Powered tissue resecting device

Information

  • Patent Grant
  • 11806036
  • Patent Number
    11,806,036
  • Date Filed
    Thursday, December 17, 2020
    4 years ago
  • Date Issued
    Tuesday, November 7, 2023
    a year ago
Abstract
A tissue resecting device includes an end effector assembly including a proximal hub housing and a cutting member extending distally from the proximal hub housing, and a handpiece assembly. The handpiece assembly includes a handle housing, a drive casing extending distally from the handle housing, a drive rotor extending through and distally from the drive casing, and a seal ring disposed about the drive rotor. In an at-rest position, the seal ring is sealingly engaged between the drive casing and the drive rotor to inhibit fluid ingress into the annular space. Upon engagement of the end effector assembly with the handpiece assembly, a portion of the proximal hub housing is configured to urge the seal ring from the at-rest position to a displaced position wherein the seal ring is displaced from the drive rotor to reduce friction therebetween upon rotation of the drive rotor relative to the drive casing.
Description
BACKGROUND
1. Technical Field

The present disclosure relates generally to the field of tissue resection. In particular, the present disclosure relates to a powered tissue resecting device.


2. Background of Related Art

Tissue resection may be performed endoscopically within an organ, such as a uterus, by inserting an endoscope (or hysteroscope) into the uterus and passing a tissue resection device through the endoscope (or hysteroscope) and into the uterus. With respect to such endoscopic tissue resection procedures, it often is desirable to distend the uterus with a fluid, for example, saline, sorbitol, or glycine. The inflow and outflow of the fluid during the procedure maintains the uterus in a distended state and flushes tissue and other debris from within the uterus to maintain a visible working space.


SUMMARY

As used herein, the term “distal” refers to the portion that is described which is further from a user, while the term “proximal” refers to the portion that is described which is closer to a user. Further, to the extent consistent, any or all of the aspects described herein may be used in conjunction with any or all of the other aspects described herein.


Provided in accordance with aspects of the present disclosure is a tissue resecting device including an end effector assembly and a handpiece assembly. The end effector assembly includes a proximal hub housing and a cutting member extending distally from the proximal hub housing. The handpiece assembly includes a handle housing, a drive casing extending distally from the handle housing, a drive rotor extending through and distally from the drive casing, and a seal ring disposed about the drive rotor. In an at-rest position, the seal ring is sealingly engaged between the drive casing and the drive rotor to inhibit fluid ingress into the annular space. The end effector assembly is releasably engagable with the handpiece assembly. Upon engagement of the end effector assembly with the handpiece assembly, a portion of the proximal hub housing is configured to urge the seal ring from the at-rest position to a displaced position wherein the seal ring is displaced from the drive rotor to reduce friction therebetween upon rotation of the drive rotor relative to the drive casing.


In an aspect of the present disclosure, the end effector assembly further includes an inner core disposed within the proximal hub housing. In such aspects, the cutting member is coupled to the inner core and the inner core is configured to couple to the drive rotor upon engagement of the end effector assembly with the handpiece assembly such that rotation of the drive rotor drives the cutting member. The inner core, in aspects, is configured such that rotation of the drive rotor drives rotation and reciprocation of the cutting member.


In another aspect of the present disclosure, the end effector assembly further includes a fixed outer shaft extending distally from the proximal hub housing and disposed about the cutting member.


In yet another aspect of the present disclosure, the proximal hub housing defines bayonet threading and the drive casing defines bayonet threading configured to engage the bayonet threading of the proximal hub housing to engage the end effector assembly with the handpiece assembly.


In still another aspect of the present disclosure, the handpiece assembly further includes a motor disposed within the handle housing and configured to drive rotation of the drive rotor.


Another tissue resecting device provided in accordance with aspects of the present disclosure includes a handpiece assembly including a drive rotor and an end effector assembly configured to engage the handpiece assembly. The end effector assembly defines a longitudinal axis and includes a proximal hub housing defining a fluid channel including an input disposed in a radially-inward facing direction relative to the longitudinal axis and an output, an inner core operably disposed within the proximal hub housing and configured to couple to the drive rotor such that rotation of the drive rotor effects rotation and reciprocation of the inner core relative to the proximal hub housing, a cutting member extending distally from the proximal hub housing and coupled to the inner core such that rotation and reciprocation of the inner core rotation relative to the proximal hub housing effects rotation and reciprocation of the cutting member relative to the proximal hub housing, and a valve disposed within the proximal hub housing. The valve is transitionable between an open position, permitting fluid flow from the cutting member into the input of the fluid channel, and a closed position, inhibiting fluid flow from the cutting member into the input of the fluid channel. The valve is disposed in the open position during a first portion of the reciprocation motion of the inner core and in the closed position during a second, different portion of the reciprocation motion of the inner core. Transitioning of the valve from the closed position to the open position establishes a surge of centrifugal force to urge fluid from the cutting member into the input of the fluid channel.


In an aspect of the present disclosure, the handpiece assembly further includes a fluid conduit configured to couple to the output of the fluid channel to receive fluid therefrom. In such aspects, the fluid conduit may be adapted to connect to a suction source to apply suction through the fluid conduit, the fluid channel, and the cutting member when the valve is disposed in the open position. Further, the surge of centrifugal force may be greater than a steady-state suction force applied from the suction source.


In another aspect of the present disclosure, the inner core is configured to reciprocate through the proximal hub housing between a proximal position and a distal position. In such aspects, the valve is disposed in the open position when the inner core is disposed towards the proximal position, and the valve is disposed in the closed position when the inner core is disposed towards the distal position.


In yet another aspect of the present disclosure, the end effector assembly further includes a fixed outer shaft extending distally from the proximal hub housing and disposed about the cutting member.


In still another aspect of the present disclosure, the valve is defined by the inner core and an inner housing of the proximal hub housing.


Another tissue resecting device provided in accordance with aspects of the present disclosure includes an end effector assembly including a proximal hub housing and a cutting member extending distally from the proximal hub housing. The proximal hub housing defines a fluid channel therethrough configured to enable withdrawal of fluid from the cutting member. A portion of the proximal hub housing adjacent the fluid channel is formed from a heat sink material. The tissue resecting device further includes a handpiece assembly including a handle housing, a drive rotor extending distally from the handle housing and configured to couple the cutting member to drive the cutting member, a motor disposed within the handle housing and configured to drive the drive rotor to thereby drive the cutting member, and a drive casing extending distally from the handle housing and disposed about a portion of the drive rotor. A portion of the drive casing is formed from a heat sink material. The proximal hub housing is configured to engage the drive casing to releasably engage the end effector assembly with the handpiece assembly. With the end effector assembly engaged with the handpiece assembly, the portion of the proximal hub housing and the portion of the drive casing are disposed in direct thermal communication with one another to form a heat sink for conducting heat from the motor to fluid flowing through the fluid channel, thereby helping to cool the motor.


In an aspect of the present disclosure, the proximal hub housing defines bayonet threading and the drive casing defines bayonet threading configured to engage the bayonet threading of the proximal hub housing to engage the end effector assembly with the handpiece assembly and bring the portion of the proximal hub housing and the portion of the drive casing into direct thermal communication with one another to form the heat sink.


In another aspect of the present disclosure, the heat sink material of the portion of the proximal hub housing and/or the heat sink material of the portion of the drive casing is a thermally-conductive metal.


In still another aspect of the present disclosure, the motor is configured to drive rotation of the drive rotor.


In yet another aspect of the present disclosure, the end effector assembly further includes an inner core configured to couple the drive rotor with the cutting member. The inner core is configured such that rotation of the drive rotor drives rotation and reciprocation of the cutting member.


In still yet another aspect of the present disclosure, the end effector assembly further includes a fixed outer shaft extending distally from the proximal hub housing and disposed about the cutting member.


In another aspect of the present disclosure, the handpiece assembly further includes a fluid conduit configured to couple to an output of the fluid channel to receive fluid therefrom. The fluid conduit is adapted to connect to a suction source to apply suction through the fluid conduit, the fluid channel, and the cutting member to withdraw fluid therefrom.





BRIEF DESCRIPTION OF THE DRAWINGS

Various aspects and features of the present disclosure are described hereinbelow with reference to the drawings wherein like numerals designate identical or corresponding elements in each of the several views and:



FIG. 1 is a side view of a tissue resecting device provide in accordance with aspects of the present disclosure;



FIG. 2A is a side view of an end effector assembly of the tissue resecting device of FIG. 1;



FIG. 2B is a side view of a distal end portion of another end effector assembly configured for use with the tissue resecting device of FIG. 1;



FIG. 3 is a longitudinal, cross-sectional view of a proximal portion of the end effector assembly of FIG. 2A;



FIG. 4 is a side view of a handpiece assembly of the tissue resecting device of FIG. 1;



FIG. 5A is a longitudinal, cross-sectional view illustrating the proximal portion of the end effector assembly engaged with a distal portion of the handpiece assembly, wherein internal operating components thereof are in a first position during use; and



FIG. 5B is a longitudinal, cross-sectional view illustrating the proximal portion of the end effector assembly engaged with the distal portion of the handpiece assembly, wherein the internal operating components thereof are in a second position during use.





DETAILED DESCRIPTION

Referring generally to FIG. 1, a tissue resecting device 10 provided in accordance with the present disclosure and configured to resect tissue includes an end effector assembly 100 and a handpiece assembly 200. Tissue resecting device 10 is adapted to connect to a control unit (not shown) to provide power and control functionality to tissue resecting device 10, although tissue resecting device 10 may alternatively or additionally include controls associated with handpiece assembly 200 and/or a power source, e.g., battery, disposed within handpiece assembly 200. Tissue resecting device 10 is further adapted to connect to a fluid management system (not shown) for removing fluid, tissue, and debris from a surgical site via tissue resecting device 10. The control unit and fluid management system may be integral with one another, coupled to one another, or separate from one another.


With continued reference to FIG. 1, tissue resecting device 10 may be configured as a single-use device that is discarded after use or sent to a manufacturer for reprocessing, a reusable device capable of being cleaned and/or sterilized for repeated use by the end-user, or a partially-single-use, partially-reusable device. With respect to partially-single-use, partially-reusable configurations, handpiece assembly 200 may be configured as a cleanable/sterilizable, reusable component, while end effector assembly 100 is configured as a single-use, disposable/reprocessable component. In either of the above configurations, end effector assembly 100 is configured to releasably engage handpiece assembly 200 to facilitate disposal/reprocessing of any single-use components and cleaning and/or sterilization of any reusable components. Further, enabling releasable engagement of end effector assembly 100 with handpiece assembly 200 allows for use of different end effector assemblies, e.g., end effector assembly 100 (FIGS. 1 and 2A) or end effector assembly 1100 (FIG. 2B), with handpiece assembly 200.


Referring to FIGS. 2A and 3, end effector assembly 100 includes a proximal hub housing 110, an elongated outer shaft 120 fixedly engaged with and extending distally from proximal hub housing 110, an inner cutting shaft 130 movable disposed within elongated outer shaft 120, and an inner drive core 140 operably disposed within proximal hub housing 110 and coupled to inner cutting shaft 130 such that rotational input imparted to inner drive core 140, e.g., via handpiece assembly 200, as detailed below, drives reciprocation and rotation of inner cutting shaft 130 within and relative to elongated outer shaft 120.


Proximal hub housing 110 of end effector assembly 100 includes an outer housing 112 and an inner housing 116 sealingly engaged within outer housing 112. Outer housing 112 receives and fixedly engages a proximal end portion 122 of elongated outer shaft 120 therein at a distal nose 113 of outer housing 112. Outer housing 112 further includes an annular protrusion 114 defined at proximal base 115 of outer housing 112 to facilitate grasping and manipulating proximal hub housing 110. Inner housing 116 includes a threaded distal nose 117, proximal bayonet threading 118 disposed within and facing radially-inwardly into an interior cavity 111 of proximal hub housing 110, and an annular channel 119 disposed about interior cavity 111 and defining a radially-inwardly-facing open distal end 119a, a ring-shaped body 119b, and a proximal exit port 119c. Inner housing 116, or at least a portion thereof, is formed from a heat sink material, e.g., a thermally-conductive material such as a metal, to serve as a heat sink for motor 260 of handpiece assembly 200 (FIG. 4), as detailed below.


Elongated outer shaft 120 of end effector assembly 100, as noted above, includes a proximal end portion 122 fixedly engaged with outer housing 112 of proximal hub housing 110. Elongated outer shaft 120 further includes a distal end portion 124 defining a closed distal end 126 and a window 128 proximally-spaced from closed distal end 126. Window 128 provides access to the interior of elongated outer shaft 120 and may be surrounded by a cutting edge 129 about the outer perimeter of window 128 so as to facilitate cutting of tissue passing through window 128 and into elongated outer shaft 120.


Inner cutting shaft 130 defines a proximal end portion 132 and a distal end portion 134 defining an open distal end 136. Inner cutting shaft 130 defines an annular cutting edge 138 surrounding open distal end 136 so as to facilitate cutting of tissue passing into inner cutting shaft 130 via open distal end 136. Inner cutting shaft 130, as noted above, is rotatable and reciprocatable within and relative to elongated outer shaft 120. More specifically, inner cutting shaft 130 is configured to reciprocate and rotate such that annular cutting edge 138 is exposed within window 128 of elongated outer shaft 120 during at least a portion of the reciprocation motion of inner cutting shaft 130 to enable cutting of tissue therewith. As detailed below, suction is provided to facilitate drawing tissue into window 128 and, thus, cutting and removal of tissue through inner cutting shaft 130.


With momentary reference to FIG. 2B, another embodiment of an end effector assembly 1100 configured for use with tissue resecting deice 10 (FIG. 1) is shown. End effector assembly 1100 is similar to and may include any of the features of end effector assembly 100 (FIG. 2A), except that, rather than reciprocation and rotation, inner cutting shaft 1130 of end effector assembly 1100 is longitudinally fixed and rotatable relative to elongated outer shaft 1120. End effector assembly 1100 further differs from end effector assembly 100 (FIG. 2A) in that elongated outer shaft 1120 and inner cutting shaft 1130 both define window 1128, 1138 proximally-spaced from the respective distal end 1126, 1136 thereof. Window 1128 and/or window 1138 may be surrounded by a cutting edge 1129, 1139, respectively, configured to facilitate cutting of tissue passing through windows 1128, 1138 upon relative rotation between windows 1128, 1138, e.g., as a result of rotation of inner cutting shaft 1130 relative to elongated outer shaft 1120. Other suitable end effector assemblies including various different elongated outer shaft and inner cutting shaft configurations are also contemplated.


Referring again to FIGS. 2A and 3, inner drive core 140 of end effector assembly 100 includes a threaded ferrule 142 defining threading on an exterior thereof and a receiver 146 engaged to and extending proximally from threaded ferrule 142. Threaded ferrule 142 is engaged about proximal end portion 132 of inner cutting shaft 130 such that rotation of threaded ferrule 142 effects corresponding rotation of inner cutting shaft 130. Threaded ferrule 142 is disposed within threaded distal nose 117 of inner housing 116 with the respective threads thereof disposed in meshed engagement with one another. As a result of this configuration, rotational input to threaded ferrule 142 effects rotation and reciprocation of threaded ferrule 142 through and relative to proximal hub housing 110 which, in turn, rotates and reciprocates inner cutting shaft 130 relative to elongated outer shaft 120.


Receiver 146 of inner drive core 140, as noted above, is engaged to and extends proximally from threaded ferrule 142. Receiver 146 is slidably and rotatably disposed within interior cavity 111 of proximal hub housing 110 and defines a slot 148 having a non-circular cross-section. Slot 148 is configured to receive a drive rotor 250 of handpiece assembly 200 (see FIGS. 4-5B) in fixed rotational orientation relative thereto such that rotation of drive rotor 250 is imparted to receiver 146 which, in turn, is imparted to threaded ferrule 142 to rotate and reciprocate inner cutting shaft 130 relative to elongated outer shaft 120.


With continued reference to FIGS. 2A and 3, as noted above, annular channel 119 defined within inner housing 116 has a radially-inwardly-facing open distal end 119a, a ring-shaped body 119b, and a proximal exit port 119c. Radially-inwardly-facing open distal end 119a is oriented perpendicularly relative to a longitudinal axis of elongated outer shaft 120 and inner cutting shaft 130 and, thus, perpendicular to the direction of fluid, tissue, and debris flow through inner cutting shaft 130. Further, inner housing 116 and receiver 146 cooperate to define a valve 150 between radially-inwardly-facing open distal end 119a of annular channel 119 and the open proximal end of inner cutting shaft 130. More specifically, as receiver 146 reciprocates through and relative to inner housing 116, receiver 146 is moved from a proximal position, corresponding to an open position of valve 150 (see FIG. 5B), enabling fluid communication between the interior of inner cutting shaft 130 and annular channel 119, and a distal position, corresponding to a closed position of valve 150 (FIG. 5A), wherein receiver 146 abuts threaded distal nose 117 of inner housing 116 in sealing engagement therewith to inhibit fluid communication between the interior of inner cutting shaft 130 and annular channel 119. Thus, during use, when end effector assembly 100 is activated such that inner cutting shaft 130 is rotating and reciprocating, valve 150 is open during a portion of the rotating and reciprocating, and is closed during another portion of the rotating and reciprocating. When valve 150 is open, fluid, tissue and debris suctioned into inner cutting shaft 130 are be evacuated from end effector assembly 100 via annular channel 119, as detailed below.


Turning now to FIGS. 1, 3, and 4, handpiece assembly 200 generally includes a handle housing 210, a fluid return conduit 220 disposed on handle housing 210, a cable 230 coupled to handle housing 210, a drive casing 240 extending distally from handle housing 210, a drive rotor 250 extending distally from drive casing 240, and a motor 260 disposed within at least a portion of drive casing 240 and/or handle housing 210. Handpiece assembly 200 may further include one or more controls (not shown) disposed on or operably associated with handle housing 210 to facilitate activation of tissue resecting device 10.


Handle housing 210 defines a pistol-grip configuration, although other configurations are also contemplated, and includes a barrel portion 212 and a fixed handle portion 214. Fluid return conduit 220 extends alongside barrel portion 212 of handle housing 210 and may be formed with barrel portion 212 or otherwise engaged thereto. Fluid return conduit 220 defines an open distal end 222 that is configured to abut and operably couple with proximal exit port 119c of end effector assembly 100 (FIGS. 2A and 3) upon engagement of end effector assembly 100 with handpiece assembly 200 so as to define a continuous fluid path from end effector assembly 100, through fluid return conduit 220, to a collection receptacle of the fluid management system (not shown). To this end, fluid return conduit 220 may be coupled at its proximal end to tubing (not shown) or other suitable structure configured to direct fluid from fluid return conduit 220 to the fluid management system.


Cable 230 extends proximally from fixed handle portion 214 of handle housing 210 and is configured to connect to the control unit (not shown) to provide power and control functionality to tissue resecting device 10. Cable 230, more specifically, houses one or more wires 232 that extend into handle housing 210 and connect to the controls thereof and/or motor 260 to power motor 260 and control operation of tissue resecting device 10 in accordance with controls associated with handpiece assembly 200, the control unit, and/or other remote control devices, e.g., a footswitch (not shown).


The drive casing 240, as noted above, extend distally from handle housing 210. Drive casing 240, more specifically, surrounds at least a portion of motor 260, is disposed in thermal communication with motor 260, and is formed from a heat sink material, e.g., a thermally-conductive material such as a metal, to serve as a heat sink for motor 260. Drive casing 240 further defines external bayonet threading 242 therein that is configured to engage proximal bayonet threading 118 of inner housing 116 of end effector assembly 100 to releasably engage end effector assembly 100 with handpiece assembly 200.


Drive rotor 250 extends distally from drive casing 240, as noted above, and defines a non-circular cross-section complementary to that of slot 148 of receiver 146 of end effector assembly 100 such that, upon engagement of end effector assembly 100 with handpiece assembly 200, drive rotor 250 is received within slot 148 of receiver 146 in fixed rotational orientation relative thereto. As such, rotation of drive rotor 250 is imparted to receiver 146 which, in turn, is imparted to threaded ferrule 142 to rotate and reciprocate inner cutting shaft 130 relative to elongated outer shaft 120. An annular gap is defined between drive rotor 250 and drive casing 240 to enable drive rotor 250 to rotate relative to drive casing 240 with minimal friction therebetween.


Referring to FIG. 4, a seal ring 270 formed from an elastomeric material is disposed, in an at-rest position, about drive rotor 250 between a proximally-facing shoulder 272 of drive rotor 250 and a distally-facing surface 274 of drive casing 240 so as to seal the annular gap defined between drive rotor 250 and drive casing 240. Thus, fluids are inhibited from entering the annular gap defined between drive rotor 250 and drive casing 240 such as, for example, during sterilization and/or cleaning of handpiece assembly 200 for reuse.


Turning to FIGS. 5A-5B, in conjunction with FIGS. 1, 3, and 4, in order to engage end effector assembly 100 with handpiece assembly 200, end effector assembly 100 is approximated and rotated relative to handpiece assembly 200 to engage external bayonet threading 242 of drive casing 240 with proximal bayonet threading 118 of inner housing 116 and such that open distal end 222 of fluid return conduit 220 is operably coupled with proximal exit port 119c of annular channel 119 and drive rotor 250 is received within receiver 146 in fixed rotational engagement therewith. In this engaged condition, fluid, tissue, and debris are permitted to flow (when valve 150 is disposed in the open position) from inner cutting shaft 130 through annular channel 119 and into fluid return conduit 220 for ultimate collection at the fluid management system. Further, in this engaged condition, inner housing 116 and drive casing 240 are thus disposed in contact with one another to together serve as a heat sink conducting heat away from motor 260 to fluid passing through annular channel 119 defined within inner housing 116 during use, thus helping to cool motor 260.


Additionally, upon engagement of end effector assembly 100 with handpiece assembly 200, a ramped surface 276 of inner housing 116 urges seal ring 270 proximally such that seal ring 270 is displaced from proximally-facing shoulder 272 of drive rotor 250 and removed from contact with drive rotor 250. As such, friction between seal ring 270, drive rotor 250, and drive casing 240 during use, e.g., rotation of drive rotor 250 relative to drive casing 240, is substantially reduced if not eliminated. Upon disengagement of end effector assembly 100 from handpiece assembly 200, seal ring 270 is returned under bias to its at-rest position.


Referring generally to FIGS. 1, 2A, and 3-5B, prior to use, tissue resecting device 10 is assembled by engaging end effector assembly 100 with handpiece assembly 200, as detailed above. Further, cable 230 is connected to the control unit and fluid return conduit 220 is connected to the fluid management system. Once this is achieved, tissue resecting device 10 is ready for use. In use, tissue resecting device 10 is positioned within an internal body cavity or organ, e.g., a uterus, such that the distal end portion of end effector assembly 100 is positioned adjacent tissue to be removed. Tissue resecting device 10 may be inserted through an endoscope, e.g., a hysteroscope, or other device, or may be used independently.


Once tissue resecting device 10 is positioned as desired adjacent tissue to be removed, tissue resecting device 10 is activated. Activation of tissue resecting device 10 powers motor 260 which serves to rotationally drive rotor 250. Rotation of drive rotor 250, in turn, provides rotational input to receiver 146 such that threaded ferrule 142 is rotated and reciprocated to thereby rotate and reciprocate inner cutting shaft 130 relative to elongated outer shaft 120. Activation of tissue resecting device 10 also serves to activate suction through fluid return conduit 220, thereby applying suction through inner cutting shaft 130. With such suction applied, tissue is drawn through window 128 of elongated outer shaft 120 and into inner cutting shaft 130, while cutting edges 129, 138 facilitate cutting of tissue as it passes through window 128 and into inner cutting shaft 130. The suction also draws fluid and debris into inner cutting shaft 130. Tissue resecting device 10 is utilized until the desired tissue is removed from the internal body cavity or organ.


The tissue, fluid, and debris suctioned through inner cutting shaft 130 travel proximally through inner cutting shaft 130, eventually reaching valve 150. With valve 150 in the open position (FIG. 5B), the tissue, fluid, and debris are urged radially outwardly, into and through the radially-inwardly-facing open distal end 119a of annular channel 119 and eventually passing through ring-shaped body 119b of annular channel 119, proximal exit port 119c of annular channel 119, and into fluid return conduit 220. When valve 150 is disposed in the closed position (FIG. 5A), the tissue, fluid, and debris do not pass therethrough; however, upon re-opening of valve 150, a centrifugal force surge (created due to the rotation of receiver 146 relative to inner housing 116 and the perpendicular orientation open distal end 119a of annular channel 119 relative to the longitudinal axis of elongated outer shaft 120) above the steady-state suction force urges the tissue, fluid, and debris radially outwardly into open distal end 119a of annular channel 119 such that any collected tissue, fluid, and debris is taken therewith under this force surge, thus clearing any collected tissue, fluid, and debris and inhibiting clogging within proximal hub housing 110 of end effector assembly 100. Further, as noted above, the fluid (and tissue and debris) passing proximally through annular channel 119 also serves to absorb heat conducted away from motor 260 via the heat sink formed from the engagement of inner housing 116 and drive casing 240, thus helping to cool motor 260 during use. In addition, as also noted above, seal ring 270 is maintained decoupled from drive rotor 250 during use, reducing friction and potential wear on seal ring 270 as drive rotor 150 is rotated.


Once the desired tissue is removed, tissue resecting device 10 may be deactivated and removed from the surgical site. Thereafter, end effector assembly 100 may be disengaged from handpiece assembly 200 and discarded (or sent for reprocessing), while handpiece assembly 200 is cleaned and/or sterilized for reuse. As detailed above, upon disengagement of end effector assembly 100 from handpiece assembly 200, seal 270 is returned to its at-rest position, thus inhibiting fluid ingress into handpiece assembly 200 during sterilization and/or cleaning thereof for reuse.


As an alternative to handpiece assembly 200 configured for manual grasping and manipulation during use, tissue resecting device 10 may alternatively be configured for use with a robotic surgical system wherein handle housing 210 is configured to engage a robotic arm of the robotic surgical system. The robotic surgical system may employ various robotic elements to assist the surgeon and allow remote operation (or partial remote operation). More specifically, various robotic arms, gears, cams, pulleys, electric and mechanical motors, etc. may be employed for this purpose and may be designed with the robotic surgical system to assist the surgeon during the course of an operation or treatment. The robotic surgical system may include remotely steerable systems, automatically flexible surgical systems, remotely flexible surgical systems, remotely articulating surgical systems, wireless surgical systems, modular or selectively configurable remotely operated surgical systems, etc.


The robotic surgical system may be employed with one or more consoles that are next to the operating theater or located in a remote location. In this instance, one team of surgeons or nurses may prep the patient for surgery and configure the robotic surgical system with the surgical device disclosed herein while another surgeon (or group of surgeons) remotely control the surgical device via the robotic surgical system. As can be appreciated, a highly skilled surgeon may perform multiple operations in multiple locations without leaving his/her remote console which can be both economically advantageous and a benefit to the patient or a series of patients.


The robotic arms of the robotic surgical system are typically coupled to a pair of master handles by a controller. The handles can be moved by the surgeon to produce a corresponding movement of the working ends of any type of surgical instrument (e.g., end effectors, graspers, knifes, scissors, cameras, fluid delivery devices, etc.) which may complement the use of the tissue resecting devices described herein. The movement of the master handles may be scaled so that the working ends have a corresponding movement that is different, smaller or larger, than the movement performed by the operating hands of the surgeon. The scale factor or gearing ratio may be adjustable so that the operator can control the resolution of the working ends of the surgical instrument(s).


While several embodiments of the disclosure have been shown in the drawings, it is not intended that the disclosure be limited thereto, as it is intended that the disclosure be as broad in scope as the art will allow and that the specification be read likewise. Therefore, the above description should not be construed as limiting, but merely as examples of particular embodiments. Those skilled in the art will envision other modifications within the scope and spirit of the claims appended hereto.


Although the foregoing disclosure has been described in some detail by way of illustration and example, for purposes of clarity or understanding, it will be obvious that certain changes and modifications may be practiced within the scope of the appended claims.

Claims
  • 1. A tissue resecting device, comprising: a handpiece assembly including a drive rotor; andan end effector assembly configured to engage the handpiece assembly, the end effector assembly defining a longitudinal axis and including: a proximal hub housing defining a fluid channel including an input and an output, the input disposed in a radially-inward facing direction relative to the longitudinal axis;an inner core operably disposed within the proximal hub housing and configured to couple to the drive rotor such that rotation of the drive rotor effects rotation and reciprocation of the inner core relative to the proximal hub housing;a cutting member extending distally from the proximal hub housing and coupled to the inner core such that rotation and reciprocation of the inner core rotation relative to the proximal hub housing effects rotation and reciprocation of the cutting member relative to the proximal hub housing; anda valve disposed within the proximal hub housing, the valve transitionable, in response to the rotation and reciprocation of the inner core relative to the proximal hub housing, between an open position, permitting fluid flow from the cutting member into the input of the fluid channel, and a closed position, inhibiting fluid flow from the cutting member into the input of the fluid channel, wherein the valve is disposed in the open position during a first portion of the reciprocation motion of the inner core, and wherein the valve is disposed in the closed position during a second, different portion of the reciprocation motion of the inner core,wherein transitioning of the valve from the closed position to the open position establishes a surge of centrifugal force to urge fluid from the cutting member into the input of the fluid channel.
  • 2. The tissue resecting device according to claim 1, wherein the handpiece assembly further includes a fluid conduit configured to couple to the output of the fluid channel to receive fluid therefrom.
  • 3. The tissue resecting device according to claim 2, wherein the fluid conduit is adapted to connect to a suction source to apply suction through the fluid conduit, the fluid channel, and the cutting member when the valve is disposed in the open position.
  • 4. The tissue resecting device according to claim 3, wherein the surge of centrifugal force is greater than a steady-state suction force applied from the suction source.
  • 5. The tissue resecting device according to claim 1, wherein the inner core is configured to reciprocate through the proximal hub housing between a proximal position and a distal position, wherein the valve is disposed in the open position when the inner core is disposed towards the proximal position, and wherein the valve is disposed in the closed position when the inner core is disposed towards the distal position.
  • 6. The tissue resecting device according to claim 1, wherein the end effector assembly further includes a fixed outer shaft extending distally from the proximal hub housing and disposed about the cutting member.
  • 7. The tissue resecting device according to claim 1, wherein the valve is defined by the inner core and an inner housing of the proximal hub housing.
  • 8. The tissue resecting device according to claim 1, wherein the handpiece assembly further includes a motor disposed within a housing thereof, the motor configured to drive rotation of the drive rotor.
  • 9. The tissue resecting device according to claim 1, wherein the end effector assembly is configured to releasably engage the handpiece assembly.
  • 10. The tissue resecting device according to claim 1, wherein the end effector assembly further includes an elongated outer shaft fixed relative to and extending distally from the proximal hub housing, the cutting member extending through the elongated outer shaft and configured to reciprocate and rotate relative thereto to cut tissue extending into an opening defined by the elongated outer shaft.
CROSS REFERENCE TO RELATED APPLICATION

The present application is a Continuation Application of U.S. patent application Ser. No. 15/895,407, filed on Feb. 13, 2018, the entire content of which is incorporated by reference herein.

US Referenced Citations (293)
Number Name Date Kind
1585934 Muir May 1926 A
1666332 Hirsch Apr 1928 A
1831786 Duncan Nov 1931 A
2708437 Hutchins May 1955 A
3297022 Wallace Jan 1967 A
3686706 Finley Aug 1972 A
3734099 Bender et al. May 1973 A
3791379 Storz Feb 1974 A
3812855 Banko May 1974 A
3835842 Iglesias Sep 1974 A
3850162 Iglesias Nov 1974 A
3945375 Banko Mar 1976 A
3980252 Tae Sep 1976 A
3995619 Glatzer Dec 1976 A
3996921 Neuwirth Dec 1976 A
4011869 Seiler, Jr. Mar 1977 A
4108182 Hartman et al. Aug 1978 A
4146405 Timmer et al. Mar 1979 A
4198958 Utsugi Apr 1980 A
4203444 Bonnell et al. May 1980 A
4210146 Banko Jul 1980 A
4246902 Martinez Jan 1981 A
4247180 Norris Jan 1981 A
4258721 Parent et al. Mar 1981 A
4261346 Wettermann Apr 1981 A
4294234 Matsuo Oct 1981 A
4316465 Dotson, Jr. Feb 1982 A
4369768 Vukovic Jan 1983 A
4392485 Hiltebrandt Jul 1983 A
4414962 Carson Nov 1983 A
4449538 Corbitt et al. May 1984 A
4493698 Wang et al. Jan 1985 A
4517977 Frost May 1985 A
4543965 Pack et al. Oct 1985 A
4567880 Goodman Feb 1986 A
4589414 Yoshida et al. May 1986 A
4601284 Arakawa et al. Jul 1986 A
4601290 Effron et al. Jul 1986 A
4606330 Bonnet Aug 1986 A
4630598 Bonnet Dec 1986 A
4644952 Patipa et al. Feb 1987 A
4649919 Thimsen et al. Mar 1987 A
4700694 Shishido Oct 1987 A
4706656 Kuboto Nov 1987 A
4718291 Wood et al. Jan 1988 A
4737142 Heckele Apr 1988 A
4749376 Kensey et al. Jun 1988 A
4756309 Sachse et al. Jul 1988 A
4819635 Shapiro Apr 1989 A
4844064 Thimsen et al. Jul 1989 A
4850354 McGurk-Burleson et al. Jul 1989 A
4856919 Takeuchi et al. Aug 1989 A
4867157 McGurk-Burleson et al. Sep 1989 A
4924851 Ognier et al. May 1990 A
4940061 Terwilliger et al. Jul 1990 A
4950278 Sachse et al. Aug 1990 A
4955882 Hakky Sep 1990 A
4986827 Akkas et al. Jan 1991 A
4998527 Meyer Mar 1991 A
4998914 Wiest et al. Mar 1991 A
5007917 Evans Apr 1991 A
5027792 Meyer Jul 1991 A
5037386 Marcus et al. Aug 1991 A
5105800 Takahashi et al. Apr 1992 A
5106364 Hayafuji et al. Apr 1992 A
5112299 Pascaloff May 1992 A
5116868 Chen et al. May 1992 A
5125910 Freitas Jun 1992 A
5133713 Huang et al. Jul 1992 A
5152744 Krause et al. Oct 1992 A
5158553 Berry et al. Oct 1992 A
5163433 Kagawa et al. Nov 1992 A
5169397 Sakashita et al. Dec 1992 A
5176677 Wuchinich Jan 1993 A
5195541 Obenchain Mar 1993 A
5226910 Kajiyama et al. Jul 1993 A
5244459 Hill Sep 1993 A
5254117 Rigby et al. Oct 1993 A
5269785 Bonutti Dec 1993 A
5270622 Krause Dec 1993 A
5275609 Pingleton et al. Jan 1994 A
5288290 Brody Feb 1994 A
5304118 Trese et al. Apr 1994 A
5312399 Hakky et al. May 1994 A
5312425 Evans et al. May 1994 A
5312430 Rosenbluth et al. May 1994 A
5320091 Grossi et al. Jun 1994 A
5347992 Pearlman et al. Sep 1994 A
5350390 Sher Sep 1994 A
5364395 West, Jr. Nov 1994 A
5374253 Burns, Sr. et al. Dec 1994 A
5390585 Ryuh Feb 1995 A
5392765 Muller Feb 1995 A
5395313 Naves et al. Mar 1995 A
5403276 Schechter et al. Apr 1995 A
5409013 Clement Apr 1995 A
5409453 Lundquist et al. Apr 1995 A
5411513 Ireland et al. May 1995 A
5421819 Edwards et al. Jun 1995 A
5425376 Banys et al. Jun 1995 A
5429601 Conley et al. Jul 1995 A
5435805 Edwards et al. Jul 1995 A
5443476 Shapiro Aug 1995 A
5449356 Walbrink et al. Sep 1995 A
5456673 Ziegler et al. Oct 1995 A
5456689 Kresch et al. Oct 1995 A
5483951 Frassica et al. Jan 1996 A
5490819 Nicholas et al. Feb 1996 A
5490860 Middle et al. Feb 1996 A
5492537 Vancaillie Feb 1996 A
5498258 Hakky et al. Mar 1996 A
5527331 Kresch et al. Jun 1996 A
5549541 Muller Aug 1996 A
5556378 Storz et al. Sep 1996 A
5563481 Krause Oct 1996 A
5569164 Lurz Oct 1996 A
5569178 Henley Oct 1996 A
5569254 Carlson et al. Oct 1996 A
5569284 Young et al. Oct 1996 A
5575756 Karasawa et al. Nov 1996 A
5591187 Dekel Jan 1997 A
5601583 Donahue et al. Feb 1997 A
5601603 Illi Feb 1997 A
5602449 Krause et al. Feb 1997 A
5603332 O'Connor Feb 1997 A
5630798 Beiser et al. May 1997 A
5649547 Ritchart et al. Jul 1997 A
5669927 Boebel et al. Sep 1997 A
5672945 Krause Sep 1997 A
5674179 Bonnet et al. Oct 1997 A
5676497 Kim Oct 1997 A
5695448 Kimura et al. Dec 1997 A
5702420 Sterling et al. Dec 1997 A
5709698 Adams et al. Jan 1998 A
5730752 Alden et al. Mar 1998 A
5733298 Berman et al. Mar 1998 A
5741286 Recuset Apr 1998 A
5741287 Alden et al. Apr 1998 A
5749885 Sjostrom et al. May 1998 A
5749889 Bacich et al. May 1998 A
5759185 Grinberg Jun 1998 A
5772634 Atkinson Jun 1998 A
5775333 Burbank et al. Jul 1998 A
5782849 Miller Jul 1998 A
5807240 Muller et al. Sep 1998 A
5807282 Fowler Sep 1998 A
5810770 Chin et al. Sep 1998 A
5810861 Gaber Sep 1998 A
5814009 Wheatman Sep 1998 A
5833643 Ross et al. Nov 1998 A
5840060 Beiser et al. Nov 1998 A
5857995 Thomas et al. Jan 1999 A
5873886 Larsen et al. Feb 1999 A
5899915 Saadat May 1999 A
5911699 Anis et al. Jun 1999 A
5911722 Adler et al. Jun 1999 A
5913867 Dion Jun 1999 A
5916229 Evans Jun 1999 A
5925055 Adrian et al. Jul 1999 A
5928163 Roberts et al. Jul 1999 A
5944668 Vancaillie et al. Aug 1999 A
5947990 Smith Sep 1999 A
5951490 Fowler Sep 1999 A
5956130 Vancaillie et al. Sep 1999 A
5957832 Taylor et al. Sep 1999 A
6001116 Heisler et al. Dec 1999 A
6004320 Casscells et al. Dec 1999 A
6007513 Anis et al. Dec 1999 A
6022363 Walker et al. Feb 2000 A
6024751 Lovato et al. Feb 2000 A
6032673 Savage et al. Mar 2000 A
6039748 Savage et al. Mar 2000 A
6042552 Cornier Mar 2000 A
6068641 Varsseveld May 2000 A
6086542 Glowa et al. Jul 2000 A
6090094 Clifford, Jr. et al. Jul 2000 A
6090123 Culp et al. Jul 2000 A
6113594 Savage Sep 2000 A
6119973 Galloway Sep 2000 A
6120147 Vijfvinkel et al. Sep 2000 A
6120462 Hibner et al. Sep 2000 A
6132448 Perez et al. Oct 2000 A
6149633 Maaskamp Nov 2000 A
6156049 Lovato et al. Dec 2000 A
6159160 Hsei et al. Dec 2000 A
6159209 Hakky Dec 2000 A
6171316 Kovac et al. Jan 2001 B1
6203518 Anis et al. Mar 2001 B1
6217543 Anis et al. Apr 2001 B1
6224603 Marino May 2001 B1
6244228 Kuhn et al. Jun 2001 B1
6258111 Ross et al. Jul 2001 B1
6277096 Cortella et al. Aug 2001 B1
6293957 Peters et al. Sep 2001 B1
6315714 Akiba Nov 2001 B1
6358200 Grossi Mar 2002 B1
6358263 Mark et al. Mar 2002 B2
6359200 Day Mar 2002 B1
6402701 Kaplan et al. Jun 2002 B1
6428486 Ritchart et al. Aug 2002 B2
6471639 Rudischhauser et al. Oct 2002 B2
6494892 Ireland et al. Dec 2002 B1
6585708 Maaskamp Jul 2003 B1
6610066 Dinger et al. Aug 2003 B2
6626827 Felix et al. Sep 2003 B1
6632182 Treat Oct 2003 B1
6656132 Ouchi Dec 2003 B1
6663641 Kovac et al. Dec 2003 B1
6712773 Viola Mar 2004 B1
6824544 Boebel et al. Nov 2004 B2
6837847 Ewers et al. Jan 2005 B2
7025720 Boebel et al. Apr 2006 B2
7025732 Thompson et al. Apr 2006 B2
7150713 Shener et al. Dec 2006 B2
7226459 Cesarini et al. Jun 2007 B2
7249602 Emanuel Jul 2007 B1
7510563 Cesarini et al. Mar 2009 B2
7763033 Gruber et al. Jul 2010 B2
7922737 Cesarini et al. Apr 2011 B1
8062214 Shener et al. Nov 2011 B2
8419626 Shener-Irmakoglu et al. Apr 2013 B2
8574253 Gruber et al. Nov 2013 B2
8663264 Cesarini et al. Mar 2014 B2
8678999 Isaacson Mar 2014 B2
8840626 Adams et al. Sep 2014 B2
8852085 Shener-Irmakoglu et al. Oct 2014 B2
8893722 Emanuel Nov 2014 B2
8932208 Kendale et al. Jan 2015 B2
8951274 Adams et al. Feb 2015 B2
9050133 Boone, III Jun 2015 B1
9060800 Cesarini et al. Jun 2015 B1
9060801 Cesarini et al. Jun 2015 B1
9066745 Cesarini et al. Jun 2015 B2
9072431 Adams et al. Jul 2015 B2
9089358 Emanuel Jul 2015 B2
9125550 Shener-Irmakoglu et al. Sep 2015 B2
9155454 Sahney et al. Oct 2015 B2
10869684 Whipple Dec 2020 B2
20010039963 Spear et al. Nov 2001 A1
20010047183 Privitera et al. Nov 2001 A1
20020058859 Brommersma May 2002 A1
20020165427 Yachia et al. Nov 2002 A1
20030050603 Todd Mar 2003 A1
20030050638 Yachia et al. Mar 2003 A1
20030078609 Finlay et al. Apr 2003 A1
20030114875 Sjostrom Jun 2003 A1
20040010258 Carusillo et al. Jan 2004 A1
20040204671 Stubbs et al. Oct 2004 A1
20040220602 Deng et al. Nov 2004 A1
20050043690 Todd Feb 2005 A1
20050085692 Kiehn et al. Apr 2005 A1
20050096649 Adams May 2005 A1
20060036132 Renner et al. Feb 2006 A1
20060047185 Shener Mar 2006 A1
20060161191 Bucina Jul 2006 A1
20060241586 Wilk Oct 2006 A1
20070021752 Rogers Jan 2007 A1
20080015621 Emanuel Jan 2008 A1
20080058588 Emanuel Mar 2008 A1
20080058842 Emanuel Mar 2008 A1
20080097468 Adams et al. Apr 2008 A1
20080097469 Gruber et al. Apr 2008 A1
20080097470 Gruber Apr 2008 A1
20080097471 Adams et al. Apr 2008 A1
20080135053 Gruber et al. Jun 2008 A1
20080146872 Gruber et al. Jun 2008 A1
20080146873 Adams et al. Jun 2008 A1
20080188848 Deutmeyer Aug 2008 A1
20080245371 Gruber Oct 2008 A1
20080249366 Gruber et al. Oct 2008 A1
20080249534 Gruber et al. Oct 2008 A1
20080249553 Gruber et al. Oct 2008 A1
20080262308 Prestezog et al. Oct 2008 A1
20090082628 Kucklick et al. Mar 2009 A1
20090270812 Litscher et al. Oct 2009 A1
20090270895 Churchill Oct 2009 A1
20090270896 Sullivan et al. Oct 2009 A1
20090270897 Adams et al. Oct 2009 A1
20090270898 Chin et al. Oct 2009 A1
20100087798 Adams et al. Apr 2010 A1
20100100112 Kauker Apr 2010 A1
20100125287 Cole et al. May 2010 A1
20100152647 Shener et al. Jun 2010 A1
20110098688 Gigon Apr 2011 A1
20110166419 Reif et al. Jul 2011 A1
20120078038 Sahney et al. Mar 2012 A1
20120209289 Duque et al. Aug 2012 A1
20120253227 Shener-Irmakoglu et al. Oct 2012 A1
20130131452 Kuroda et al. May 2013 A1
20140031834 Germain et al. Jan 2014 A1
20160184046 Blain Jun 2016 A1
20170020545 Loreth Jan 2017 A1
20170360466 Brown Dec 2017 A1
Foreign Referenced Citations (5)
Number Date Country
105559892 May 2016 CN
106456205 Feb 2017 CN
102010050352 May 2012 DE
1753350 Aug 2014 EP
2015023965 Feb 2015 WO
Non-Patent Literature Citations (3)
Entry
Chinese Office Action issued in corresponding Chinese Application No. 201910088354.9 dated Nov. 3, 2021.
Partial European Search Report issued in corresponding European Application No. 19156616.5 dated Jun. 14, 2019, 11 pages.
Extended European Search Report issued in European Application No. 19156616.5 dated Sep. 18, 2019, 9 pages.
Related Publications (1)
Number Date Country
20210100577 A1 Apr 2021 US
Continuations (1)
Number Date Country
Parent 15895407 Feb 2018 US
Child 17124658 US