Not applicable.
This invention relates to doors for vehicles, and in particular to tailgates of recreational vehicles (RVs), parcel delivery vehicles, and food/beverage delivery vehicles such that when opened serves as a ramp from the ground into the vehicle, for example for passage of an ATV, motorcycle, or automobile into and out of an RV or other commodities into and out of a delivery vehicle.
Recreational vehicles such as motor homes and trailers that have a rear opening door that also serves as a ramp require a substantial hinge mechanism to operate the door. Delivery vehicles may include similar doors. The door can be large, for example eight feet wide and seven to nine feet tall, and heavy, for example 350 lbs. or more. Most systems, both powered and manual, are counterbalanced with torsion springs wrapped around the door hinge. These torsion springs store energy when the door is lowered and assist in the raising of the door when it is closed. The assist provided by the springs allows the operator to manually lift the door if necessary.
Typical power systems for opening and closing such tailgates use a cable or cable and drum method for lifting the door. The cable is attached near the outer edge of the door and the power unit is mounted high inside the box of the vehicle. The exposed cable attached to the outer edge of the door when the door is lowered presents a tripping or other hazard if someone tries to enter or exit the vehicle from the side of the door.
Delivery vehicles sometimes incorporate lift mechanisms near a rear opening of the vehicle for loading and unloading commodities. However, such mechanisms require significantly more actuation than a ramp for loading and unloading the vehicle.
The invention provides a tailgate ramp assembly for a vehicle that has a tailgate that also acts as a ramp when the tailgate is open. The tailgate is hinged to the vehicle chassis at a lower edge of the tailgate to pivot about a horizontal pivot axis. The hinge includes a hinge plate that is fixed to the tailgate and pivots about the pivot axis. The tailgate ramp assembly also includes a linear actuator with a base member mounted to a frame. The frame includes a guideway which guides a translatable member of the linear actuator. The translatable member is pivotally attached to an articulating arm which is also pivotally attached to an arm extending from the tailgate. Translating the translatable member in one direction opens the tailgate, and translating the translatable member in an opposite direction closes the tailgate.
In a preferred aspect of the invention, the frame includes a slot which permits rotation of the articulating arm.
In another preferred aspect of the invention, the frame is a tube attached to the vehicle chassis. The tube in a useful form encloses the base member of the linear actuator.
In yet another preferred aspect of the invention, the assembly includes a current sensor capable of detecting sudden current increases.
The foregoing and other objects and advantages of the invention will appear in the detailed description which follows. In the description, reference is made to the accompanying drawings which illustrate a preferred embodiment of the invention.
Referring to
The hinge plates 18 and 20 may be of a rolled construction or be of an extruded construction. In either case, each of the hinge plates 18 and 20 has a tubular portion 19 through which the hinge pin 26 extends and a generally flat or plate portion 21 which is secured to the respective tailgate 14 or support rail 13. The plate portions 21 of the upper hinge plates 18 are flat on the sides bolted against the tailgate 14 whereas the lower hinge plates 20 may be formed with a spacer section 28 that creates a space between the tubular portion of the hinge plates 18 and 20 and support rail 13 against which the plates 20 are fastened. Alternatively, the plates 20 could be the same as the plates 18 and provided with a separate spacer. Torsion springs 32 are preferably provided around the hinge pin 26 with one end pressing against one of the hinge plates 18 or against the tailgate 14 and the opposite end pressing against one of the plates 20 or against the support rail 13, so the space provided by the spacer section 28 also makes room for the springs 32. The torsion springs 32 bias the tailgate 14 into the closed position to make the tailgate 14 easier to lift when closing, for example, requiring less than 60 lbs. of force to lift the tailgate from the open position. Alternatively, other types of springs may be used to bias the tailgate 14 into the closed position. For example, extension springs may be connected between the tailgate 14 and the rear end 12 of the vehicle 10.
Referring again to
Each arm 38 is pivotally attached to a distal end of an articulating arm 40 by a pin 42. As shown in
Translatable member 46 is slidably connected to a base member 48 of the linear actuator 44. Translatable member 46 moves generally in the direction of the longitudinal axis of the base member 48 and retracts inside the base member 48, as shown in
Frame 50 is also fastened to the chassis 11 and is located inside the storage compartment of the vehicle 10. Frame 50 is at least as long as the linear actuator 44 with the translatable member 46 fully extended and at least has a compartment large enough to accommodate the linear actuator 44. Accordingly, frame 50 may be formed from a square section of tube stock. Frame 50 also includes guideways 54 and a slot 56. Guideways 54 are located on the sides of frame 50 and permit motion of the pin 43 and the translatable member 46 generally in the direction of the longitudinal axis of base member 48. Slot 56 is located on the upper surface of frame 50 and permits rotation of articulating arm 40, as shown in
When the tailgate 14 is open, as shown in
A second embodiment of the invention is shown in
The frame 150 includes a flange 158 which is fastened to a support beam 160 of the chassis 111. In addition, the frame 150 is connected to a U-bolt 162 which is connected to a support rail 164 of the chassis 111. U-bolt 162 may be connected to support rail 164 by welding, fasteners, or any other well known method. Fixing the frame 150 to the chassis 111 with these components reduces the amount of twist and bending stress experienced the frame 150 and the linear actuator 144, thus improving service life of the components. Alternatively, the frame 150 may be connected to the chassis 111 by fixing a spacer between the upper surface of the frame 150 and the lower surface of the chassis 111. Additionally, the frame 150 may be connected to the chassis 111 by any method which secures the frame 150 and prevents the frame 150 and linear actuator 144 from deforming.
For the second embodiment of the invention, when the tailgate 114 is closed, as shown in
Motion of the linear actuators is preferably controlled by a toggle switch (not shown) which is movable to three positions: open, closed, and off. The toggle switch is preferably biased to the off position. That is, a user must hold the switch in the open or closed position to move the tailgate. If a user stops the tailgate in an intermediate position, the tailgate will slowly descend to the fully open position as hydraulic fluid is pushed out of the rod sides of the two actuators. An adjustable flow control valve can be included in the hydraulic circuit through which each rod side communicates with tank pressure so that the rate of descent can be controlled. If a screw drive is used rather than a hydraulic actuator, the ramp may stop in an intermediate position due to the resistance of the screw to turn, or the screw may turn slowly. The rate of turning may be controlled by using a variable speed motor or providing a brake or friction element in the drive train for the screw, that engages when power to the screw is turned off.
The linear actuators may be hydraulic actuators, electric screws, or ball screws. Such linear actuators are well known in the art. The dimensions and specifications of the linear actuators may be selected as appropriate for the size of the vehicle. If hydraulic actuators are used, a flow divider circuit may be used with a single pump to ensure the actuators move at uniform speed. Such a flow divider circuit is disclosed in FIG. 9 of U.S. Patent Application Publication No. 2006/0163859, the disclosure of which is hereby incorporated by reference. However, the flow divider circuit should not include pilot operated check valves (reference numeral 64 therein). This prevents the tailgate from remaining in a position other than the closed or open position. Also, it is also possible in some applications to not use a flow divider and just plumb the bi-direction hydraulic actuators in parallel, using a bi-directional pump, so that running the pump in one direction extends the actuators and running it in the other direction retracts them. The specifications of the hydraulic actuators may include a stroke of 10.75 in., a bore diameter of 1 in., and an operating pressure of 2000 psi. Such hydraulic actuators are capable of lifting a tailgate with an effective weight of 80 lbs. The term effective weight should be understood as the weight of the door that is not completely resisted by the torsion springs.
In addition, hydraulic actuators may be advantageous with the second embodiment of the invention since the translatable member extends as the tailgate is closed. Hydraulic actuators output more force during extension if the operating pressure is equal for extension and retraction. More force is required to move the tailgate to the closed position. Therefore, it is advantageous to close the tailgate while the translatable member extends.
If an electric screw or a ball screw is used, a manual crank may be included. The manual crank may be used to open and close the tailgate in the event of a power failure.
Several types of sensors may be used to control motion of the tailgate. Preferably, a current sensor is used to detect sudden current increases in the system. Such increases would occur if the tailgate has contacted the ground or the vehicle rear end when opening or closing, respectively. If the current exceeds a threshold value for a preset time period, the current sensor sends a signal to a controller to stop motion of the tailgate. For hydraulic actuators, pressure sensors could be used to detect sudden pressure increases in the system. Such increases would occur in the same manner as a current increase as described previously.
When opening the tailgate, motion will be driven by the weight of the door for much of the stroke, and the system may need a brake or controller to slow the opening motion. A speed sensor may be added to the system, and suitable electronic or mechanical controls may be provided to control opening speed. For example, a pulse width modulation controller may be used for motion control if a ball screw is used as the linear actuator. Alternatively, the system could be powered only in the closing direction, and manually opened without powering the linear actuators.
The vehicle may also include a latch for securing the tailgate in the closed position. The latch may be a manual latch or an automatic latch driven by a motor and controlled by a switch. Such an automatic latch is disclosed in U.S. Provisional Application 60894065, the disclosure of which is hereby incorporated by reference.
Several embodiments of the invention have been described in considerable detail. Many modifications and variations to the embodiments described will be apparent to a person of ordinary skill in the art. Therefore, the invention should not be limited to the embodiments described.
This application claims benefit to U.S. Provisional Patent Application No. 60/975,364, filed Sep. 26, 2007.
Number | Date | Country | |
---|---|---|---|
60975364 | Sep 2007 | US |