Powered surgical device with speed and current derivative motor shut off

Abstract
A surgical instrument includes: an end effector; a power source; a motor coupled to the power source, the motor configured to actuate the end effector; and a controller operatively coupled to the motor and configured to control the motor based on a current draw of the motor and an angular velocity of the motor.
Description
BACKGROUND
1. Technical Field

The present disclosure relates to surgical devices. More specifically, the present disclosure relates to handheld electromechanical surgical systems for performing surgical procedures having reusable components.


2. Background of the Related Art

Linear clamping, cutting and stapling devices are used in surgical procedures to resect cancerous or anomalous tissue from a gastro-intestinal tract. Conventional linear clamping, cutting and stapling instruments include a pistol grip-styled structure having an elongated shaft and an end effector having a pair of gripping members disposed at a distal end of the shaft to clamp, cut, and staple tissue. Actuation of the gripping members is usually accomplished by actuating a trigger coupled to the handle, in response to which one of the two gripping members, such as the anvil portion, moves or pivots relative to the elongated shaft while the other gripping element remains fixed. The fixed gripping member includes a staple cartridge and a mechanism for ejecting the staples through the clamped tissue against the anvil portion, thereby stapling the tissue. The end effector may be integrally formed with the shaft or may be detachable allowing for interchangeability of various gripping and stapling members.


A number of surgical device manufacturers have also developed proprietary powered drive systems for operating and/or manipulating the end effectors. The powered drive systems may include a powered handle assembly, which may be reusable, and a disposable end effector that is removably connected to the powered handle assembly.


Many of the existing end effectors for use with existing powered surgical devices and/or handle assemblies are driven by a linear driving force. For example, end effectors for performing endo-gastrointestinal anastomosis procedures, end-to-end anastomosis procedures, and transverse anastomosis procedures, are actuated by a linear driving force. As such, these end effectors are not compatible with surgical devices and/or handle assemblies that use rotary motion.


Many of these electromechanical surgical devices include complex drive components. To prevent actuation of drive mechanisms beyond mechanical limits, various switches and sensors are used to detect operational state of the surgical devices. Inclusion of multiple switches and/or sensors adds to the cost and complexity of the surgical devices. Accordingly, there is a need for systems and apparatuses having safety mechanisms that can detect mechanical limits without relying on multiple mechanical limit sensors and/or switches disposed throughout the surgical device.


SUMMARY

According to one embodiment of the present disclosure, a surgical instrument is provided. The surgical instrument includes: an end effector; a power source; a motor coupled to the power source, the motor configured to actuate the end effector; and a controller operatively coupled to the motor and configured to control the motor based on a current draw of the motor and an angular velocity of the motor.


According to one aspect of the above embodiment, the surgical instrument further includes a motor control circuit configured to measure the current draw of the motor and the angular velocity of the motor.


According to another aspect of the above embodiment, the controller may be configured to calculate an instantaneous rate of change of each of the current draw of the motor and the angular velocity of the motor.


According to a further aspect of the above embodiment, the controller may be further configured to determine that the motor reached a mechanical limit based on the instantaneous rate of change of the current draw of the motor being positive and the instantaneous rate of change of the angular velocity of the motor being negative. The controller may also be configured to determine that the motor reached a mechanical limit based on the instantaneous rate of change of the current draw of the motor exceeding a first threshold, concurrently or otherwise, with the instantaneous rate of change of the angular velocity of the motor exceeding a second threshold.


According to one aspect of the above embodiment, the controller is configured to calibrate the motor based on the mechanical limit. The controller may also be configured to terminate the supply of electrical current to the motor from the power supply in response to detection of the mechanical limit.


According to another embodiment of the present disclosure, a method for controlling a surgical device is provided. The method includes: energizing a motor to actuate an end effector; measuring a current draw of the motor; measuring an angular velocity of the motor; and controlling the motor based on the current draw of the motor and the angular velocity of the motor.


According to one aspect of the above embodiment, the method includes calibrating the motor based on the mechanical limit.


According to another aspect of the above embodiment, the method further includes terminating a supply of electrical current to the motor from the power supply in response to detection of the mechanical limit.


According to a further embodiment of the present disclosure, a method for calibrating a surgical instrument is disclosed. The method includes: energizing a motor to actuate an end effector; measuring a current draw of the motor; measuring an angular velocity of the motor; detecting the motor reaching a mechanical limit based on the current draw of the motor and the angular velocity of the motor; and designating an angular position of the motor corresponding to the mechanical limit as a zero position for calibrating the motor.


According to one aspect of any of the above method embodiments, the methods may include calculating an instantaneous rate of change of each of the current draw of the motor and the angular velocity of the motor. The methods may also include determining that the motor reached the mechanical limit based on the instantaneous rate of change of the current draw of the motor being positive and the instantaneous rate of change of the angular velocity of the motor being negative.


According to another aspect of any of the above embodiments, the methods may include determining that the motor reached the mechanical limit based on the instantaneous rate of change of the current draw of the motor exceeding a first threshold, concurrently or otherwise, with the instantaneous rate of change of the angular velocity of the motor exceeding a second threshold.





DESCRIPTION OF THE DRAWINGS

Embodiments of the present disclosure are described herein with reference to the accompanying drawings, wherein:



FIG. 1 is a perspective view of a surgical system including a handheld surgical device, an adapter assembly, and an end effector according to an embodiment of the present disclosure;



FIG. 2 is a front perspective view, with parts separated, of the handheld surgical device of FIG. 1;



FIG. 3 is a front, perspective view of a power-pack and an inner rear housing of FIG. 2 separated therefrom;



FIG. 4 is a cross-sectional view of the handheld surgical device of FIG. 2 taken along a section line “4-4”;



FIG. 5 is a schematic diagram of the handheld surgical device of FIG. 1 according to the present disclosure;



FIG. 6 is a plot of motor current and average angular motor velocity of the handheld surgical device of FIG. 1 as controlled by the method of the present disclosure; and



FIG. 7 is a flow chart of a method for controlling the handheld surgical device of FIG. 1 according to another embodiment of the present disclosure.





DETAILED DESCRIPTION

Embodiments of the presently disclosed surgical devices, and adapter assemblies for surgical devices and/or handle assemblies are described in detail with reference to the drawings, in which like reference numerals designate identical or corresponding elements in each of the several views. As used herein the term “distal” refers to that portion of the adapter assembly or surgical device, or component thereof, farther from the user, while the term “proximal” refers to that portion of the adapter assembly or surgical device, or component thereof, closer to the user.


The present disclosure provides a powered surgical device including one or more motors configured to actuate a surgical end effector and one or more sensors configured to monitor motor operation, such as current draw and angular velocity. The powered surgical device also includes a controller coupled to, and configured to control the motor based on feedback from the sensors. The controller is configured to shut off the motor in the event of a collision, which is determined based on a rate of change of angular velocity and current draw by the motor. The angular velocity and current draw may be plotted as a function of time and the slope of each plot may then be calculated using a derivative function to determine the rate of change of each of the angular velocity and the motor current. These two outputs of the motor movement may be tracked simultaneously. In the event of a collision, motor speed is reduced, thereby creating a negative slope, or rate of change, and motor current increases with the increasing load causing a positive slope, or rate of change. Once a negative motor speed derivative and a positive current derivative simultaneously exceed respective preset thresholds, the controller shuts down the motor. In embodiments, the sensitivity of the surgical device may be tuned by varying the derivative thresholds to eliminate false detections and prevent damage to the driven mechanisms.


The system and method according to the present disclosure allows for detection of an imminent collision prior (e.g., by about 40 milliseconds) to mechanical components of the surgical device actually encountering the mechanical limit. Early detection allows for the controller to decrease or shut down the motor thereby reducing the force applied to the mechanical components of the surgical device. This would prevent damage to mechanical components as well as conserve power and reduce stress on a power supply of the surgical device, (e.g., a battery) since current draw during the collision is reduced. In embodiments, collision detection of the present disclosure may also be utilized in intentional collisions, e.g., attempts to reach mechanical limits, to calibrate the motor.


As illustrated in FIG. 1, a surgical system 2 according to the present disclosure includes a surgical device 100, which is shown as a powered hand held electromechanical instrument, configured for selective attachment to a plurality of different end effectors or single use loading units (“SULU's”), such as an end effector 400. In particular, surgical device 100 is configured for selective connection with an adapter 200, and, in turn, adapter 200 is configured for selective connection with the end effector 400.


With reference to FIGS. 1-4, surgical device 100 includes a power-pack 101 (FIG. 2), and an outer shell housing 10 configured to selectively receive and enclose the power-pack 101. Outer shell housing 10 includes a distal half-section 10a and a proximal half-section 10b. The proximal half-section 10b pivotably connected to distal half-section 10a by a hinge 16 located along an upper edge of distal half-section 10a and proximal half-section 10b such that distal and proximal half-sections 10a, 10b are divided along a plane that traverses a longitudinal axis defined by adapter 200. When joined, distal and proximal half-sections 10a, 10b define a shell cavity 10c for receiving power-pack 101.


With reference to FIG. 2, each of distal and proximal half-sections 10a, 10b includes a respective upper shell portion 12a, 12b, and a respective lower shell portion 14a, 14b. Lower shell portion 14a includes a closure tab 18a configured to engage a closure tab 18b of the lower shell portion 14b to selectively secure distal and proximal half-sections 10a, 10b to one another and for maintaining shell housing 10 in a closed configuration.


Distal half-section 10a of shell housing 10 also includes a connecting portion 20 configured to couple to a corresponding drive coupling assembly 210 of adapter 200. Specifically, the connecting portion 20 includes a recess 21 configured to receive a portion of drive coupling assembly 210 of adapter 200 when adapter 200 is mated to surgical device 100. Connecting portion 20 of distal half-section 10a also defines three apertures 22a, 22b, 22c and an elongate slot 24 formed in a distally facing surface thereof.


Distal half-section 10a of shell housing 10 also includes a plurality of buttons such as a toggle control button 30. In embodiments, toggle control button 30 may be a two-axis control stick configured to be actuated in a left, right, up and down direction. The toggle control button 30 may also be depressible.


Distal half-section 10a of shell housing 10 may also support a plurality of other buttons such as a right-side pair of control buttons and a left-side pair of control button. These buttons and other components are described in detail in U.S. Patent Application Publication No. 2016/0310134, the entire disclosure of which is incorporated by reference herein.


With reference to FIG. 2, shell housing 10 includes a sterile barrier plate 60 removably supported in distal half-section 10a. The sterile barrier plate 60 interconnects the power-pack 101 and the adapter 200. Specifically, sterile barrier plate 60 is disposed behind connecting portion 20 of distal half-section 10a and within shell cavity 10c of shell housing 10. Plate 60 includes three coupling shafts 64a, 64b, 64c rotatably supported therein. Each coupling shaft 64a, 64b, 64c extends through a respective aperture 22a, 22b, 22c of connecting portion 20 of distal half-section 10a of shell housing 10.


Plate 60 further includes an electrical pass-through connector 66 supported thereon. Pass-through connector 66 extends through aperture 24 of connecting portion 20 of distal half-section 10a when sterile barrier plate 60 is disposed within shell cavity 10c of shell housing 10. Coupling shafts 64a, 64b, 64c and pass-through connector 66 electrically and mechanically interconnect respective corresponding features of adapter 200 and the power-pack 101.


During use, the shell housing 10 is opened (i.e., distal half-section 10a is separated from proximal half-section 10b about hinge 16), power-pack 101 is inserted into shell cavity 10c of shell housing 10, and distal half-section 10a is pivoted about hinge 16 to a closed configuration. In the closed configuration, closure tab 18a of lower shell portion 14a of distal half-section 10a engages closure tab 18b of lower shell portion 14b of proximal half-section 10b. Following a surgical procedure, shell housing 10 is opened and the power-pack 101 is removed from shell cavity 10c of shell housing 10. The shell housing 10 may be discarded and the power-pack 101 may then be disinfected and cleaned.


Referring to FIGS. 2-4, power-pack 101 includes an inner handle housing 110 having a lower housing portion 104 and an upper housing portion 108 extending from and/or supported on lower housing portion 104. The inner handle housing 110 also includes a distal half-section 110a and a proximal half-section 110b, which define an inner housing cavity 110c (FIG. 3) for housing a power-pack core assembly 106 (FIG. 3). Power-pack core assembly 106 is configured to control the various operations of surgical device.


With reference to FIG. 3, distal half-section 110a of inner handle housing 110 supports a distal toggle control interface 130 that is operatively engaged with toggle control button 30 of shell housing 10, such that when power-pack 101 is disposed within shell housing 10, actuation of toggle control button 30 exerts a force on toggle control interface 130. Distal half-section 110a of inner handle housing 110 also supports various other control interfaces which operatively engage other buttons of shell housing 10.


With reference to FIGS. 3 and 4, power-pack core assembly 106 includes a battery circuit 140, a motor controller circuit 143, a main controller circuit 145, a main controller 147, and a rechargeable battery 144 configured to supply power to any of the electrical components of surgical device 100.


Power-pack core assembly 106 further includes a display screen 146 supported on main controller circuit 145. Display screen 146 is visible through a clear or transparent window 110d disposed in proximal half-section 110b of inner handle housing 110.


Power-pack core assembly 106 further includes a first motor 152 (FIG. 4), a second motor 154 (FIG. 3), and a third motor 156 (FIG. 4) each electrically connected to controller circuit 143 and battery 144. Motors 152, 154, 156 are disposed between motor controller circuit 143 and main controller circuit 145. Each motor 152, 154, 156 is controlled by a respective motor controller (not shown) that are disposed on motor controller circuit 143 and are coupled to a main controller 147. The main controller 147 is also coupled to memory 141 (FIG. 5), which is also disposed on the motor controller circuit 143. The main controller 147 communicates with the motor controllers through an FPGA, which provides control logic signals (e.g., coast, brake, etc. and any other suitable control signals). The motor controllers output corresponding energization signals to their respective motors 152, 154, 156 using fixed-frequency pulse width modulation (PWM).


Power-pack core assembly 106 also includes an electrical receptacle 149. Electrical receptacle 149 is in electrical connection with main controller board 145 via a second ribbon cable (not shown). Electrical receptacle 149 defines a plurality of electrical slots for receiving respective electrical contacts extending from pass-through connector 66 of plate 60 (FIG. 2) of shell housing 10.


Each motor 152, 154, 156 includes a respective motor shaft (not shown) extending therefrom. Each motor shaft may have a recess defined therein having a tri-lobe transverse cross-sectional profile for receiving proximal ends of respective coupling shaft 64a, 64b, 64c of plate 60 of shell housing 10.


Rotation of motor shafts by respective motors 152, 154, 156 actuates shafts and/or gear components of adapter 200 in order to perform the various operations of surgical device 100. In particular, motors 152, 154, 156 of power-pack core assembly 106 are configured to actuate shafts and/or gear components of adapter 200 in order to selectively actuate components of the end effector 400, to rotate end effector 400 about a longitudinal axis, and to pivot the end effector 400 about a pivot axis perpendicular to the longitudinal axis defined by the adapter 200.


With reference to FIG. 5, a schematic diagram of the power-pack 101 is shown. For brevity, only one of the motors 152, 154, 156 is shown, namely, motor 152. The motor 152 is coupled to the battery 144. In embodiments, the motor 152 may be coupled to any suitable power source configured to provide electrical energy to the motor 152, such as an AC/DC transformer.


The battery 144 and the motor 152 are coupled to the motor controller circuit 143 which controls the operation of the motor 152 including the flow of electrical energy from the battery 144 to the motor 152. The motor controller circuit 143 includes a plurality of sensors 408a, 408b, . . . 408n configured to measure operational states of the motor 152 and the battery 144. The sensors 408a-n may include voltage sensors, current sensors, temperature sensors, telemetry sensors, optical sensors, and combinations thereof. The sensors 408a-408n may measure voltage, current, and other electrical properties of the electrical energy supplied by the battery 144. The sensors 408a-408n may also measure angular velocity (e.g., rotational speed) as revolutions per minute (RPM), torque, temperature, current draw, and other operational properties of the motor 152. Angular velocity may be determined by measuring the rotation of the motor 152 or a drive shaft (not shown) coupled thereto and rotatable by the motor 152. Position of various axially movable drive shafts may also be determined by using various linear sensors disposed in or in proximity to the shafts or extrapolated from the RPM measurements. In embodiments, torque may be calculated based on the regulated current draw of the motor 152 at a constant RPM. In further embodiments, the motor controller circuit 143 and/or the controller 147 may measure time and process the above-described values as a function thereof, including integration and/or differentiation, e.g., to determine the rate of change in the measured values.


The motor controller circuit 143 is also coupled to the controller 147, which includes a plurality of inputs and outputs for interfacing with the motor controller circuit 143. In particular, the controller 147 receives measured sensor signals from the motor controller circuit 143 regarding operational status of the motor 152 and the battery 144 and, in turn, outputs control signals to the motor controller circuit 143 to control the operation of the motor 152 based on the sensor readings and specific algorithm instructions, which are discussed in more detail below. The controller 147 is also configured to accept a plurality of user inputs from a user interface (e.g., switches, buttons, touch screen, etc. coupled to the controller 147).


The present disclosure provides for an apparatus and method for controlling the surgical device 100 or any other powered surgical instrument, including, but not limited to, linear powered staplers, circular or arcuate powered staplers, graspers, electrosurgical sealing forceps, rotary tissue morecellating devices, and the like. In particular, torque, RPM, position, and acceleration of drive shafts of the surgical device 100 can be correlated to motor characteristics (e.g., current draw). Current drawn by the motor 152 may be used for detecting mechanical limits since the current drawn by the motor 152 and its angular velocity change in response to the mechanical load encountered by the motor 152. Thus, analysis of the amount of change (e.g., rate of change) of current draw and angular velocity allows for distinguishing between different types of load conditions, e.g., load exerted by tissue versus load exerted by a mechanical stop.


The method according to the present disclosure for detecting mechanical limits may be used to detect collisions of mechanical components of the surgical system 2 (e.g., of end effector 400 and adapter 200), which may occur due to reaching end-of-travel positions or encountering obstructions by the end effector 400 during surgery. In further embodiments, intentional collisions may be used to calibrate motors 152, 154, 156 at start up or other times when the surgical device 100 needs to be recalibrated (e.g., attachment of a new adapter 200 or end effector 400). During calibration, the motor 152 is driven in a direction to cause a collision at a known mechanical position, e.g., a hard stop. Once the collision is detected by the controller 147, then the motor 152 is stopped, and the resulting angular motor position is designated as a zero position by the controller 147. In embodiments, collision may be detected by monitoring current draw of the motor 152 and detecting a current draw spike 502a of the plot 502 as shown in FIG. 6. With particular reference to FIG. 6, a current spike reaching approximately 4,000 milliamperes may be used to denote that the motor 152 has encountered its mechanical limit and a hardstop is detected.


With reference to FIG. 6, the current spike 502a begins to develop at approximately 1,390 milliseconds, whereas the spike 502a reaches its peak at approximately 1,430 milliseconds, resulting in a lag time of about 40 milliseconds, during which the motor 152 continues to actuate mechanical components. This excessive movement by the motor 152 may damage mechanical components and/or unnecessarily draw power from the battery 144. In addition, as the usable life efficiency of the motor 152 decreases, the motor 152 uses more current to perform the same amount of mechanical work. While a current filter or threshold that is used to determine the mechanical limit of about 4,000 milliamperes may be sufficient to determine that an actual collision has occurred when the motor 152 is relatively new, (e.g., less than 10 hours of operation) the same threshold may not be suitable for an older motor 152 (e.g., 20 hours of operation or more). In particular, a motor at the end of its usable life may cross the 4,000 threshold prior to actually encountering a mechanical limit, thus generating a false position for a hardstop by the controller 147. As a result of an incorrect identification of a zero position, the controller 147 may improperly calibrate the motor 152. In order to deal with this eventuality, current draw thresholds may be set high enough to prevent false collision protection over the life of the motor 152. However, this overcompensation results in motor stop current limits being higher than needed. As shown in FIG. 6, the current draw at about 40 milliseconds prior to collision is about 1/10 of the current draw threshold.


With reference to FIG. 7, a method according to the present disclosure for determining mechanical limits and/or collisions is disclosed. The method may be used to determine intentional collisions, such as during calibration, as well as unintentional collisions, such as during use of the surgical device 100. The method utilizes two values, namely, current draw and angular velocity, and rather than simply comparing the measured parameters to a predetermined threshold, the method calculates instantaneous rates of change of these parameters. The calculated instantaneous rates of change are then compared to respective rate of change thresholds. In embodiments, the method according to the present disclosure allows the surgical device 100 to detect the mechanical limits and/or collisions sooner than simply comparing measured motor parameters to thresholds.


The method may be embodied as an algorithm and computer-readable instructions executable by the controller 147. The controller 147 is coupled to the memory 141 or any other suitable, computer-readable, non-transitory medium for storing software instructions (e.g., algorithm) for detecting mechanical limits of the surgical device 100 based on the measured current draw and angular velocity. As used herein, the term “mechanical limit” denotes any of the electromechanical components reaching end-of-travel positions.


Initially, in step 600, the controller 147 signals the motor controller circuit 143 to operate the motor 152 based on desired user input, such as, for example, to control the motor 152, 154, 156 to articulate, actuate, or fire the end effector 400, or rotate the adapter 200 about its longitudinal axis. The controller 147 provides the desired command to the motor controller circuit 143, which then outputs corresponding energization signals to the motor 152 to effectuate the commands received from the controller 147. As the motor 152 is operated, the motor controller circuit 143 continuously monitors operational parameters of the motor 152 including angular velocity of the motor 152 as it is rotating and the current draw of the motor 152.


In steps 602a and 602b, the motor controller circuit 143 then measures and provides the angular velocity and current draw signals to the controller 147, respectively. In embodiments, the controller 147 may generate an angular velocity plot 500 and a current draw plot 502 as shown in FIG. 7 based on the received measurement data from the motor controller circuit 143. The plots 500 and 502 may be a collection of data points of the measurements collected by the motor controller circuit 143. In further embodiments, the plots 500 and 502 may not visualized or graphed by the controller 147 (e.g., output on a display device) and may be simply stored in the memory 141 for use by the controller 147.


In steps 604a and 604b, the controller 147 is configured to continuously process the measurement data of angular velocity and current draw, respectively, which includes continuously calculating the derivatives for each of these values. The controller 147 determines instantaneous rates of change for the angular velocity and the current draw. In embodiments, the controller 147 is configured to track the slopes of each of the plots 500 and 502, which are also calculated using the derivative function to obtain the instantaneous rates of change values.


In step 606, the controller 147 then compares the calculated instantaneous rates of change of each of the angular velocity and current draw of the motor 152 to their respective thresholds. With respect to angular velocity, the threshold corresponds to a negative slope or instantaneous rate of change since upon encountering a mechanical limit, the angular speed of the motor 152 decreases precipitously as shown by a spike 500a of plot 500 of FIG. 6. With respect to current draw, the threshold corresponds to a positive slope or instantaneous rate of change since upon encountering a mechanical limit, the current draw of the motor increases, as illustrated by a spike 502a of the plot 502 of FIG. 6. The angular velocity and current draw rates of change thresholds may be adjusted to eliminate false detection of mechanical limit detection.


The controller 147 determines that a mechanical limit is reached when both of the instantaneous rates of change of the angular velocity and the current draw exceed their respective predetermined thresholds concurrently. If this is so, the controller 147, confirms that a mechanical stop has been reached.


The controller 147 may then utilize the collision detection based on the use of the algorithm. During calibration, the controller 147 shuts down the motor 154 in step 608 and then assigns the position of the motor 152 to a zero position. The zero position is then used by the controller 147 to calculate longitudinal distance traveled by the mechanical components being actuated by the motor 152.


During use, the controller 147 may use the collision detection to signal the motor controller circuit 143 to stop the motor 152 in step 608, which then issues corresponding brake commands to the motor 152. In addition, the controller 147 may issue audio and/or visual alerts to the user that the surgical device 100 encountered an issue due to an unexpected collision and/or reaching a mechanical limit.


It should be understood that the foregoing description is only illustrative of the present disclosure. Various alternatives and modifications can be devised by those skilled in the art without departing from the disclosure. Accordingly, the present disclosure is intended to embrace all such alternatives, modifications and variances. The embodiments described with reference to the attached drawing figures are presented only to demonstrate certain examples of the disclosure. Other elements, steps, methods and techniques that are insubstantially different from those described above and/or in the appended claims are also intended to be within the scope of the disclosure.

Claims
  • 1. A surgical instrument, comprising: an end effector;a power source;a motor coupled to the power source, the motor configured to actuate the end effector;a motor control circuit configured to measure a current draw of the motor and an angular velocity of the motor; anda controller operatively coupled to the motor and configured to: control the motor based on a current draw of the motor and an angular velocity of the motor;calculate an instantaneous rate of change of each of the current draw of the motor and the angular velocity of the motor; anddetermine that the motor reached a mechanical limit based on the instantaneous rate of change of the current draw of the motor exceeding a first threshold and the instantaneous rate of change of the angular velocity of the motor exceeding a second threshold.
  • 2. The surgical instrument according to claim 1, wherein the controller is configured to determine that the motor reached a mechanical limit based on the instantaneous rate of change of the current draw of the motor being positive and the instantaneous rate of change of the angular velocity of the motor being negative.
  • 3. The surgical instrument according to claim 1, wherein the controller is configured to determine that the motor reached the mechanical limit based on the instantaneous rate of change of the current draw of the motor exceeding the first threshold concurrently with the instantaneous rate of change of the angular velocity of the motor exceeding the second threshold.
  • 4. The surgical instrument according to claim 3, wherein the controller is configured to calibrate the motor based on the mechanical limit.
  • 5. The surgical instrument according to claim 1, wherein the controller is configured to terminate a supply of electrical current to the motor from the power source in response to detection of the mechanical limit.
  • 6. A method for controlling a surgical device, the method comprising: energizing a motor to actuate an end effector;measuring a current draw of the motor;measuring an angular velocity of the motor;controlling the motor based on the current draw of the motor and the angular velocity of the motor;calculating an instantaneous rate of change of each of the current draw of the motor and the angular velocity of the motor; anddetermining that the motor reached a mechanical limit based on the instantaneous rate of change of the current draw of the motor exceeding a first threshold and the instantaneous rate of change of the angular velocity of the motor exceeding a second threshold.
  • 7. The method according to claim 6, further comprising: determining that the motor reached a mechanical limit based on the instantaneous rate of change of the current draw of the motor being positive and the instantaneous rate of change of the angular velocity of the motor being negative.
  • 8. The method according to claim 6, further comprising: determining that the motor reached the mechanical limit based on the instantaneous rate of change of the current draw of the motor exceeding the first threshold concurrently with the instantaneous rate of change of the angular velocity of the motor exceeding the second threshold.
  • 9. The method according to claim 8, further comprising: calibrating the motor based on the mechanical limit.
  • 10. The method according to claim 6, further comprising: terminating a supply of electrical current to the motor from a power source in response to detection of the mechanical limit.
  • 11. A method for calibrating a surgical instrument, the method comprising: energizing a motor to actuate an end effector;measuring a current draw of the motor;measuring an angular velocity of the motor;detecting the motor reaching a mechanical limit based on the current draw of the motor and the angular velocity of the motor; anddesignating an angular position of the motor corresponding to the mechanical limit as a zero position for calibrating the motor.
  • 12. The method according to claim 11, further comprising: calculating an instantaneous rate of change of each of the current draw of the motor and the angular velocity of the motor.
  • 13. The method according to claim 12, further comprising: determining that the motor reached the mechanical limit based on the instantaneous rate of change of the current draw of the motor being positive and the instantaneous rate of change of the angular velocity of the motor being negative.
  • 14. The method according to claim 12, further comprising: determining that the motor reached the mechanical limit based on the instantaneous rate of change of the current draw of the motor exceeding a first threshold and the instantaneous rate of change of the angular velocity of the motor exceeding a second threshold.
  • 15. The method according to claim 12, further comprising: determining that the motor reached the mechanical limit based on the instantaneous rate of change of the current draw of the motor exceeding a first threshold concurrently with the instantaneous rate of change of the angular velocity of the motor exceeding a second threshold.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims the benefit of and priority to U.S. Provisional Patent Application No. 62/500,236 filed May 2, 2017, the entire disclosure of which is incorporated by reference herein

US Referenced Citations (448)
Number Name Date Kind
2777340 Hettwer et al. Jan 1957 A
2957353 Babacz Oct 1960 A
3111328 Di Rito et al. Nov 1963 A
3695058 Keith, Jr. Oct 1972 A
3734515 Dudek May 1973 A
3759336 Marcovitz et al. Sep 1973 A
4162399 Hudson Jul 1979 A
4606343 Conta et al. Aug 1986 A
4705038 Sjostrom et al. Nov 1987 A
4722685 de Estrada et al. Feb 1988 A
4823807 Russell et al. Apr 1989 A
4874181 Hsu Oct 1989 A
5129118 Walmesley Jul 1992 A
5129570 Schulze et al. Jul 1992 A
5152744 Krause et al. Oct 1992 A
5301061 Nakada et al. Apr 1994 A
5312023 Green et al. May 1994 A
5326013 Green et al. Jul 1994 A
5350355 Sklar Sep 1994 A
5383874 Jackson et al. Jan 1995 A
5383880 Hooven Jan 1995 A
5389098 Tsuruta et al. Feb 1995 A
5395033 Byrne et al. Mar 1995 A
5400267 Denen et al. Mar 1995 A
5411508 Bessler et al. May 1995 A
5413267 Solyntjes et al. May 1995 A
5427087 Ito et al. Jun 1995 A
5433721 Hooven et al. Jul 1995 A
5467911 Tsuruta et al. Nov 1995 A
5476379 Disel Dec 1995 A
5487499 Sorrentino et al. Jan 1996 A
5518163 Hooven May 1996 A
5518164 Hooven May 1996 A
5526822 Burbank et al. Jun 1996 A
5529235 Boiarski et al. Jun 1996 A
5535934 Boiarski et al. Jul 1996 A
5535937 Boiarski et al. Jul 1996 A
5540375 Bolanos et al. Jul 1996 A
5540706 Aust et al. Jul 1996 A
5542594 McKean et al. Aug 1996 A
5549637 Crainich Aug 1996 A
5553675 Pitzen et al. Sep 1996 A
5562239 Boiarski et al. Oct 1996 A
5564615 Bishop et al. Oct 1996 A
5609560 Ichikawa et al. Mar 1997 A
5626587 Bishop et al. May 1997 A
5632432 Schulze et al. May 1997 A
5645209 Green et al. Jul 1997 A
5647526 Green et al. Jul 1997 A
5653374 Young et al. Aug 1997 A
5658300 Bito et al. Aug 1997 A
5662662 Bishop et al. Sep 1997 A
5667517 Hooven Sep 1997 A
5693042 Boiarski et al. Dec 1997 A
5704534 Huitema et al. Jan 1998 A
5713505 Huitema Feb 1998 A
5762603 Thompson Jun 1998 A
5779130 Alesi et al. Jul 1998 A
5782396 Mastri et al. Jul 1998 A
5782397 Koukline Jul 1998 A
5792573 Pitzen et al. Aug 1998 A
5797536 Smith et al. Aug 1998 A
5820009 Melling et al. Oct 1998 A
5863159 Lasko Jan 1999 A
5908427 McKean et al. Jun 1999 A
5954259 Viola et al. Sep 1999 A
5964774 McKean et al. Oct 1999 A
5993454 Longo Nov 1999 A
6010054 Johnson et al. Jan 2000 A
6017354 Culp et al. Jan 2000 A
6032849 Mastri et al. Mar 2000 A
6045560 McKean et al. Apr 2000 A
6090123 Culp et al. Jul 2000 A
6126651 Mayer Oct 2000 A
6129547 Cise et al. Oct 2000 A
6165169 Panescu et al. Dec 2000 A
6239732 Cusey May 2001 B1
6241139 Milliman et al. Jun 2001 B1
6264086 McGuckin, Jr. Jul 2001 B1
6264087 Whitman Jul 2001 B1
6302311 Adams et al. Oct 2001 B1
6315184 Whitman Nov 2001 B1
6321855 Barnes Nov 2001 B1
6329778 Culp et al. Dec 2001 B1
6343731 Adams et al. Feb 2002 B1
6348061 Whitman Feb 2002 B1
6368324 Dinger et al. Apr 2002 B1
6371909 Hoeg et al. Apr 2002 B1
6434507 Clayton et al. Aug 2002 B1
6443973 Whitman Sep 2002 B1
6461372 Jensen et al. Oct 2002 B1
6488197 Whitman Dec 2002 B1
6491201 Whitman Dec 2002 B1
6533157 Whitman Mar 2003 B1
6537280 Dinger et al. Mar 2003 B2
6610066 Dinger et al. Aug 2003 B2
6611793 Burnside et al. Aug 2003 B1
6645218 Cassidy et al. Nov 2003 B1
6654999 Stoddard et al. Dec 2003 B2
6698643 Whitman Mar 2004 B2
6699177 Wang et al. Mar 2004 B1
6716233 Whitman Apr 2004 B1
6743240 Smith et al. Jun 2004 B2
6783533 Green et al. Aug 2004 B2
6792390 Burnside et al. Sep 2004 B1
6793652 Whitman et al. Sep 2004 B1
6817508 Racenet et al. Nov 2004 B1
6830174 Hillstead et al. Dec 2004 B2
6846308 Whitman et al. Jan 2005 B2
6846309 Whitman et al. Jan 2005 B2
6849071 Whitman et al. Feb 2005 B2
6860892 Tanaka et al. Mar 2005 B1
6899538 Matoba May 2005 B2
6905057 Swayze et al. Jun 2005 B2
6959852 Shelton, IV et al. Nov 2005 B2
6964363 Wales et al. Nov 2005 B2
6981628 Wales Jan 2006 B2
6981941 Whitman et al. Jan 2006 B2
6986451 Mastri et al. Jan 2006 B1
6988649 Shelton, IV et al. Jan 2006 B2
7032798 Whitman et al. Apr 2006 B2
RE39152 Aust et al. Jun 2006 E
7055731 Shelton, IV et al. Jun 2006 B2
7059508 Shelton, IV et al. Jun 2006 B2
7077856 Whitman Jul 2006 B2
7111769 Wales et al. Sep 2006 B2
7122029 Koop et al. Oct 2006 B2
7140528 Shelton, IV Nov 2006 B2
7141049 Stern et al. Nov 2006 B2
7143923 Shelton, IV et al. Dec 2006 B2
7143925 Shelton, IV et al. Dec 2006 B2
7143926 Shelton, IV et al. Dec 2006 B2
7147138 Shelton, IV Dec 2006 B2
7172104 Scirica et al. Feb 2007 B2
7225964 Mastri et al. Jun 2007 B2
7238021 Johnson Jul 2007 B1
7246734 Shelton, IV Jul 2007 B2
7252660 Kunz Aug 2007 B2
7328828 Ortiz et al. Feb 2008 B2
7364061 Swayze et al. Apr 2008 B2
7380695 Doll et al. Jun 2008 B2
7380696 Shelton, IV et al. Jun 2008 B2
7404508 Smith et al. Jul 2008 B2
7407078 Shelton, IV et al. Aug 2008 B2
7416101 Shelton, IV et al. Aug 2008 B2
7419080 Smith et al. Sep 2008 B2
7422139 Shelton, IV et al. Sep 2008 B2
7431189 Shelton, IV et al. Oct 2008 B2
7441684 Shelton, IV et al. Oct 2008 B2
7448525 Shelton, IV et al. Nov 2008 B2
7464846 Shelton, IV et al. Dec 2008 B2
7464847 Viola et al. Dec 2008 B2
7464849 Shelton, IV et al. Dec 2008 B2
7481347 Roy Jan 2009 B2
7481824 Boudreaux et al. Jan 2009 B2
7487899 Shelton, IV et al. Feb 2009 B2
7549564 Boudreaux Jun 2009 B2
7565993 Milliman et al. Jul 2009 B2
7568603 Shelton, IV et al. Aug 2009 B2
7575144 Ortiz et al. Aug 2009 B2
7588175 Timm et al. Sep 2009 B2
7588176 Timm et al. Sep 2009 B2
7637409 Marczyk Dec 2009 B2
7641093 Doll et al. Jan 2010 B2
7644848 Swayze et al. Jan 2010 B2
7670334 Hueil et al. Mar 2010 B2
7673780 Shelton, IV et al. Mar 2010 B2
7699835 Lee et al. Apr 2010 B2
7721931 Shelton, IV et al. May 2010 B2
7738971 Swayze et al. Jun 2010 B2
7740159 Shelton, IV et al. Jun 2010 B2
7743960 Whitman et al. Jun 2010 B2
7758613 Whitman Jul 2010 B2
7766210 Shelton, IV et al. Aug 2010 B2
7770773 Whitman et al. Aug 2010 B2
7770775 Shelton, IV et al. Aug 2010 B2
7793812 Moore et al. Sep 2010 B2
7799039 Shelton, IV et al. Sep 2010 B2
7802712 Milliman et al. Sep 2010 B2
7803151 Whitman Sep 2010 B2
7822458 Webster, III et al. Oct 2010 B2
7845534 Viola et al. Dec 2010 B2
7845537 Shelton, IV et al. Dec 2010 B2
7857185 Swayze et al. Dec 2010 B2
7870989 Viola et al. Jan 2011 B2
7900805 Shelton, IV et al. Mar 2011 B2
7905897 Whitman et al. Mar 2011 B2
7918230 Whitman et al. Apr 2011 B2
7922061 Shelton, IV et al. Apr 2011 B2
7922719 Ralph et al. Apr 2011 B2
7947034 Whitman May 2011 B2
7951071 Whitman et al. May 2011 B2
7954682 Giordano et al. Jun 2011 B2
7959051 Smith et al. Jun 2011 B2
7963433 Whitman et al. Jun 2011 B2
7967178 Scirica et al. Jun 2011 B2
7967179 Olson et al. Jun 2011 B2
7992758 Whitman et al. Aug 2011 B2
8011550 Aranyi et al. Sep 2011 B2
8016178 Olson et al. Sep 2011 B2
8016855 Whitman et al. Sep 2011 B2
8020743 Shelton, IV Sep 2011 B2
8025199 Whitman et al. Sep 2011 B2
8035487 Malackowski Oct 2011 B2
8052024 Viola et al. Nov 2011 B2
8114118 Knodel et al. Feb 2012 B2
8127975 Olson et al. Mar 2012 B2
8132705 Viola et al. Mar 2012 B2
8152516 Harvey et al. Apr 2012 B2
8157150 Viola et al. Apr 2012 B2
8157151 Ingmanson et al. Apr 2012 B2
8182494 Yencho et al. May 2012 B1
8186555 Shelton, IV et al. May 2012 B2
8186587 Zmood et al. May 2012 B2
8220367 Hsu Jul 2012 B2
8235273 Olson et al. Aug 2012 B2
8241322 Whitman et al. Aug 2012 B2
8272554 Whitman et al. Sep 2012 B2
8292150 Bryant Oct 2012 B2
8292888 Whitman Oct 2012 B2
8342379 Whitman et al. Jan 2013 B2
8348130 Shah et al. Jan 2013 B2
8348855 Hillely et al. Jan 2013 B2
8353440 Whitman et al. Jan 2013 B2
8357144 Whitman et al. Jan 2013 B2
8365633 Simaan et al. Feb 2013 B2
8365972 Aranyi et al. Feb 2013 B2
8371492 Aranyi et al. Feb 2013 B2
8372057 Cude et al. Feb 2013 B2
8391957 Carlson et al. Mar 2013 B2
8403926 Nobis et al. Mar 2013 B2
8418904 Wenchell et al. Apr 2013 B2
8424739 Racenet et al. Apr 2013 B2
8454585 Whitman Jun 2013 B2
8505802 Viola et al. Aug 2013 B2
8517241 Nicholas et al. Aug 2013 B2
8523043 Ullrich et al. Sep 2013 B2
8551076 Duval et al. Oct 2013 B2
8561871 Rajappa et al. Oct 2013 B2
8561874 Scirica Oct 2013 B2
8602287 Yates et al. Dec 2013 B2
8623000 Humayun et al. Jan 2014 B2
8627995 Smith et al. Jan 2014 B2
8632463 Drinan et al. Jan 2014 B2
8636766 Milliman et al. Jan 2014 B2
8647258 Aranyi et al. Feb 2014 B2
8652121 Quick et al. Feb 2014 B2
8657174 Yates et al. Feb 2014 B2
8657177 Scirica et al. Feb 2014 B2
8672206 Aranyi et al. Mar 2014 B2
8696552 Whitman Apr 2014 B2
8708213 Shelton, IV et al. Apr 2014 B2
8715306 Faller et al. May 2014 B2
8758391 Swayze et al. Jun 2014 B2
8806973 Ross et al. Aug 2014 B2
8808311 Heinrich et al. Aug 2014 B2
8820605 Shelton, IV Sep 2014 B2
8851355 Aranyi et al. Oct 2014 B2
8858571 Shelton, IV et al. Oct 2014 B2
8875972 Weisenburgh, II et al. Nov 2014 B2
8888762 Whitman Nov 2014 B2
8893946 Boudreaux et al. Nov 2014 B2
8899462 Kostrzewski et al. Dec 2014 B2
8905289 Patel et al. Dec 2014 B2
8919630 Milliman Dec 2014 B2
8931680 Milliman Jan 2015 B2
8939344 Olson et al. Jan 2015 B2
8950646 Viola Feb 2015 B2
8960519 Whitman et al. Feb 2015 B2
8961396 Azarbarzin et al. Feb 2015 B2
8967443 McCuen Mar 2015 B2
8968276 Zemlok et al. Mar 2015 B2
8968337 Whitfield et al. Mar 2015 B2
8992422 Spivey et al. Mar 2015 B2
9016545 Aranyi et al. Apr 2015 B2
9023014 Chowaniec et al. May 2015 B2
9033868 Whitman et al. May 2015 B2
9055943 Zemlok et al. Jun 2015 B2
9064653 Prest et al. Jun 2015 B2
9072515 Hall et al. Jul 2015 B2
9113847 Whitman et al. Aug 2015 B2
9113875 Viola et al. Aug 2015 B2
9113876 Zemlok et al. Aug 2015 B2
9113899 Garrison et al. Aug 2015 B2
9216013 Scirica et al. Dec 2015 B2
9241712 Zemlok et al. Jan 2016 B2
9282961 Whitman et al. Mar 2016 B2
9282963 Bryant Mar 2016 B2
9295522 Kostrzewski Mar 2016 B2
9307986 Hall et al. Apr 2016 B2
20010031975 Whitman et al. Oct 2001 A1
20020049454 Whitman et al. Apr 2002 A1
20020165541 Whitman Nov 2002 A1
20030038938 Jung et al. Feb 2003 A1
20030165794 Matoba Sep 2003 A1
20040034369 Sauer et al. Feb 2004 A1
20040111012 Whitman Jun 2004 A1
20040133189 Sakurai Jul 2004 A1
20040153124 Whitman Aug 2004 A1
20040176751 Weitzner et al. Sep 2004 A1
20040193146 Lee et al. Sep 2004 A1
20050125027 Knodel et al. Jun 2005 A1
20050131442 Yachia et al. Jun 2005 A1
20060142656 Malackowski et al. Jun 2006 A1
20060142740 Sherman et al. Jun 2006 A1
20060142744 Boutoussov Jun 2006 A1
20060259073 Miyamoto et al. Nov 2006 A1
20060278680 Viola et al. Dec 2006 A1
20060284730 Schmid et al. Dec 2006 A1
20070023476 Whitman et al. Feb 2007 A1
20070023477 Whitman et al. Feb 2007 A1
20070027469 Smith et al. Feb 2007 A1
20070029363 Popov Feb 2007 A1
20070084897 Shelton et al. Apr 2007 A1
20070102472 Shelton May 2007 A1
20070152014 Gillum et al. Jul 2007 A1
20070175947 Ortiz et al. Aug 2007 A1
20070175949 Shelton et al. Aug 2007 A1
20070175950 Shelton et al. Aug 2007 A1
20070175951 Shelton et al. Aug 2007 A1
20070175955 Shelton et al. Aug 2007 A1
20070270784 Smith et al. Nov 2007 A1
20080029570 Shelton et al. Feb 2008 A1
20080029573 Shelton et al. Feb 2008 A1
20080029574 Shelton et al. Feb 2008 A1
20080029575 Shelton et al. Feb 2008 A1
20080058801 Taylor et al. Mar 2008 A1
20080109012 Falco et al. May 2008 A1
20080110958 McKenna et al. May 2008 A1
20080147089 Loh et al. Jun 2008 A1
20080167736 Swayze et al. Jul 2008 A1
20080185419 Smith et al. Aug 2008 A1
20080188841 Tomasello et al. Aug 2008 A1
20080197167 Viola et al. Aug 2008 A1
20080208195 Shores et al. Aug 2008 A1
20080237296 Boudreaux et al. Oct 2008 A1
20080251561 Eades et al. Oct 2008 A1
20080255413 Zemlok et al. Oct 2008 A1
20080255607 Zemlok Oct 2008 A1
20080262654 Omori et al. Oct 2008 A1
20080308603 Shelton et al. Dec 2008 A1
20090012533 Barbagli et al. Jan 2009 A1
20090090763 Zemlok et al. Apr 2009 A1
20090099876 Whitman Apr 2009 A1
20090138006 Bales et al. May 2009 A1
20090171147 Lee et al. Jul 2009 A1
20090182193 Whitman et al. Jul 2009 A1
20090209946 Swayze et al. Aug 2009 A1
20090209990 Yates et al. Aug 2009 A1
20090254094 Knapp et al. Oct 2009 A1
20090299141 Downey et al. Dec 2009 A1
20100023022 Zeiner et al. Jan 2010 A1
20100069942 Shelton, IV Mar 2010 A1
20100193568 Scheib et al. Aug 2010 A1
20100211053 Ross et al. Aug 2010 A1
20100225073 Porter et al. Sep 2010 A1
20110071508 Duval et al. Mar 2011 A1
20110077673 Grubac et al. Mar 2011 A1
20110121049 Malinouskas et al. May 2011 A1
20110125138 Malinouskas et al. May 2011 A1
20110139851 McCuen Jun 2011 A1
20110155783 Rajappa et al. Jun 2011 A1
20110155786 Shelton, IV Jun 2011 A1
20110172648 Jeong Jul 2011 A1
20110174009 Iizuka et al. Jul 2011 A1
20110174099 Ross et al. Jul 2011 A1
20110184245 Xia et al. Jul 2011 A1
20110204119 McCuen Aug 2011 A1
20110218522 Whitman Sep 2011 A1
20110276057 Conlon et al. Nov 2011 A1
20110290854 Timm et al. Dec 2011 A1
20110295242 Spivey et al. Dec 2011 A1
20110295269 Swensgard et al. Dec 2011 A1
20120000962 Racenet et al. Jan 2012 A1
20120074199 Olson et al. Mar 2012 A1
20120089131 Zemlok et al. Apr 2012 A1
20120104071 Bryant May 2012 A1
20120116368 Viola May 2012 A1
20120143002 Aranyi et al. Jun 2012 A1
20120172924 Allen, IV Jul 2012 A1
20120211542 Racenet Aug 2012 A1
20120223121 Viola et al. Sep 2012 A1
20120245428 Smith et al. Sep 2012 A1
20120253329 Zemlok et al. Oct 2012 A1
20120310220 Malkowski et al. Dec 2012 A1
20120323226 Chowaniec et al. Dec 2012 A1
20120330285 Hartoumbekis et al. Dec 2012 A1
20130093149 Saur et al. Apr 2013 A1
20130181035 Milliman Jul 2013 A1
20130184704 Beardsley et al. Jul 2013 A1
20130214025 Zemlok et al. Aug 2013 A1
20130274722 Kostrzewski et al. Oct 2013 A1
20130282052 Aranyi et al. Oct 2013 A1
20130292451 Viola et al. Nov 2013 A1
20130313304 Shelton, IV et al. Nov 2013 A1
20130317486 Nicholas et al. Nov 2013 A1
20130319706 Nicholas et al. Dec 2013 A1
20130324978 Nicholas et al. Dec 2013 A1
20130324979 Nicholas et al. Dec 2013 A1
20130334281 Williams Dec 2013 A1
20140012236 Williams et al. Jan 2014 A1
20140012237 Pribanic et al. Jan 2014 A1
20140012289 Snow et al. Jan 2014 A1
20140025046 Williams et al. Jan 2014 A1
20140110455 Ingmanson et al. Apr 2014 A1
20140207125 Applegate et al. Jul 2014 A1
20140207182 Zergiebel et al. Jul 2014 A1
20140207185 Goble et al. Jul 2014 A1
20140236174 Williams et al. Aug 2014 A1
20140276932 Williams et al. Sep 2014 A1
20140299647 Scirica et al. Oct 2014 A1
20140303668 Nicholas et al. Oct 2014 A1
20140358129 Zergiebel et al. Dec 2014 A1
20140361068 Aranyi et al. Dec 2014 A1
20140365235 DeBoer et al. Dec 2014 A1
20140373652 Zergiebel et al. Dec 2014 A1
20150014392 Williams et al. Jan 2015 A1
20150048144 Whitman Feb 2015 A1
20150076205 Zergiebel Mar 2015 A1
20150080912 Sapre Mar 2015 A1
20150112381 Richard Apr 2015 A1
20150122870 Zemlok et al. May 2015 A1
20150133224 Whitman et al. May 2015 A1
20150150547 Ingmanson et al. Jun 2015 A1
20150150574 Richard et al. Jun 2015 A1
20150157320 Zergiebel et al. Jun 2015 A1
20150157321 Zergiebel et al. Jun 2015 A1
20150164502 Richard et al. Jun 2015 A1
20150201931 Zergiebel et al. Jul 2015 A1
20150272577 Zemlok et al. Oct 2015 A1
20150297199 Nicholas et al. Oct 2015 A1
20150303996 Calderoni Oct 2015 A1
20150320420 Penna et al. Nov 2015 A1
20150327850 Kostrzewski Nov 2015 A1
20150342601 Williams et al. Dec 2015 A1
20150342603 Zergiebel et al. Dec 2015 A1
20150374366 Zergiebel et al. Dec 2015 A1
20150374370 Zergiebel et al. Dec 2015 A1
20150374371 Richard et al. Dec 2015 A1
20150374372 Zergiebel et al. Dec 2015 A1
20150374449 Chowaniec et al. Dec 2015 A1
20150380187 Zergiebel et al. Dec 2015 A1
20160095585 Zergiebel et al. Apr 2016 A1
20160095596 Scirica et al. Apr 2016 A1
20160106406 Cabrera et al. Apr 2016 A1
20160113648 Zergiebel et al. Apr 2016 A1
20160113649 Zergiebel et al. Apr 2016 A1
20160310134 Contini et al. Oct 2016 A1
Foreign Referenced Citations (20)
Number Date Country
2451558 Jan 2003 CA
1547454 Nov 2004 CN
1957854 May 2007 CN
101495046 Jul 2009 CN
102247182 Nov 2011 CN
102008053842 May 2010 DE
0705571 Apr 1996 EP
1563793 Aug 2005 EP
1769754 Apr 2007 EP
2316345 May 2011 EP
2668910 Dec 2013 EP
2684529 Jan 2014 EP
2724674 Apr 2014 EP
2789299 Oct 2014 EP
2333509 Feb 2010 ES
2005125075 May 2005 JP
20120022521 Mar 2012 KR
2011108840 Sep 2011 WO
2012040984 Apr 2012 WO
2017053698 Mar 2017 WO
Non-Patent Literature Citations (43)
Entry
Extended European Search Report corresponding to International Application No. EP 14 18 4882.0 dated May 12, 2015.
Canadian Office Action corresponding to International Application No. CA 2640399 dated May 7, 2015.
Japanese Office Action corresponding to International Application No. JP 2011-197365 dated Mar. 23, 2015.
Japanese Office Action corresponding to International Application No. JP 2011-084092 dated May 20, 2015.
Japanese Office Action corresponding to International Application No. JP 2014-148482 dated Jun. 2, 2015.
Extended European Search Report corresponding to International Application No. EP 14 18 9358.6 dated Jul. 8, 2015.
Extended European Search Report corresponding to International Application No. EP 14 19 6148.2 dated Apr. 23, 2015.
Partial European Search Report corresponding to International Application No. EP 14 19 6704.2 dated May 11, 2015.
Australian Office Action corresponding to International Application No. AU 2010241367 dated Aug. 20, 2015.
Partial European Search Report corresponding to International Application No. EP 14 19 9783.3 dated Sep. 3, 2015.
Extended European Search Report corresponding to International Application No. EP 15 16 9962.6 dated Sep. 14, 2015.
Extended European Search Report corresponding to International Application No. EP 15 15 1076.5 dated Apr. 22, 2015.
Japanese Office Action corresponding to International Application No. JP 2011-084092 dated Jan. 14, 2016.
Extended European Search Report corresponding to International Application No. EP 12 19 7970.2 dated Jan. 28, 2016.
Chinese Office Action corresponding to International Application No. CN 201210560638.1 dated Oct. 21, 2015.
European Office Action corresponding to International Application No. EP 14 15 9056.2 dated Oct. 26, 2015.
Australian Examination Report No. 1 corresponding to International Application No. AU 2015200153 dated Dec. 11, 2015.
Australian Examination Report No. 1 corresponding to International Application No. AU 2014204542 dated Jan. 7, 2016.
Chinese Office Action corresponding to International Application No. CN 201310125449.6 dated Feb. 3, 2016.
Extended European Search Report corresponding to International Application No. EP 15 19 0245.9 dated Jan. 28, 2016.
Extended European Search Report corresponding to International Application No. EP 15 16 7793.7 dated Apr. 5, 2016.
European Office Action corresponding to International Application No. EP 14 18 4882.0 dated Apr. 25, 2016.
Extended European Search Report corresponding to International Application No. EP 14 19 6704.2 dated Sep. 24, 2015.
International Search Report and Written Opinion corresponding to Int'l Appln. No. PCT/US2015/051837, dated Dec. 21, 2015.
Extended European Search Report corresponding to International Application No. EP 14 19 7563.1 dated Aug. 5, 2015.
Partial European Search Report corresponding to International Application No. EP 15 19 0643.5 dated Feb. 26, 2016.
Extended European Search Report corresponding to International Application No. EP 15 16 6899.3 dated Feb. 3, 2016.
Extended European Search Report corresponding to International Application No. EP 14 19 9783.3 dated Dec. 22, 2015.
Extended European Search Report corresponding to International Application No. EP 15 17 3807.7 dated Nov. 24, 2015.
Extended European Search Report corresponding to International Application No. EP 15 19 0760.7 dated Apr. 1, 2016.
Extended European Search Report corresponding to International Application No. EP 15 17 3803.6 dated Nov. 24, 2015.
Extended European Search Report corresponding to International Application No. EP 15 17 3804.4 dated Nov. 24, 2015.
Extended European Search Report corresponding to International Application No. EP 15 18 8539.9 dated Feb. 17, 2016.
Extended European Search Report corresponding to International Application No. EP 15 17 3910.9 dated Nov. 13, 2015.
European Office Action corresponding to International Application No. EP 14 15 2236.7 dated Aug. 11, 2015.
Extended European Search Report corresponding to International Application No. EP 15 18 4915.5 dated Jan. 5, 2016.
Chinese Office Action corresponding to counterpart Int'l Appln. No. CN 201310369318.2 dated Jun. 28, 2016.
Chinese Office Action (with English translation), dated Jul. 4, 2016, corresponding to Chinese Patent Application No. 2015101559718; 23 total pages.
European Search Report EP 15 156 035.6 dated Aug. 10, 2016.
European Search Report corresponding to EP 15 184 915.5-1654 dated Sep. 16, 2016.
Australian Examination Report No. 1 corresponding to International Application No. AU 2013205872 dated Oct. 19, 2016.
Australian Examination Report from Appl. No. AU 2013205840 dated Nov. 3, 2016.
Extended European Search Report dated Jan. 3, 2019 issued in corresponding EP Appln. No. 18170246.5.
Related Publications (1)
Number Date Country
20180317964 A1 Nov 2018 US
Provisional Applications (1)
Number Date Country
62500236 May 2017 US