The present invention relates to powered wheelchairs, and more specifically powered wheelchair configurations enabling side access.
Powered wheelchairs often have six wheels including a pair of center wheels, a pair of rear wheels, and a pair of front wheels. Typically, one pair of wheels is driven by, and directly connected to, a drive. The front wheels may be suspended above the ground surface, are fixed except for the capability of turning about their axis of rotation; such wheels are referred to herein as “fixed wheels.” Wheels that are configured to ride on the ground surface during normal operation typically have the capability to swivel about a vertical axis; such wheels are referred to herein as “castors.”
Wheelchairs that employ fixed wheels often employ springs to suspend the fixed wheels above the ground at the end of forward extending arms. The fixed wheels are the first part of the wheelchair that contact an curb, and the fixed wheels are configured to ride over a curb.
Wheelchairs that employ castors often are disposed on forward-extending arms that are coupled to the frame at a pivot. Some wheelchairs, such as those employing an Active-Track™ suspension, available on some powered wheelchairs from Pride Mobility Products Corporation, have pivoting front castor arms that raise in response to wheelchair acceleration or motor torque to enhance the capability of the wheelchair to climb curbs. Pivotable front castor arms typically employ biasing springs to provide a downward force that is balanced against the drive's capability to raise the castors for ascending a curb and that urges the castors downward to contact the lower ground surface while descending a curb.
Wheelchairs typically have a frame onto which loads from the passenger and the wheelchair's batteries are applied. To properly distribute the load between the center wheels and the rear castors (and where applicable the front castors) and to enhance stability of the wheelchair, loads from the batteries and passenger typically are applied between the axis of rotation of the center wheels and the rear castors, especially where the center wheels are the drive wheels. Often, the batteries are located such that their center of gravity is near, but rearward of, the center drive wheels or in general near the center of the wheelchair. To accommodate the battery location, the drive for each drive wheel typically includes a longitudinally oriented (that is, oriented parallel to the axis of straight-ahead movement of the wheelchair) motor and a right-angle gearbox. An exception to such drive and battery configuration is shown in U.S. Pat. No. 5,964,473 (“Degonda”), which discloses a transversely oriented motor that splits the battery compartment.
Because the conventional location of the battery compartment is at least partly underneath the passenger chair, the chair may be required to be removed to access the batteries.
A powered wheelchair includes a battery compartment having a side opening and a removable cover. The wheelchair includes a frame; a pair of opposing drives; a pair of drive wheels; and a power supply compartment that is generally located behind the drives. The compartment has a side opening through which a power supply may be removed. A chair is supported on the frame such that the side opening of the compartment is accessible and such that the power supply may be removed without removing the chair from the frame. Each drive includes a substantially-transversely mounted motor and gearbox, and each one of the drive wheels is coupled to a corresponding one of the drives. The power supply preferably is two or more batteries. The present invention also encompasses a method of removing a battery via the side access.
Preferably, the wheelchair includes a cover that has an first position in which cover is generally located over the side opening of the compartment and a second position in which the cover is spaced apart from the side opening to enable access thereto. The cover is removable from the compartment. Preferably, the compartment has an upwardly extending lip on its lower edge proximate the side opening. The cover includes a panel portion that is approximately the same size as the side opening, and has a groove on its lower edge that engages the lip while the cover is in its first position.
As described below, the wheelchair preferably has a drive arrangement in which the gearbox is a single reduction gearbox, and the batteries are generally located to the rear of the drives. And preferably, every portion of the batteries is located to the rear of the centerline of the drive wheel axis, and preferably, every portion of the batteries is located to the rear of the drives.
The chair preferably is supported on the frame by a single post that attaches to the frame at a point that is behind a centerline of the drives, and preferably at a point that is rearward of a centerline of the drives and forward of a compartment.
The preferred wheelchair in which the above configuration is employed is more fully described below. The wheelchair may be of the type having a pair of drives operatively coupled to the drive wheels, each one of the drives including a motor and a gearbox, each one of the drives being pivotally coupled to the frame only at a single pivot axis; a forward-extending, front arm rigidly coupled to the drive assembly; and a front wheel rotatably coupled the front arm, a centerline of the pivot axis has a vertical height that is approximately the same or less than the vertical height of an axis of rotation of the front wheel. A drive mount to which the drive is rigidly coupled may be coupled to the frame at the pivot axis.
The drive mount may be a mounting plate to which the drive and the front arm are affixed, and it may include a substantially-upright planar surface that is substantially perpendicular to an axis of rotation of the drive wheels.
Each one of the drives may have a longitudinal centerline that is parallel to an axis of rotation of the corresponding drive wheel. Preferably, each drive includes a DC motor and a single-reduction gearbox.
The front wheel may be a castor such that the castor is in contact with a support surface while the wheelchair is at rest such that the front arm is not biased by a spring. Alternatively, the front wheel may be an anti-tip wheel such that the anti-tip wheel, in its rest position, is spaced apart from a support surface. The anti-tip wheel may be supported by a spring in its rest position. A spring may be coupled between the frame and one of the drives or a mounting plate of the drive to suspend the anti-tip wheel in its rest position.
Preferably, each drive is oriented substantially transverse to the direction of wheelchair translation. And the wheelchair includes a power source, such as batteries, for supplying power to the motor. The power source is disposed to the rear of the drives. For example, the entire power source may be disposed to the rear of the centerline of the drive wheel axis, or essentially every portion of the power source may be disposed to the rear of the drives. The batteries preferably are located in a power source compartment or battery compartment that is disposed to the rear of the drives.
The weight of the chair assembly may be transmitted to the frame at a point between the drives and the power source And the pivot axis may be disposed forward of the axis of rotation of the drive wheels. Preferably, the pivot axis is spaced apart from the front wheel axis by a horizontal dimension that is between 40% and 65%, more preferably 45% and 60% and even more preferably approximately 54%, of the horizontal dimension between the drive wheel axis and the front castor axis. The pivot axis may be located forward of the drive wheel axis such that the front castors bear between 20% and 50% of the wheelchair load measured with the chair at rest on a level, flat surface without a passenger.
A method of ascending an obstacle, such as a curb, in a powered wheelchair is provided that comprises the steps of: (a) providing a wheelchair that includes: a frame; a pair of opposing drive wheels and at least one rear wheel; each side of the wheelchair including: a drive including a motor and a gearbox, the drive being pivotally coupled to the frame only at a single pivot axis; a forward-extending, front arm rigidly coupled to the drive assembly; and a front wheel rotatably coupled the front arm, a centerline of the pivot axis has a height that is approximately the same or less than the vertical height of an axis of rotation of the front wheel; (b) positioning the wheelchair such that the front wheels are in contact with or in close proximity to an obstacle that has a height measure from a support surface that is approximately equal to or less than the height of the front wheel axis of rotation; and (c) urging the wheelchair forward to enable the front wheels to ascend the obstacle.
A user may apply a forward, horizontal force from the wheelchair drive that forms a moment with the reaction force from a contact surface of the obstacle, thereby enabling the front wheels to ascend the obstacle. The pivot may move upwardly as the front wheel ascends the obstacle and the frame may pitch upwardly as the front wheel ascends the obstacle. After the force is applied and after the front wheel has ascended the obstacle and before the drive wheel has ascended the obstacle, the frame may pitch rearward compared to its position in position step (b).
The wheelchair may also include a frame; a pair of opposing drives including a substantially-transversely mounted motor and gearbox; a pair of drive wheels, each one of the drive wheels coupled to a corresponding one of the drives; and a chair assembly supported on the frame and being moveably coupled thereto such that the chair is forwardly moveable to enhance access to a power supply portion, such as a battery portion, of the wheelchair without fully removing the chair from the frame. The batteries may be disposed rearward of the chair support.
The chair may be supported on the frame by a single post to which the chair assembly is mounted. The chair assembly may include a seat and a hinge coupled to the seat such that the seat is forwardly moveable by pivoting about the hinge, and a stud and retainer having a slot formed therein such that stud is slideable in the slot and lockable to retain the chair in a forward position. The chair assembly may be biased toward a forward position and be capable of being retained in a lower position by a pin. The chair assembly may also include a latch mechanism including a handle and a cam that retains the chair in lower, operational position, the cam being releasable upon actuation of the handle. The chair assembly may also include a seat and a slide coupled to the seat such that the seat is forwardly moveable by sliding.
The wheelchair may comprise a frame; a pair of drive wheels and at least one rear wheel; and a pivoting assembly including a drive assembly and a front arm assembly, the drive assembly is (i) transversely mounting relative to the frame, (ii) operatively coupled to one of the drive wheels and (iii) pivotally connected to the frame, the front arm assembly includes a front wheel rotatably coupled to an arm, the front arm assembly is rigidly coupled to the drive assembly, whereby the drive assembly and front arm assembly pivot in unison about the pivotal connection upon encountering an obstacle.
The front wheel may be an anti-tip wheel that is suspended from a ground surface on which the wheelchair travels, and include a suspension capable of acting on the arm. Alternatively the front wheel may be a castor wheel that is normally in contact with the ground surface on which the wheelchair travels. A centerline a pivot axis of the pivotal connection between the drive assembly and the frame may have a vertical height that is approximately the same or less than the vertical height of an axis of rotation of the front wheel.
The drive assembly may include a motor and a reduction gearbox that is oriented such that motor has a longitudinal axis that is transverse relative to the frame. The drive assembly includes a mount to which the gearbox is affixed, and the mount includes a surface to which the front arm is rigidly affixed. Preferably, the mounting is a vertical plate. In this configuration, a battery compartment is located rearward of the drive, and a chair is coupled to the frame such that it is forwardly movable to enable access to the battery compartment without removing the chair from the frame.
Two embodiments of a wheelchair are disclosed herein to illustrate aspects of the wheel chair consistent with the present invention. A first embodiment wheelchair 10 is shown in
First embodiment wheelchair 10 includes a frame assembly 12, a chair assembly 14, a drive assembly 16, a front pivot assembly 18, and a rear wheel assembly 20. Frame assembly 12 in the embodiment shown is a box-like structure that is formed of welded and/or bolted square and round tubing and formed plates. The frame structure, which is generally referred to herein by reference numeral 24, includes a central support 25a, a rear support 25b, a T-shaped support 25c, a pair of pivot supports 25d, and a footrest support 25e. Frame 24 is generally rigid, even though the present invention encompasses frames having joints for enhancing the suspension or any other reason.
Central support 25a, which is best shown in
A housing 26 for holding batteries 82 or other power source is bolted or welded to frame 24. A chair support, such as support post 27, extends upwardly from frame 24. Support post 27 may be integrally formed as a portion of frame 24 or may be a separate structure. Support post 27, as best shown in
According to a first configuration for enabling battery access, chair assembly 14 includes a seat 30 for holding the wheelchair passenger, a seat post 31 for insertion into tube 28c of support post 27, and a hinge assembly 32 for enabling the seat 30 to pivot forward. Hinge assembly 32 enables seat 30 to pivot relative to seat post 31. As best shown in
To retain the seat in its forward-most position, which is shown in
Referring to
A latch mechanism 40′ holds lower bracket 34b′ in its rearward-most or lower-most position, in which upper bracket 34a′ rests on lower bracket 34b′, and is coupled to an ear or flange 41a′ on upper plate 34a′. The lower-most position is shown in
Lower bracket 34b′ includes connections for cylinders 38′, a connection for seat post 31′, and a downwardly projecting ear or flange 41b′. Flange 41b′ preferably has a curved portion that forms a smooth transition between a substantially vertical portion of flange 41b′ and the major surface of bracket 34b′. Thus, when upper bracket 34a′ is lowered onto lower bracket 34b′, pin 48a′ contacts the curved portion of flange 41a′ and gradually retracts. Pin 48a′ aligns with a hole 48b′ formed in flange 41a′ when upper bracket 34a′ is fully engaged with lower bracket 34b′. Pin 48a′ then extends into hole 48b′ to retain upper bracket 34b′ onto lower bracket 34a′.
Locking handle 40″ includes a handle portion 48″ and a pair of cam portions 49″ that are connected to tabs 41a″ via a hinge 47″. In the lower position, shown in
Referring to
Each one of the pair of slides includes a slide member 33a that is fixed to the upper bracket 34a′″ and a cooperating slide member 33b that is fixed to the lower bracket 34b′″. Slide members 33a and 33b may have any configuration that will enable seat 30 to slide relative to lower bracket 34b′″, including conventional slides.
According to a second configuration for enabling battery access, a wheelchair 110 is shown in
Chair assembly 114 is shown only schematically in
As best shown in
Battery compartment 126 may include a substantially flat front flange 134a that extends from sidewall 128c and a substantially flat rear flange 134b that extends from rear wall 128b. Front flange 134a may be approximately horizontal or have another orientation to enable it to mate to a front portion of cover 140. Rear flange 134b may be approximately vertical to enable it to mate to a rear portion of cover 140. Each of flange 134a and 134b includes a hole or slot through which a bolt or screw may be inserted.
Cover 140 includes a panel 142 and a bracket 144. Panel 142 has approximately the same dimensions as opening 130 and panel 142 may be located over opening 130. Preferably, the bottom edge of panel 142 includes a longitudinal groove 143, which is shown schematically by dashed lines in
Cover 140 may be structural such that it retains or helps retain batteries 82 within battery compartment 126 or it may be primarily decorative such that lip 132 retains batteries 82. And the present invention is not limited to the particular size of panel 142, but rather encompasses a panel that is larger than the opening, a panel that is smaller than the opening, and even covers that do not have a panel. As used herein, the term “located over” when used with reference to a cover generally describes the spatial relationship between the cover to the opening.
Bracket 144 includes a front bracket tab 146a, a rear bracket tab 146b, and a main bracket member 146c that spans between tabs 146a and 146b. Front bracket tab 146a may be approximately horizontal or otherwise arranged to match or mate with compartment front flange 134a. Rear tab 146b has a bend such that it wraps around the rear of battery compartment 126 and matches or mates with compartment rear flange 134b. Preferably, tabs 146a and 146b are attached to flanges 134a and 134b, respectively, by wing nuts, thumbscrews, or like fasteners. A bracket, cowling, or like structure that has the same general shape as main bracket member 146c may be provided on the opposite side of wheelchair 110 to balance the appearance.
To access the batteries, the fasteners (not indicated in the figures) may be removed from cover 140, and cover 140 may be tilted outwardly or lifted such that lip 132 is removed from groove 143. The rear-most battery 82 may then be lifted over lip 130 and removed from compartment 126 by sliding. The front-most battery 82 may then be moved rearward and then removed by sliding. Preferably, the batteries can be removed without removing the chair and even without tilting the chair forward. The present invention encompasses a combination of accessing the batteries from the side of the wheelchair and tilting the chair forward.
The position of the batteries relative to chair assembly 114 aids in their removal. For example, preferably the batteries are generally located to the rear of the drives, and more preferably every portion of the batteries is located to the rear of the centerline of the drive wheel axis or entirely to the rear of the entire drives. Preferably, the support post attaches to the frame at a point that is rearward of a centerline of the drives and forward of the battery compartment.
Battery compartment 126 has been described with reference to a wheelchair 110 having castors as described for first embodiment wheelchair 10, but battery compartment 126 and the related method of accessing and removing batteries 82 may, of course, be employed with a wheelchair that employs raised anti-tip wheels as described for the second embodiment 10′. Wheelchairs 10 and 10′ are described more fully below.
Wheelchair 10 includes a pair of drive assemblies 16 and pivot assemblies 18. Preferably, the left combination of drive assembly 16 and pivot assembly 18 is the mirror image of the right combination of drive assembly 16 and pivot assembly 18. For convenience, only one of each assembly drive 16 and pivot assembly 18 is described in detail herein, as it is clear that the description applies equally to each one of the left and right assemblies 16 and 18.
Drive assembly 16 includes a pair of drives 50, each of which includes a motor 52 and a gearbox 54, a mounting plate 56, and a pair of drive wheels 58. Drive assembly 16 is pivotally coupled to frame assembly 12 by the pivot 29 between frame structure 24 and mounting plate 56. Motor 52 preferably is oriented with its centerline (that is, the central axis of its output shaft) parallel to the output shaft of gearbox 54, which is coupled to a drive wheel 58 as shown in the figures. A longitudinal centerline of the output shaft of gearbox 54 is collinear with the drive wheel rotational axis, which is designated C-DW. Motor 52 may be oriented such that its centerline is collinear with or as shown in the figures—is parallel to, but offset from, drive wheel rotational axis C-DW and the output shaft of gearbox 54.
Drives 50 preferably are mounted transverse to the direction of translation of the wheelchair. As illustrated by arrow F shown for example in
Drive 50 is rigidly affixed to mounting plate 56. Mounting plate 56 preferably is planar and oriented perpendicular to rotational axis C-DW of drive wheels 58. As best shown in
The configuration of drive 50 aids in locating battery compartment 126, but is not required to obtain the benefits of the inventive aspects of wheelchair 10. The configuration of drives 50 also provides improvement in efficiency compared with conventional right angle drives. Preferably drive 50, which is shown in
Pivot assembly 18 includes a front arm, such as castor arm 60, a swivel bearing 62, a castor support 64, and a castor wheel 66. Castor arm 60 is rigidly coupled to drive 50 via motor mounting plate 56. Preferably, a rearward end of castor arm 60 is affixed to an upper portion of mounting plate 56. Bearing 62 preferably has a barrel that is oriented vertically to enable castor wheel 66 to swivel or turn about a vertical axis to enhance the capability of wheelchair 10 to turn. Castor support 64 includes a fork on which an axle or bearing of castor wheel 66 is fixed.
Rear wheel assembly 20 includes an articulating beam 70 that is coupled to frame 24 at mounting plate 25f, a pair of swivel bearings 72, a pair of rear castor supports 74, and a pair of rear castors 76. Beam 70 is coupled to mounting plate 25f by any means that enables beam 70 to articulate to adapt to changes in the ground. The articulating structure and function are of rear castor beams are well-known. Bearings 72 are disposed on distal ends of beam 70, and each preferably includes a barrel that is vertically oriented to enable the corresponding castor 76 to swivel or turn to enhance the capability of wheelchair 10 to turn. Castor support 74 includes a fork on which an axle or bearing of castor wheel 76 is fixed.
Support post 27, and preferably the connection between support post 27 and frame 24, is disposed rearward of drive motors 5, preferably generally rearward of drive assembly 16, and preferably rearward of the drive wheel axis of rotation C-DW. The connection between support post 27 and frame 24 may be the location at which the load from chair assembly 14 and the passenger is transmitted to frame 24. Battery housing 26, and thus batteries 82 or other power source, preferably is disposed substantially, and preferably entirely, rearward of drive wheel axis C-DW, and preferably substantially, and more preferably entirely, rearward of the support post 27 connection to frame 24. Also, the invention encompasses the center of gravity of batteries 82 or other power source being located rearward of the support 27 connection and/or rearward of drive wheel axis C-DW.
The generally rearward position of battery housing 26 and the capability of seat 30 to move forward (by the mechanisms 32 or 32′ or any other mechanism) enables access to the batteries without fully removing seat 30. In this regard, the wheelchair cover, which typically covers the batteries and mechanical components, may be removable or configured with a hatch (not shown in the figures) to enable direct access to the batteries. Also, the generally rearward position of battery housing 126 enables access to the batteries without moving seat 230. No aspect of the present invention is limited to enabling access to batteries 82 as described herein, unless such limitation is expressly recited in the claim.
The loads borne by frame 24 are transmitted to the ground via drive wheels 58, front castors 66, and rear castors 76. As will be clear to people familiar with wheelchair design, the location of pivot 29 will affect the weight distribution of wheelchair 10. In this regard, the position of pivot 29 forward of drive wheel axis C-DW causes front castors 66 to bear a vertical load while wheelchair 10 is at rest, as mounting plate 56 is supported by drive wheel 58 via its axle. Configuring the wheelchair such that front castors 66 bears a vertical load during steady-speed operation on level ground and/or while at rest on level ground is considered to enhance the stability and stable feel of a wheelchair.
The position of pivot 29 may be chosen to achieve the desired weight distribution and the desired downward load borne by front castors 66. The weight distribution and magnitude of load borne by the castors may be chosen according to such parameters as desired stability of the particular wheelchair during operation on level ground and while ascending and descending a step, motor torque and horsepower, other wheelchair dimensions (such as the horizontal distance from drive wheel axis C-DW to the rear castors), overall wheelchair weight, and like parameters.
For the wheelchair 10 shown in
Conventional wheelchairs having front castors often employ springs to bias the castors. The configuration of pivot assembly 18 enables the front suspension of wheelchair 10 to function without a spring bias on castor 66 because of the downward force applied to castors 66 described above. Forgoing biasing springs in the anti-tip wheels eliminates the step of adjusting spring bias for the weight of the wheelchair occupant. The present invention, however, is not limited to wheelchair lacking springs, regardless of the type of front wheels employed.
Referring to
Referring again to
In the position shown in
Frame assembly 12′ in the embodiment shown in
Central support 25a′, which is best shown in
Drive assembly 16′ of second embodiment wheelchair 10′ includes a pair of drives 50′, each of which includes a motor 52′ and a gearbox 54′, a mounting plate 56′, and a pair of drive wheels 58′. Motor 52′ preferably is oriented with its centerline (that is, the central axis of its output shaft) parallel to the output shaft of gearbox 54′, which is coupled to a drive wheel 58′ as shown in the figures. A longitudinal centerline of the output shaft of gearbox 54′ is collinear with the drive wheel rotational axis, which is designated C-DW. Motor 52′ may be oriented such that its centerline is collinear with or—as shown in the figures—is parallel to, but offset from, drive wheel rotational axis C-DW and the output shaft of gearbox 54′. Accordingly, drives 50′ preferably are mounted transverse to the direction of translation of the wheelchair. The forward direction of wheelchair translation is indicated in
Drive 50′ is rigidly affixed to mounting plate 56′. Mounting plate 56′ is pivotally connected to pivot support 25d′ by pivot 29′, as best shown in
Pivot assembly 19 includes a forward-extending front arm, such as fixed wheel or anti-tip wheel arm 90, and a suspension assembly 91. Arm 90 includes a front end 92a to which an adjustment plate 102 is connected and a rear end 92b that is affixed to front projection 57b′.
Adjustment plate 102 includes a pivotable connection 120, holes 122 formed through plate 102, and a bearing mounting 124 to which a front wheel 108 is attached. A bolt or pin 126 extends horizontally through arm front end 92a and through one of holes 122. The height of wheel 108 may be adjusted by removing pin 126, pivoting plate 102 up or down to a desired position, and replacing pin 126 into another one of holes 122. The height of wheel 108 may be adjusted to be closely spaced apart from ground plane surface 200 or adjusted such that the rotational axis of wheel 108 is higher than an expected curb height. In general, the purpose, procedure, and desired position for adjusting the height of anti-tip wheels 108 will be understood by persons familiar with wheelchair technology. Adjustment plate 102 is shown for illustration, and the present invention is not limited to wheelchairs having a front wheel height adjustment nor to a particular configuration of a height adjustment mechanism.
Suspension assembly 91 preferably includes a front spring 94a and a rear spring 94b. Front spring 94a has an upper end that is pivotally connected to a mounting bracket 96a that extends from an upper portion of pivot support 25d′. A lower end of spring 94a is pivotally connected to an intermediate portion of arm 90 between arm front end 92a and arm rear end 92b, and thus spring 94a acts on arm 90 forward of mounting plate 56′ and rearward of adjustment plate 102. Rear spring 94b has an upper end that is pivotally connected to a mounting bracket 96b that extends rearward from pivot support 25d′ and a lower end that is pivotally connected to a rearward portion 57c′ of mounting plate 56′. Preferably, front spring 94a includes a threaded rod and adjustment nut 128 to adjust the spring force and height of spring 94a.
Springs 94a and 94b each resist pivoting of mounting plate 56′ because of weight of frame 24′ and thus position mounting plate 56′ and position arm 90. Also, each spring 94a and 94b resists pivoting of mounting plate 56′ in response to contact with an obstacle. In this regard,
Upon initially mounting or ascending curb 201, frame 12′ preferably tilts slightly upward. The position of the pivoting connection 29′ may be chosen to cooperate with the operation of wheel 108 and drive wheels 58′, as will be understood by persons familiar with wheelchair design and configuration in view of the present disclosure. Also, the position of pivot connection 29′ enhances the capability of arm 90 of wheelchair 10′ to rise relative to the ground in response to an increase in motor torque and/or to wheelchair acceleration. Front castors 66 of first embodiment wheelchair 10 generally remain in contact with the ground surface in response to most applications of motor torque and/or acceleration. The present invention, however, is not limited by the capability or lack of capability of the arms, such as arms 60 or 90, raising in response to application of motor torque, acceleration, or like operations.
The spatial relationship between support post 27′, drive motors 52′, and batteries 82′ is the same as described above with respect to first embodiment wheelchair 10. Accordingly, the capability of chair 30′ to move forward enables or enhances access to batteries 82′ without fully removing chair 30′ from frame 24′, as explained more fully above.
The description of wheelchairs 10 and 10′ and their respective subsystems is for illustration purposes, and the present invention is not intended to the particular descriptions provided herein, nor is the designation of parts into particular subsystems intended to limit the scope of the invention in any way. For example, the description of the frame assembly does not limit the scope of the invention to devices having a rigid frame, but rather the invention encompasses all frame structures, including those having flexible or movable structure; describing the hinge assembly as a portion of the chair assembly should not be construed to limit the invention to such structure; and describing components of the wheelchair as part of the pivot assembly is not intending to be limiting. Further, the hinge assembly structure and slide assembly structure for moving the seat, the configuration for enabling access to the batteries without moving the chair, the frame structures, the chair assembly structure, the drive assembly structures, the pivot assembly structures, and rear beam structure are described herein for illustration purposes, and are not intended to limit the scope of the invention except for the particular structure that is explicitly recited in the claim.
This application claims priority under 35 U.S.C. §119(e) to U.S. provisional application No. 60/727,536 filed Oct. 17, 2005, which is incorporated by reference herein in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
3794132 | Moon | Feb 1974 | A |
3807520 | Chisholm | Apr 1974 | A |
3952822 | Udden et al. | Apr 1976 | A |
4566551 | Feliz | Jan 1986 | A |
5042607 | Falkenson et al. | Aug 1991 | A |
5094310 | Richey et al. | Mar 1992 | A |
5156225 | Murrin | Oct 1992 | A |
5156226 | Boyer et al. | Oct 1992 | A |
5351774 | Okamoto | Oct 1994 | A |
5435404 | Garin, III | Jul 1995 | A |
5664266 | Williams et al. | Sep 1997 | A |
5778996 | Prior et al. | Jul 1998 | A |
5964473 | Degonda et al. | Oct 1999 | A |
6202773 | Richey et al. | Mar 2001 | B1 |
6341657 | Hopely et al. | Jan 2002 | B1 |
6375209 | Schlangen | Apr 2002 | B1 |
6439634 | Jensen et al. | Aug 2002 | B1 |
6450867 | Legatt | Sep 2002 | B1 |
6601863 | Mentessi et al. | Aug 2003 | B1 |
6640916 | Schaffner et al. | Nov 2003 | B2 |
6923278 | Mulhern et al. | Aug 2005 | B2 |
20010011613 | Schaffner et al. | Aug 2001 | A1 |
20030089537 | Sinclair et al. | May 2003 | A1 |
20040251063 | Patterson et al. | Dec 2004 | A1 |
20050000742 | Mulhern et al. | Jan 2005 | A1 |
20050077698 | Grymko et al. | Apr 2005 | A1 |
Number | Date | Country | |
---|---|---|---|
20070181353 A1 | Aug 2007 | US |
Number | Date | Country | |
---|---|---|---|
60727536 | Oct 2005 | US |