2010 | A1 |
20100264195 | Bettuchi | Oct 2010 | A1 |
20100270356 | Holsten et al. | Oct 2010 | A1 |
20100282815 | Bettuchi et al. | Nov 2010 | A1 |
20100301098 | Kostrzewski | Dec 2010 | A1 |
20100327041 | Milliman et al. | Dec 2010 | A1 |
20110006100 | Milliam | Jan 2011 | A1 |
20110006102 | Kostrzewski | Jan 2011 | A1 |
20110011916 | Levine | Jan 2011 | A1 |
20110017800 | Viola | Jan 2011 | A1 |
20110024476 | Bettuchi et al. | Feb 2011 | A1 |
20110024481 | Bettuchi et al. | Feb 2011 | A1 |
20110036889 | Heinrich et al. | Feb 2011 | A1 |
20110036894 | Bettuchi | Feb 2011 | A1 |
20110042442 | Viola et al. | Feb 2011 | A1 |
20110042443 | Milliman et al. | Feb 2011 | A1 |
20110057016 | Bettuchi | Mar 2011 | A1 |
20110089219 | Hessler | Apr 2011 | A1 |
20110095067 | Ohdaira | Apr 2011 | A1 |
20110095068 | Patel | Apr 2011 | A1 |
20110095069 | Patel et al. | Apr 2011 | A1 |
20110095070 | Patel et al. | Apr 2011 | A1 |
20110101065 | Milliman | May 2011 | A1 |
20110114697 | Baxter, III et al. | May 2011 | A1 |
20110114698 | Baxter, III et al. | May 2011 | A1 |
20110114699 | Baxter, III et al. | May 2011 | A1 |
20110114700 | Baxter, III et al. | May 2011 | A1 |
20110114701 | Hessler | May 2011 | A1 |
20110118761 | Baxter, III et al. | May 2011 | A1 |
20110130788 | Orban, III et al. | Jun 2011 | A1 |
20110139852 | Zingman | Jun 2011 | A1 |
20110139853 | Viola | Jun 2011 | A1 |
20110144640 | Heinrich et al. | Jun 2011 | A1 |
20110147432 | Heinrich et al. | Jun 2011 | A1 |
20110147434 | Hueil et al. | Jun 2011 | A1 |
20110147435 | Heinrich et al. | Jun 2011 | A1 |
20110174099 | Ross et al. | Jul 2011 | A1 |
20110192882 | Hess et al. | Aug 2011 | A1 |
20110210156 | Smith et al. | Sep 2011 | A1 |
20110220703 | Orban, III | Sep 2011 | A1 |
20110248067 | Takei | Oct 2011 | A1 |
20120228358 | Zemlok et al. | Sep 2012 | A1 |
20120241499 | Baxter, III et al. | Sep 2012 | A1 |
Number | Date | Country |
---|---|---|
908529 | Aug 1972 | CA |
1057729 | May 1959 | DE |
3301713 | Jul 1984 | DE |
0152382 | Aug 1985 | EP |
0173451 | Mar 1986 | EP |
0190022 | Aug 1986 | EP |
0282157 | Sep 1988 | EP |
0503689 | Sep 1992 | EP |
1354560 | Oct 2003 | EP |
1461464 | Feb 1966 | FR |
1588250 | Apr 1970 | FR |
2443239 | Jul 1980 | FR |
1185292 | Mar 1970 | GB |
2016991 | Sep 1979 | GB |
2070499 | Sep 1981 | GB |
2-501273 | Oct 1990 | JP |
7711347 | Apr 1979 | NL |
1509052 | Sep 1989 | SU |
8706448 | Nov 1987 | WO |
8900406 | Jan 1989 | WO |
9006085 | Jun 1990 | WO |
2001054594 | Aug 2001 | WO |
2008107918 | Sep 2008 | WO |
2012148664 | Nov 2012 | WO |
Entry |
---|
Chinese Second Office Action corresponding to counterpart Chinese Patent Appln. No. CN 2014100965550 dated Jan. 30, 2018. |
Australian Examination Report No. 1 corresponding to counterpart Australian Patent Application No. AU 2014201345 dated Nov. 1, 2017. |
Chinese Third Office Action corresponding to counterpart Patent Appln. No. CN 2014100965550 dated Aug. 17, 2018. |
Chinese Office Action issued in corresponding Application No. 2014100965550, dated May 10, 2017, 16 pages w/ English abstract. |
Japanese Office Action corresponding to counterpart Int'l Appln. No. JP 2014-050370 dated Nov. 20, 2017. |
European Office Action corresponding to EP 14 161 175.6 dated Mar. 17, 2015; 4 pages. |
U.S. Appl. No. 13/739,246, filed Jan. 11, 2013, Penna. |
Extended European Search Report corresponding to EP 14 16 1175.6, completed Sep. 15, 2014 and dated Sep. 23, 2014; (5 pp). |
European Office Action corresponding to EP 14 161 175.6 dated Nov. 6, 2015; 4 pp. |
European Office Action dated Nov. 8, 2016 in corresponding European Patent Application No. 14161175, 4 pages. |
Number | Date | Country | |
---|---|---|---|
20170135697 A1 | May 2017 | US |
Number | Date | Country | |
---|---|---|---|
61781487 | Mar 2013 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14197817 | Mar 2014 | US |
Child | 15419068 | US |