The present disclosure relates to surgical instruments for fastening body tissue and, more particularly, to a powered surgical instrument having a firing rod configured to be movable and rotatable to affect rotation, articulation and actuation of portions of the instrument.
Surgical devices wherein tissue is grasped or clamped between opposing jaw structure and then joined by surgical fasteners are well known in the art. In some instruments, a knife is provided to cut the tissue which has been joined by the fasteners. The fasteners are typically in the form of surgical staples but two-part polymeric fasteners can also be utilized.
Instruments for this purpose may include two elongated members which are respectively used to capture or clamp tissue. Typically, one of the members carries a staple cartridge that houses a plurality of staples arranged in at least two lateral rows while the other member has an anvil that defines a surface for forming the staple legs as the staples are driven from the staple cartridge. Several instruments include clamps, handles and/or knobs to affect actuation along with rotation and articulation of an end effector. Generally, the stapling operation is effected by cam bars that travel longitudinally through the staple cartridge, with the cam bars acting upon staple pushers to sequentially eject the staples from the staple cartridge. Such stapling devices can be used in open as well as endoscopic and/or laparoscopic surgical procedures.
It would be extremely beneficial to provide a powered surgical device for use during surgical procedures that can utilize a new and improved mechanism for articulating and/or actuating the tool tip to automate the stapling process.
According to one aspect of the present disclosure, a surgical instrument is provided. The surgical instrument includes a housing and an endoscopic portion extending distally from the housing and defining a first longitudinal axis. The surgical instrument also includes an end effector disposed adjacent a distal portion of the endoscopic portion. The end effector may include an anvil assembly and a cartridge assembly. The anvil assembly is pivotally coupled to the cartridge assembly to be movable from a first actuation position to at least one other second actuation position. The surgical instrument further includes a firing rod having a shaft defining a second longitudinal axis, the shaft having a cam member which is in mechanical cooperation with the anvil assembly and is configured to move the anvil assembly from the first actuation position to the at least one other second actuation position upon rotation of the firing rod about the second longitudinal axis.
According to another aspect of the present disclosure a surgical instrument is provided with a housing and an endoscopic portion extending distally from the housing and defining a first longitudinal axis. The surgical instrument also includes an end effector disposed adjacent a distal portion of the endoscopic portion. The end effector includes a first jaw member and a second jaw member, the second jaw member is pivotally coupled to the first jaw member to be movable from a first actuation position to at least one other second actuation position. The surgical instrument further includes a firing rod including a shaft defining a second longitudinal axis. The shaft has a cam member which is in mechanical cooperation with the second jaw member and is configured to move the second jaw member from the first actuation position to the at least one other second actuation position upon rotation of the firing rod about the second longitudinal axis.
According to a further embodiment of the present disclosure, a tool assembly is provided. The tool assembly includes an end effector disposed adjacent a distal endoscopic portion. The end effector includes an anvil assembly and a cartridge assembly. The anvil assembly is pivotally coupled to the cartridge assembly to be movable from a first actuation position to at least one other second actuation position. The tool assembly also includes a firing rod including a shaft defining a second longitudinal axis. The shaft has a cam member which is in mechanical cooperation with the anvil assembly and is configured to move the anvil assembly from the first actuation position to the at least one other second actuation position upon rotation of the firing rod about the second longitudinal axis.
According to another aspect of the present disclosure, a surgical instrument is disclosed, which includes a housing, an endoscopic portion extending distally from the housing and an intermediate shaft having a proximal end configured for connection to a distal end of the endoscopic portion, the intermediate shaft being flexible. The instrument also includes a loading unit having an end effector for performing a surgical function. The loading unit includes a proximal portion configured for connection to a distal end of the intermediate shaft.
According to a further aspect of the present disclosure, a surgical instrument including a housing and an endoscopic portion extending distally from the housing is disclosed. The housing includes at least a first angled tube and a second angle tube, the first angled tube and second angled tube being rotatably movable with respect to one another between a plurality of positions including a first position defining a substantially straight shaft and a second, fully articulated position and an end effector disposed adjacent a distal portion of the endoscopic portion.
An embodiment of the presently disclosed powered surgical instrument is disclosed herein with reference to the drawings, wherein:
Embodiments of the presently disclosed powered surgical instrument are now described in detail with reference to the drawings, in which like reference numerals designate identical or corresponding elements in each of the several views. As used herein the term “distal” refers to that portion of the powered surgical instrument, or component thereof, farther from the user while the term “proximal” refers to that portion of the powered surgical instrument or component thereof, closer to the user.
A powered surgical instrument, e.g., a surgical stapler, in accordance with the present disclosure is referred to in the figures as reference numeral 100. Referring initially to
It is envisioned that end effector 160 is reusable and is configured to accept a staple cartridge and/or is part of a disposable loading unit. Further details of a disposable loading unit are described in detail in commonly-owned U.S. Pat. No. 6,241,139 to Miliman, the entire contents of which are hereby incorporated by reference herein.
The end effector 160 is coupled to the endoscopic portion 140 via a mounting assembly 141. The end effector 160 may be any end effector used in linear stapling devices, such as ENDO GIA™, GIA™, TA™, ENDO TA™, EEA™ staplers sold by U.S. Surgical Corp, of Norwalk, Conn. Such end effectors may be coupled to endoscopic portion 140 of powered surgical instrument 100. Mounting assembly 141 is pivotally secured to the distal portion 142 and is fixedly secured to a proximal end of tool assembly 160. This allows for pivotal movement of mounting assembly 141 about an axis perpendicular to the longitudinal axis A-A. Pivotal movement occurs between a non-articulated position in which the longitudinal axis of tool assembly 160 is aligned with the longitudinal axis A-A and an articulated position in which the longitudinal axis B-B of the tool assembly 160 is disposed at an angle to the longitudinal axis A-A of endoscopic portion 140.
Referring to
Staple cartridge 312 includes retention slots 320 for receiving a plurality of staples or fasteners 322 and pushers 324. A plurality of laterally spaced apart longitudinal slots 326 extends through staple cartridge 312 to accommodate upstanding cam wedges 328 of an actuation sled 330. A central longitudinal slot 332 extends along substantially the length of staple cartridge 312 to facilitate passage of a knife blade (not explicitly shown).
The proximal shaft 404 and the distal shaft 406 of the firing rod 402 incorporate a plurality of surface features or shapes along the length thereof. In embodiments, the firing rod 402 has a generally cylindrical structure with a non-circular cross-section (e.g., hexagonal, octagonal, star-shaped, oval, etc.) It is also envisioned the firing rod 402 may include one or more curved shapes (e.g., helix, screw, etc.) These structures allow for gripping of the firing rod 402 and rotation thereof to actuate the tool assembly 160.
The firing rod 402 is disposed within a passage (not explicitly shown) of the endoscopic portion 140 and the distal portion 142, the passage has the same cross-sectional profile as the firing rod 402 such that the firing rod 402 is in mechanical cooperation with the passage but can simultaneously freely slide therein. This is especially useful if the firing rod 402 is formed from a flexible material since this prevents deformation of the firing rod 402 within the passage.
The firing rod 402 is configured for opening and closing of the anvil assembly 302 as well as pushing actuation sled 330 through longitudinal slots 326 of staple cartridge 312 to advance cam wedges 328 into sequential contact with pushers 324 to staple tissue. The firing rod 402 is configured to be selectively moved between a plurality of positions. In certain embodiments, the firing rod 402 is moved between at least two positions. The first position, illustrated in
In
The anvil assembly 302 is pivotally coupled to the cartridge assembly via tabs 332 which extend downwards therefrom. The tabs 332 fit into corresponding slots (not explicitly shown) to provide a hinge point for the anvil assembly 332 to pivot thereabout. This allows the anvil assembly 302 to pivot with respect to the cartridge assembly 300. As the firing rod 408 is rotated further the anvil assembly 302 reverts to open position via one or more biasing members (e.g., springs) pushing upwards on the opposite side of the tabs 332.
Various types of cams may be used to open and close the anvil assembly 302, such as single cams, or multi-cams. Other cam shapes may also be utilized which have a less aggressive angle utilizing full 360° of rotation allowing the anvil assembly 302 to reach full displacement at a more gradual rate. Angle of rotation of the firing rod 402 varies with the type of cam being used, such as for the cam member 408, the firing rod 402 is rotated 90° in order to actuate the anvil assembly 302. In other words, the cam member 402 allows for maximum displacement of the anvil assembly 302 under 90°. It is also envisioned that the firing rod 402 may be rotated in either direction, clockwise or counterclockwise, to actuate the anvil assembly 302.
While in the first position the firing rod 402 is prevented from longitudinal movement in the distal direction by the proximal end of the cartridge assembly 300 and the cam member 408. The walls of the support channel 310 act as a stop member when the firing rod 402 is moved in the distal direction. Once the firing rod 402 is rotated into second position as shown in
During operation of surgical stapler, the firing rod 402 abuts actuation sled 330 and pushes actuation sled 330 through longitudinal slots 326 of staple cartridge 312 to advance cam wedges 328 of sled 330 into sequential contact with pushers 324. Pushers 324 translate vertically along cam wedges 328 within fastener retention slots 320 and urge fasteners 322 from retention slots 320 into staple deforming cavities 304 (
With reference to
A proximal area 118 of housing 110 includes a user interface 120. In the illustrated embodiment, user interface 120 includes a screen 122 and at least one switch 124 (seven switches 124a-124g are shown). Screen 122 displays readable information thereon, including status information of powered surgical instrument 100 in an embodiment.
Switches 124b-124e are shown with arrows thereon and may be used for selecting the direction, speed and/or torque at which drive gear 200 is rotated by drive motor 210. It is also envisioned that at least one switch 124 can be used for selecting an emergency mode that overrides various settings. Further, switches 124f and 124g are illustrated having an “N” and a “Y” thereon. It is envisioned that switches 124f and 124g may be used for helping a user navigate user interface menus and select various setting of powered surgical instrument 100. The indicia on switches 124a-124g and their respective functions are not limited by what is shown in the accompanying figures, as deviations therefrom are contemplated and within the scope of the present disclosure. Additionally, and with reference to
As shown in
Drive gear 200 is rotatable about a drive gear axis C-C extending therethrough (
Shift motor 220 is configured to selectively move drive gear 200 between a plurality of positions. In embodiments, the drive gear 200 is moved between three positions. The first position, illustrated in
In the embodiment illustrated in
A cut away of the drive motor casing 212, at least partially surrounding drive motor 210, is illustrated in
In the illustrated embodiments, shift motor 220 is located proximally of drive motor 210 and is configured to translate drive motor 210 along drive gear axis C-C between its first, second and third positions. Referring to
With reference to
In
With continued reference to the embodiment illustrated in
In
In the illustrated embodiments and with specific reference to
With continued reference to
At least one articulation arm 250 is shown extending from articulation linkage 244. In an embodiment, articulation arm 250 is rigidly connected to articulation rod 260 and it is envisioned that more than one articulation arm 250 is connectable to more than one articulation rod 260. As articulation linkage 244 is translated distally and/or proximally in response to rotation of articulation gear 240, articulation rod(s) 260 is also translated distally and/or proximally (in the directions of arrows F and G, along longitudinal axis A-A) in response thereto. Any combinations of limits switches, proximity sensors (e.g., optical and/or ferromagnetic), linear variable displacement transducers and shaft encoders (disposed within housing 110, for instance) may be utilized to control and/or record the location of articulation linkage 244 and/or articulation angle of end effector 160 and/or position of an actuation rod 306 as discussed below with reference to
With reference to
With reference to
With reference to
In
With reference to
The firing rod 402 can be advanced distally to advance the actuation sled 330 either manually or automatically (e.g., via motorized mechanisms). An example of a powered stapler configured for advancing a firing rod to push fasteners through tissue is illustrated in a commonly-owned U.S. patent application entitled “Powered Surgical Stapling Device” by Marczyk, U.S. application Ser. No. 11/724,744, filed Mar. 15, 2007, the disclosure of which is hereby incorporated by reference herein in its entirety.
As discussed above, the firing rod 402 is disposed within the endoscopic portion 140 and the distal portion 142. Therefore, in embodiments where the firing rod 402 is formed from a flexible material it is desirable to provide flexible endoscopic portion 140 and distal portion 142. As shown in
The flexible shaft 500 also includes a proximal drive end cap 503 which is in mechanical cooperation with the drive gear 200 and a distal end cap 504 which is in communication with another component of the surgical stapler 10 (e.g., the tool assembly 160 or the distal portion 142 depending where the flexible shaft 500 is disposed). The drive end cap 503 has only one angled face and is turned by the drive gear 200. The end cap 504 is fixed from rotation and also has one angled face and includes an internal stop member for mating with the neighboring tube.
The tubes 500 are mated together by a step which is disposed on the edges of inner surfaces of the tubes 500. The tubes 500 also include stop members at 180 degree positions which interface with neighboring tubes to turn against frictional forces. Each of the tubes 501 and 502 are angled by the same amount on corresponding mating faces and include alternative grooves and ribs which interlock the tubes 501 and 502.
Articulation is achieved by rotation of the tubes 501 and 502 either sequentially or independently. The drive end cap 503 is rotated continuously until the flexible shaft 500 has attained desired articulation position. As the drive end cap 503 is rotated, each tube is rotated correspondingly until the tube reached 90 degree rotation and then locks with the subsequent tube which then begins rotation of the subsequent tube, etc. Use of the flexible shaft 500 in manual or motor-driven instruments is contemplated. A designated motor, or a motor driving multiple functions of the instrument may be used. One of the positions of the shift motor 220 can engage a ring gear operatively connected to proximal drive end cap 503 so that drive gear 200 can drive rotation of the proximal drive end cap 503.
In further embodiments, the endoscopic portion 140 is configured to interchangeably mate with a variety of surgical end effectors including, but not limited to, circular surgical staplers, linear surgical staplers, and others. The endoscopic portion 140 may be relatively rigid, flexible (such as the shaft shown in
In certain embodiments, a digital control module (DCM) is desirably included in the housing 110 and can be configured and arranged to control or help control the operation of shift motor 220 and/or drive motor 210 to respond to the monitored information. Pulse modulation, which may include an electronic clutch, may be used in controlling the output. For example, the DCM can regulate the voltage or pulse modulate the voltage to adjust the power and/or torque output to prevent system damage or optimize energy usage. An electric braking circuit may be used for controlling the drive motor 210 and/or shift motor 220, which uses the existing back electromotive force (EMF) of rotating drive motor 210 to counteract and substantially reduce the momentum of drive gear 200. The electric braking circuit may improve the control of drive motor 210 and/or shift motor 220 for stopping accuracy and/or shift location of powered surgical instrument 100. Sensors for monitoring components of powered surgical instrument 100 and to help prevent overloading of powered surgical instrument 100 may include thermal-type sensors, such as thermal sensors, thermistors, thermopiles, thermo-couples and/or thermal infrared imaging and provide feedback to the DCM. The DCM may control the components of powered surgical instrument 100 in the event that limits are reached or approached and such control can include cutting off the power from the battery pack 400, temporarily interrupting the power or going into a pause mode, pulse modulation to limit the energy used, and the DCM can monitor the temperature of components to determine when operation can be resumed. The above uses of the DCM may be used independently of or factored with current, voltage, temperature and/or impedance measurements.
An identification system may also be included to determine and communicate to the DCM various information, including the speed, power, torque, clamping, travel length and strength limitations for operating the particular end effector 160. The DCM may also determine the operational mode and adjust the voltage, clutch spring loading and stop points for travel of the components. More specifically, the identification system may include a component (e.g., a microchip, emitter or transmitter) in end effector 160 that communicates (e.g., wirelessly, via infrared signals, etc.) with the DCM, or a receiver therein. It is also envisioned that a signal may be sent via firing rod, such that the firing rod functions as a conduit for communications between the DCM and end effector 160. The identification system communicates with the DCM information concerning the surgical instrument, such as, for example, the type of end effector attached to the surgical instrument and/or the status of the end effector.
In a disclosed embodiment, at least some of the information monitored by the various sensors in powered surgical instrument 100 may be provided to a video screen or monitoring system in an operating room. For instance, the data may be transmitted to a receiver for the operating room monitoring system from a communication transmitter incorporated in or associated with powered surgical instrument 100, via technology including Blue Tooth, ANT3, KNX, Z Wave, X10, wireless USB, WiFi, IrDa, Nanonet, Tiny OS, ZigBee, radio, UHF and VHF. Such features may facilitate monitoring by the user of powered surgical instrument 100 or other operating room or hospital personnel or remotely located persons.
It will be understood that various modifications may be made to the embodiments disclosed herein. For example, a shorter elongated tubular portion containing more or less coil fasteners may be provided for greater ease of handling during open surgery. Various articulations may be provided along the length of the elongated tubular portion to facilitate positioning of the coil fastener applier within the body. Additionally various configurations of the drive rod and slots or fastener retaining structure may be provided to accommodate various types of rotary fasteners. Therefore, the above description should not be construed as limiting, but merely as exemplifications of various embodiments. Those skilled in the art will envision other modifications within the scope and spirit of the claims appended hereto.
The present application is a continuation of U.S. patent application Ser. No. 15/450,787, filed on Mar. 6, 2017, which is a continuation Application of U.S. patent application Ser. No. 15/180,830, filed on Jun. 13, 2016, now U.S. Pat. No. 9,585,664, which is a continuation application of U.S. patent application Ser. No. 13/889,580, filed on May 8, 2013, now U.S. Pat. No. 9,364,222, which is a continuation application of U.S. patent application Ser. No. 12/869,193, filed on Aug. 26, 2010, now U.S. Pat. No. 8,459,521, which is a divisional application of U.S. application Ser. No. 11/799,766, filed on May 1, 2007, now U.S. Pat. No. 7,823,760. The entire disclosures of all of the foregoing applications are incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
37165 | Gary | Dec 1862 | A |
3209754 | Brown | Oct 1965 | A |
3273562 | Brown | Sep 1966 | A |
3499591 | Green | Mar 1970 | A |
3528693 | Pearson et al. | Sep 1970 | A |
3744495 | Johnson | Jul 1973 | A |
3862631 | Austin | Jan 1975 | A |
3949924 | Green | Apr 1976 | A |
4060089 | Noiles | Nov 1977 | A |
4204623 | Green | May 1980 | A |
4217902 | March | Aug 1980 | A |
4263903 | Griggs | Apr 1981 | A |
4275813 | Noiles | Jun 1981 | A |
4331277 | Green | May 1982 | A |
4428376 | Mericle | Jan 1984 | A |
4429695 | Green | Feb 1984 | A |
4444181 | Wevers et al. | Apr 1984 | A |
4454875 | Pratt et al. | Jun 1984 | A |
4456006 | Wevers et al. | Jun 1984 | A |
4473077 | Noiles et al. | Sep 1984 | A |
4485816 | Krumme | Dec 1984 | A |
4485817 | Swiggett | Dec 1984 | A |
4488523 | Shichman | Dec 1984 | A |
4508253 | Green | Apr 1985 | A |
4508523 | Leu | Apr 1985 | A |
4522206 | Whipple et al. | Jun 1985 | A |
4534350 | Golden et al. | Aug 1985 | A |
4535772 | Sheehan | Aug 1985 | A |
4566620 | Green et al. | Jan 1986 | A |
4570623 | Ellison et al. | Feb 1986 | A |
4606343 | Conta et al. | Aug 1986 | A |
4606344 | Di Giovanni | Aug 1986 | A |
4610383 | Rothfuss et al. | Sep 1986 | A |
4612923 | Kronenthal | Sep 1986 | A |
4612933 | Brinkerhoff et al. | Sep 1986 | A |
D286442 | Korthoff et al. | Oct 1986 | S |
4627437 | Bedi et al. | Dec 1986 | A |
4635637 | Schreiber | Jan 1987 | A |
4662371 | Whipple et al. | May 1987 | A |
4671280 | Dorband et al. | Jun 1987 | A |
4705038 | Sjostrom et al. | Nov 1987 | A |
4712550 | Sinnett | Dec 1987 | A |
4719917 | Barrows et al. | Jan 1988 | A |
4724839 | Bedi et al. | Feb 1988 | A |
4805617 | Bedi et al. | Feb 1989 | A |
4807628 | Peters et al. | Feb 1989 | A |
4852558 | Outerbridge | Aug 1989 | A |
4913144 | Del Medico | Apr 1990 | A |
4930494 | Takehana et al. | Jun 1990 | A |
4954952 | Ubhayakar et al. | Sep 1990 | A |
4960420 | Goble et al. | Oct 1990 | A |
4962877 | Hervas | Oct 1990 | A |
4990153 | Richards | Feb 1991 | A |
4994073 | Green | Feb 1991 | A |
4995877 | Ams et al. | Feb 1991 | A |
5040715 | Green et al. | Aug 1991 | A |
5042707 | Taheri | Aug 1991 | A |
5065929 | Schulze et al. | Nov 1991 | A |
5089009 | Green | Feb 1992 | A |
5108422 | Green et al. | Apr 1992 | A |
5114399 | Kovalcheck | May 1992 | A |
5129570 | Schulze et al. | Jul 1992 | A |
5143453 | Weynant nee Girones | Sep 1992 | A |
5203864 | Phillips | Apr 1993 | A |
5207697 | Carusillo et al. | May 1993 | A |
5209756 | Seedhom et al. | May 1993 | A |
5246443 | Mai | Sep 1993 | A |
5254130 | Poncet et al. | Oct 1993 | A |
5258008 | Wilk | Nov 1993 | A |
5271381 | Ailinger et al. | Dec 1993 | A |
5271543 | Grant et al. | Dec 1993 | A |
RE34519 | Fox et al. | Jan 1994 | E |
5282829 | Hermes | Feb 1994 | A |
5300081 | Young et al. | Apr 1994 | A |
5307976 | Olson et al. | May 1994 | A |
5312023 | Green et al. | May 1994 | A |
5312024 | Grant et al. | May 1994 | A |
5313935 | Kortenbach et al. | May 1994 | A |
5318221 | Green et al. | Jun 1994 | A |
5326013 | Green et al. | Jul 1994 | A |
5330486 | Wilk | Jul 1994 | A |
5332142 | Robinson et al. | Jul 1994 | A |
5342376 | Ruff | Aug 1994 | A |
5350355 | Sklar | Sep 1994 | A |
5356064 | Green et al. | Oct 1994 | A |
5359993 | Slater et al. | Nov 1994 | A |
5364001 | Bryan | Nov 1994 | A |
5381943 | Allen et al. | Jan 1995 | A |
5383874 | Jackson et al. | Jan 1995 | A |
5383880 | Hooven | Jan 1995 | A |
5389098 | Tsuruta et al. | Feb 1995 | A |
5395030 | Kuramoto et al. | Mar 1995 | A |
5395033 | Byrne et al. | Mar 1995 | A |
5400267 | Denen et al. | Mar 1995 | A |
5403312 | Yates et al. | Apr 1995 | A |
5405344 | Williamson et al. | Apr 1995 | A |
5411508 | Bessler et al. | May 1995 | A |
5413267 | Solyntjes et al. | May 1995 | A |
5431323 | Smith et al. | Jul 1995 | A |
5464144 | Guy et al. | Nov 1995 | A |
5467911 | Tsuruta et al. | Nov 1995 | A |
5478344 | Stone et al. | Dec 1995 | A |
5482100 | Kuhar | Jan 1996 | A |
5485947 | Olson et al. | Jan 1996 | A |
5485952 | Fontayne | Jan 1996 | A |
5487499 | Sorrentino et al. | Jan 1996 | A |
5497933 | DeFonzo et al. | Mar 1996 | A |
5500000 | Feagin et al. | Mar 1996 | A |
5503320 | Webster et al. | Apr 1996 | A |
5507743 | Edwards et al. | Apr 1996 | A |
5518163 | Hooven | May 1996 | A |
5518164 | Hooven | May 1996 | A |
5526822 | Burbank et al. | Jun 1996 | A |
5529235 | Boiarski et al. | Jun 1996 | A |
5531744 | Nardella et al. | Jul 1996 | A |
5533661 | Main et al. | Jul 1996 | A |
5535934 | Boiarski et al. | Jul 1996 | A |
5535937 | Boiarski et al. | Jul 1996 | A |
5558671 | Yates | Sep 1996 | A |
5560532 | DeFonzo et al. | Oct 1996 | A |
5562239 | Boiarski et al. | Oct 1996 | A |
5571285 | Chow et al. | Nov 1996 | A |
5575799 | Bolanos et al. | Nov 1996 | A |
5582611 | Tsuruta et al. | Dec 1996 | A |
5584835 | Greenfield | Dec 1996 | A |
5601224 | Bishop et al. | Feb 1997 | A |
5601558 | Torrie et al. | Feb 1997 | A |
5607095 | Smith et al. | Mar 1997 | A |
5609285 | Grant et al. | Mar 1997 | A |
5609560 | Ichikawa et al. | Mar 1997 | A |
5624452 | Yates | Apr 1997 | A |
5632433 | Grant et al. | May 1997 | A |
5634926 | Jobe | Jun 1997 | A |
5642848 | Ludwig et al. | Jul 1997 | A |
5653374 | Young et al. | Aug 1997 | A |
5658300 | Bito et al. | Aug 1997 | A |
5658312 | Green et al. | Aug 1997 | A |
5662662 | Bishop et al. | Sep 1997 | A |
5665085 | Nardella | Sep 1997 | A |
5667513 | Torrie et al. | Sep 1997 | A |
5667517 | Hooven | Sep 1997 | A |
5667527 | Cook | Sep 1997 | A |
5669544 | Schulze et al. | Sep 1997 | A |
5673841 | Schulze et al. | Oct 1997 | A |
5676674 | Bolanos et al. | Oct 1997 | A |
5680981 | Mililli et al. | Oct 1997 | A |
5680982 | Schulze et al. | Oct 1997 | A |
5690675 | Sawyer et al. | Nov 1997 | A |
5692668 | Schulze et al. | Dec 1997 | A |
5695506 | Pike et al. | Dec 1997 | A |
5695524 | Kelley et al. | Dec 1997 | A |
5702447 | Walch et al. | Dec 1997 | A |
5704534 | Huitema et al. | Jan 1998 | A |
5713505 | Huitema | Feb 1998 | A |
5713896 | Nardella | Feb 1998 | A |
5715987 | Kelley et al. | Feb 1998 | A |
5716366 | Yates | Feb 1998 | A |
5720753 | Sander et al. | Feb 1998 | A |
5725529 | Nicholson et al. | Mar 1998 | A |
5728110 | Vidal et al. | Mar 1998 | A |
5728116 | Rosenman | Mar 1998 | A |
5730757 | Benetti et al. | Mar 1998 | A |
5735848 | Yates et al. | Apr 1998 | A |
5738474 | Blewett | Apr 1998 | A |
5755726 | Pratt et al. | May 1998 | A |
5759171 | Coelho et al. | Jun 1998 | A |
5769303 | Knodel et al. | Jun 1998 | A |
5779130 | Alesi et al. | Jul 1998 | A |
5782397 | Koukline | Jul 1998 | A |
5785713 | Jobe | Jul 1998 | A |
5788698 | Savornin | Aug 1998 | A |
5810811 | Yates et al. | Sep 1998 | A |
5814038 | Jensen et al. | Sep 1998 | A |
5823066 | Huitema et al. | Oct 1998 | A |
5829662 | Allen et al. | Nov 1998 | A |
5830121 | Enomoto et al. | Nov 1998 | A |
5849023 | Mericle | Dec 1998 | A |
5849028 | Chen | Dec 1998 | A |
5855311 | Hamblin et al. | Jan 1999 | A |
5861005 | Kontos | Jan 1999 | A |
5865361 | Milliman et al. | Feb 1999 | A |
5876401 | Schulze et al. | Mar 1999 | A |
5891156 | Gessner et al. | Apr 1999 | A |
5893813 | Yamamoto | Apr 1999 | A |
5895396 | Day et al. | Apr 1999 | A |
5906607 | Taylor et al. | May 1999 | A |
5911721 | Nicholson et al. | Jun 1999 | A |
5916146 | Allotta et al. | Jun 1999 | A |
5918791 | Sorrentino et al. | Jul 1999 | A |
5928222 | Kleinerman | Jul 1999 | A |
5944717 | Lee et al. | Aug 1999 | A |
5944736 | Taylor et al. | Aug 1999 | A |
5954259 | Viola et al. | Sep 1999 | A |
5961521 | Roger | Oct 1999 | A |
5964394 | Robertson | Oct 1999 | A |
5968044 | Nicholson et al. | Oct 1999 | A |
5976171 | Taylor | Nov 1999 | A |
5980518 | Carr et al. | Nov 1999 | A |
5980548 | Evans et al. | Nov 1999 | A |
5991355 | Dahlke | Nov 1999 | A |
5991650 | Swanson et al. | Nov 1999 | A |
5992724 | Snyder | Nov 1999 | A |
5997552 | Person et al. | Dec 1999 | A |
6004335 | Vaitekunas et al. | Dec 1999 | A |
6007550 | Wang et al. | Dec 1999 | A |
6010054 | Johnson et al. | Jan 2000 | A |
6013077 | Harwin | Jan 2000 | A |
6015417 | Reynolds, Jr. | Jan 2000 | A |
6017354 | Culp et al. | Jan 2000 | A |
6030410 | Zurbrugg | Feb 2000 | A |
6032849 | Mastri et al. | Mar 2000 | A |
6039731 | Taylor et al. | Mar 2000 | A |
6051007 | Hogendijk et al. | Apr 2000 | A |
6063078 | Wittkampf | May 2000 | A |
6063095 | Wang et al. | May 2000 | A |
6077246 | Kullas et al. | Jun 2000 | A |
6079606 | Milliman et al. | Jun 2000 | A |
6080150 | Gough | Jun 2000 | A |
6083242 | Cook | Jul 2000 | A |
6090123 | Culp et al. | Jul 2000 | A |
6092422 | Binnig et al. | Jul 2000 | A |
6109500 | Alli et al. | Aug 2000 | A |
6113592 | Taylor | Sep 2000 | A |
6123702 | Swanson et al. | Sep 2000 | A |
H1904 | Yates et al. | Oct 2000 | H |
6126058 | Adams et al. | Oct 2000 | A |
6126651 | Mayer | Oct 2000 | A |
6127811 | Shenoy et al. | Oct 2000 | A |
6132425 | Gough | Oct 2000 | A |
6165169 | Panescu et al. | Dec 2000 | A |
6166538 | D'Alfonso | Dec 2000 | A |
6179840 | Bowman | Jan 2001 | B1 |
6187009 | Herzog et al. | Feb 2001 | B1 |
6187019 | Stefanchik et al. | Feb 2001 | B1 |
6190401 | Green et al. | Feb 2001 | B1 |
6193501 | Masel et al. | Feb 2001 | B1 |
6202914 | Geiste et al. | Mar 2001 | B1 |
6217573 | Webster | Apr 2001 | B1 |
6228534 | Takeuchi et al. | May 2001 | B1 |
6231565 | Tovey et al. | May 2001 | B1 |
6236874 | Devlin et al. | May 2001 | B1 |
6237604 | Burnside et al. | May 2001 | B1 |
6241139 | Milliman et al. | Jun 2001 | B1 |
6245065 | Panescu et al. | Jun 2001 | B1 |
6248117 | Blatter | Jun 2001 | B1 |
6250532 | Green et al. | Jun 2001 | B1 |
6258111 | Ross et al. | Jul 2001 | B1 |
6264086 | McGuckin, Jr. | Jul 2001 | B1 |
6264087 | Whitman | Jul 2001 | B1 |
6264653 | Falwell | Jul 2001 | B1 |
6281471 | Smart | Aug 2001 | B1 |
6288534 | Starkweather et al. | Sep 2001 | B1 |
6290701 | Enayati | Sep 2001 | B1 |
6293943 | Panescu et al. | Sep 2001 | B1 |
6295330 | Skog et al. | Sep 2001 | B1 |
6315184 | Whitman | Nov 2001 | B1 |
6329778 | Culp et al. | Dec 2001 | B1 |
6330965 | Milliman et al. | Dec 2001 | B1 |
6346104 | Daly et al. | Feb 2002 | B2 |
6355066 | Kim | Mar 2002 | B1 |
6364884 | Bowman et al. | Apr 2002 | B1 |
6387092 | Bumside et al. | May 2002 | B1 |
6388240 | Schulz et al. | May 2002 | B2 |
6402766 | Bowman et al. | Jun 2002 | B2 |
H2037 | Yates et al. | Jul 2002 | H |
6412279 | Coleman et al. | Jul 2002 | B1 |
6425903 | Voegele | Jul 2002 | B1 |
6436097 | Nardella | Aug 2002 | B1 |
6436107 | Wang et al. | Aug 2002 | B1 |
6436110 | Bowman et al. | Aug 2002 | B2 |
6443973 | Whitman | Sep 2002 | B1 |
6447517 | Bowman | Sep 2002 | B1 |
6461372 | Jensen et al. | Oct 2002 | B1 |
6478210 | Adams et al. | Nov 2002 | B2 |
6497707 | Bowman et al. | Dec 2002 | B1 |
6505768 | Whitman | Jan 2003 | B2 |
6515273 | Al-Ali | Feb 2003 | B2 |
6524316 | Nicholson et al. | Feb 2003 | B1 |
6533157 | Whitman | Mar 2003 | B1 |
6540751 | Enayati | Apr 2003 | B2 |
6544273 | Harari et al. | Apr 2003 | B1 |
6554852 | Oberlander | Apr 2003 | B1 |
6562071 | Jarvinen | May 2003 | B2 |
6578579 | Burnside et al. | Jun 2003 | B2 |
6601748 | Fung et al. | Aug 2003 | B1 |
6601749 | Sullivan et al. | Aug 2003 | B2 |
6602252 | Mollenauer | Aug 2003 | B2 |
6611793 | Burnside et al. | Aug 2003 | B1 |
6616821 | Broadley et al. | Sep 2003 | B2 |
6629986 | Ross et al. | Oct 2003 | B1 |
6651669 | Burnside | Nov 2003 | B1 |
6656177 | Truckai et al. | Dec 2003 | B2 |
6669073 | Milliman et al. | Dec 2003 | B2 |
6669705 | Westhaver et al. | Dec 2003 | B2 |
6696008 | Brandinger | Feb 2004 | B2 |
6698643 | Whitman | Mar 2004 | B2 |
6699177 | Wang et al. | Mar 2004 | B1 |
6716233 | Whitman | Apr 2004 | B1 |
6736085 | Esnouf | May 2004 | B1 |
6743239 | Kuehn et al. | Jun 2004 | B1 |
6792390 | Burnside et al. | Sep 2004 | B1 |
6793652 | Whitman et al. | Sep 2004 | B1 |
6817508 | Racenet et al. | Nov 2004 | B1 |
6830174 | Hillstead et al. | Dec 2004 | B2 |
6843403 | Whitman | Jan 2005 | B2 |
6846307 | Whitman et al. | Jan 2005 | B2 |
6846308 | Whitman et al. | Jan 2005 | B2 |
6846309 | Whitman et al. | Jan 2005 | B2 |
6849071 | Whitman et al. | Feb 2005 | B2 |
6861639 | Al-Ali | Mar 2005 | B2 |
6872214 | Sonnenschein et al. | Mar 2005 | B2 |
6899538 | Matoba | May 2005 | B2 |
6900004 | Satake | May 2005 | B2 |
6905057 | Swayze et al. | Jun 2005 | B2 |
6926636 | Luper | Aug 2005 | B2 |
6953139 | Milliman et al. | Oct 2005 | B2 |
6959852 | Shelton, IV et al. | Nov 2005 | B2 |
6964363 | Wales et al. | Nov 2005 | B2 |
6979328 | Baerveldt et al. | Dec 2005 | B2 |
6981628 | Wales | Jan 2006 | B2 |
6981941 | Whitman et al. | Jan 2006 | B2 |
6988649 | Shelton, IV et al. | Jan 2006 | B2 |
7000819 | Swayze et al. | Feb 2006 | B2 |
7032798 | Whitman et al. | Apr 2006 | B2 |
7044353 | Mastri et al. | May 2006 | B2 |
7048687 | Reuss et al. | May 2006 | B1 |
7055731 | Shelton, IV et al. | Jun 2006 | B2 |
7059508 | Shelton, IV et al. | Jun 2006 | B2 |
7077856 | Whitman | Jul 2006 | B2 |
7083075 | Swayze et al. | Aug 2006 | B2 |
7097089 | Marczyk | Aug 2006 | B2 |
7111769 | Wales et al. | Sep 2006 | B2 |
7118564 | Ritchie et al. | Oct 2006 | B2 |
7122029 | Koop et al. | Oct 2006 | B2 |
7128253 | Mastri et al. | Oct 2006 | B2 |
7128254 | Shelton, IV et al. | Oct 2006 | B2 |
7140528 | Shelton, IV | Nov 2006 | B2 |
7143924 | Scirica et al. | Dec 2006 | B2 |
7143925 | Shelton, IV et al. | Dec 2006 | B2 |
7143926 | Shelton, IV et al. | Dec 2006 | B2 |
7147138 | Shelton, IV | Dec 2006 | B2 |
7186966 | Al-Ali | Mar 2007 | B2 |
7193519 | Root et al. | Mar 2007 | B2 |
7217269 | El-Galley et al. | May 2007 | B2 |
7220232 | Suorsa et al. | May 2007 | B2 |
7240817 | Higuchi | Jul 2007 | B2 |
7241270 | Horzewski et al. | Jul 2007 | B2 |
7246734 | Shelton, IV | Jul 2007 | B2 |
7303108 | Shelton, IV | Dec 2007 | B2 |
7328828 | Ortiz et al. | Feb 2008 | B2 |
7335169 | Thompson et al. | Feb 2008 | B2 |
7364061 | Swayze et al. | Apr 2008 | B2 |
7380695 | Doll et al. | Jun 2008 | B2 |
7380696 | Shelton, IV et al. | Jun 2008 | B2 |
7404508 | Smith et al. | Jul 2008 | B2 |
7416101 | Shelton, IV et al. | Aug 2008 | B2 |
7419080 | Smith et al. | Sep 2008 | B2 |
7422136 | Marczyk | Sep 2008 | B1 |
7422139 | Shelton, IV et al. | Sep 2008 | B2 |
7431188 | Marczyk | Oct 2008 | B1 |
7431189 | Shelton, IV et al. | Oct 2008 | B2 |
7434715 | Shelton, IV et al. | Oct 2008 | B2 |
7441684 | Shelton, IV et al. | Oct 2008 | B2 |
7448525 | Shelton, IV et al. | Nov 2008 | B2 |
7461767 | Viola et al. | Dec 2008 | B2 |
7464846 | Shelton, IV et al. | Dec 2008 | B2 |
7464847 | Viola et al. | Dec 2008 | B2 |
7464849 | Shelton, IV et al. | Dec 2008 | B2 |
7481348 | Marczyk | Jan 2009 | B2 |
7487899 | Shelton, IV et al. | Feb 2009 | B2 |
7549563 | Mather et al. | Jun 2009 | B2 |
7552854 | Wixey et al. | Jun 2009 | B2 |
7556185 | Viola | Jul 2009 | B2 |
7568603 | Shelton, IV et al. | Aug 2009 | B2 |
7637409 | Marczyk | Dec 2009 | B2 |
7641093 | Doll et al. | Jan 2010 | B2 |
7644848 | Swayze et al. | Jan 2010 | B2 |
7648055 | Marczyk | Jan 2010 | B2 |
7670334 | Hueil et al. | Mar 2010 | B2 |
7678117 | Hinman et al. | Mar 2010 | B2 |
7721931 | Shelton, IV et al. | May 2010 | B2 |
7740159 | Shelton, IV et al. | Jun 2010 | B2 |
7753248 | Viola | Jul 2010 | B2 |
7757925 | Viola et al. | Jul 2010 | B2 |
7766207 | Mather et al. | Aug 2010 | B2 |
7766210 | Shelton, IV et al. | Aug 2010 | B2 |
7770775 | Shelton, IV et al. | Aug 2010 | B2 |
7815090 | Marczyk | Oct 2010 | B2 |
7823760 | Zemlok et al. | Nov 2010 | B2 |
7845534 | Viola et al. | Dec 2010 | B2 |
7950560 | Zemlok et al. | May 2011 | B2 |
8052024 | Viola et al. | Nov 2011 | B2 |
8132705 | Viola et al. | Mar 2012 | B2 |
8241322 | Whitman et al. | Aug 2012 | B2 |
8459521 | Zemlok et al. | Jun 2013 | B2 |
9364222 | Zemlok et al. | Jun 2016 | B2 |
9585664 | Zemlok et al. | Mar 2017 | B2 |
20020103489 | Ku | Aug 2002 | A1 |
20020111641 | Peterson et al. | Aug 2002 | A1 |
20020165541 | Whitman | Nov 2002 | A1 |
20030114851 | Truckai et al. | Jun 2003 | A1 |
20030120306 | Burbank et al. | Jun 2003 | A1 |
20040232201 | Wenchell et al. | Nov 2004 | A1 |
20050006429 | Wales et al. | Jan 2005 | A1 |
20050010235 | VanDusseldorp | Jan 2005 | A1 |
20050131390 | Heinrich et al. | Jun 2005 | A1 |
20050139636 | Schwemberger et al. | Jun 2005 | A1 |
20050145674 | Sonnenschein et al. | Jul 2005 | A1 |
20050177176 | Gerbi et al. | Aug 2005 | A1 |
20050187576 | Whitman et al. | Aug 2005 | A1 |
20050192609 | Whitman et al. | Sep 2005 | A1 |
20050247753 | Kelly et al. | Nov 2005 | A1 |
20050273085 | Hinman et al. | Dec 2005 | A1 |
20060000867 | Shelton et al. | Jan 2006 | A1 |
20070023477 | Whitman et al. | Feb 2007 | A1 |
20070029363 | Popov | Feb 2007 | A1 |
20070039995 | Schwemberger et al. | Feb 2007 | A1 |
20070084897 | Shelton et al. | Apr 2007 | A1 |
20070102472 | Shelton | May 2007 | A1 |
20070175947 | Ortiz et al. | Aug 2007 | A1 |
20070175949 | Shelton et al. | Aug 2007 | A1 |
20070175950 | Shelton et al. | Aug 2007 | A1 |
20070175951 | Shelton et al. | Aug 2007 | A1 |
20070175953 | Shelton et al. | Aug 2007 | A1 |
20070175955 | Shelton et al. | Aug 2007 | A1 |
20070219563 | Voegele | Sep 2007 | A1 |
20070265640 | Kortenbach et al. | Nov 2007 | A1 |
20080029570 | Shelton et al. | Feb 2008 | A1 |
20080029573 | Shelton et al. | Feb 2008 | A1 |
20080029574 | Shelton et al. | Feb 2008 | A1 |
20080029575 | Shelton et al. | Feb 2008 | A1 |
20080135600 | Hiranuma et al. | Jun 2008 | A1 |
20080169329 | Shelton et al. | Jul 2008 | A1 |
20080185419 | Smith et al. | Aug 2008 | A1 |
20080197167 | Viola et al. | Aug 2008 | A1 |
20080245842 | Marczyk | Oct 2008 | A1 |
20080251568 | Zemlok et al. | Oct 2008 | A1 |
20080255413 | Zemlok et al. | Oct 2008 | A1 |
20080255418 | Zemlok et al. | Oct 2008 | A1 |
20080255607 | Zemlok | Oct 2008 | A1 |
20080281353 | Aranyi et al. | Nov 2008 | A1 |
20080314959 | Viola et al. | Dec 2008 | A1 |
20090032568 | Viola et al. | Feb 2009 | A1 |
20090090201 | Viola | Apr 2009 | A1 |
20090090763 | Zemlok et al. | Apr 2009 | A1 |
20100001036 | Marczyk et al. | Jan 2010 | A1 |
20100012702 | Marczyk | Jan 2010 | A1 |
20100089972 | Marczyk | Apr 2010 | A1 |
20100163596 | Marczyk | Jul 2010 | A1 |
20100200636 | Zemlok et al. | Aug 2010 | A1 |
20100252610 | Viola | Oct 2010 | A1 |
20100312257 | Aranyi | Dec 2010 | A1 |
20100320254 | Zemlok et al. | Dec 2010 | A1 |
20110034910 | Ross et al. | Feb 2011 | A1 |
20130324978 | Nicholas et al. | Dec 2013 | A1 |
20140171923 | Aranyi | Jun 2014 | A1 |
Number | Date | Country |
---|---|---|
0634144 | Jan 1995 | EP |
0647431 | Apr 1995 | EP |
0705571 | Apr 1996 | EP |
0738501 | Oct 1996 | EP |
0770354 | May 1997 | EP |
0537570 | Jan 1998 | EP |
1070487 | Jan 2001 | EP |
1769754 | Apr 2007 | EP |
1813203 | Aug 2007 | EP |
2 849 589 | Jul 2004 | FR |
2849589 | Jul 2004 | FR |
9729694 | Aug 1997 | WO |
9740760 | Nov 1997 | WO |
9837825 | Sep 1998 | WO |
9952489 | Oct 1999 | WO |
0234140 | May 2002 | WO |
03026511 | Apr 2003 | WO |
03030743 | Apr 2003 | WO |
2004032760 | Apr 2004 | WO |
2007030753 | Mar 2007 | WO |
2007118179 | Oct 2007 | WO |
Entry |
---|
Extended European Search Report for EP 08 25 1568 dated Jun. 11, 2015. |
European Search Report dated Jul. 28, 2011 for EP 11 15 2266. |
Detemple, R, “Microtechnology in Modem Health Care”, Med Device Technol. 9(9):18-25 (1998). |
European Search Report EP 06026840 dated May 10, 2007. |
European Search Report EP 08251357.3 dated Sep. 29, 2009. |
European Search Report EP 08252703.7 dated Oct. 31, 2008. |
European Search Report EP 08253184.9 dated Feb. 27, 2009. |
International Search Report PCT/US06/21524 dated May 28, 2008. |
Patent Examination Report No. 1 for Australian Patent Appln. No. AU 2014-200667 dated Mar. 5, 2015. |
Australian Examination Report issued in Appl. No. AU 2015243017 dated Dec. 5, 2016. |
Canadian Office Action from Appl. No. CA 2,627,954 dated May 12, 2014. |
Australian Examination Report issued in Appl. No. AU 2008201630 dated Aug. 1, 2013. |
Extended European Search Report issued in Appl. No. EP 17172955.1 dated Dec. 1, 2017 (8 pages). |
U.S. Appl. No. 12/796,194, filed Jun. 8, 2010. |
U.S. Appl. No. 12/959,421, filed Dec. 3, 2010. |
U.S. Appl. No. 12/965,013, filed Dec. 10, 2010. |
Detemple, P., “Microtechnology in Modem Health Care”, Med Device Technol. 9(9):18-25 (1998). |
U.S. Appl. No. 13/715,364, filed Dec. 14, 2012, Aranyi et al. |
Extended European Search Report dated Jun. 14, 2021 issued in European Appln. No. 21168607.6. |
Number | Date | Country | |
---|---|---|---|
20200155154 A1 | May 2020 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11799766 | May 2007 | US |
Child | 12869193 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15450787 | Mar 2017 | US |
Child | 16773869 | US | |
Parent | 15180830 | Jun 2016 | US |
Child | 15450787 | US | |
Parent | 13889580 | May 2013 | US |
Child | 15180830 | US | |
Parent | 12869193 | Aug 2010 | US |
Child | 13889580 | US |