Powered windows have not yet been widely accepted in the marketplace. The reasons are numerous, but may include product expense, consumer mistrust of the safety and/or security of the technology, or other reasons. Many consumers view windows as a building material that is simply opened or closed when needed and, in the interim, largely forgotten, since the window performs little function other than ventilation. Additionally, many automated windows neither control nor adequately address energy, security, performance, and/or impact resistance automatically, without constant user input.
In one aspect, the technology relates to: a window unit having: a frame; a sash slidably disposed in the frame; a panel slidably disposed in the frame, wherein the panel is disposed parallel to the sash; a receiver fixed at a first end of the frame, wherein when the sash is in a first position, the sash is disposed substantially within the receiver, and wherein when the sash is in a second position, the sash is disposed substantially outside the receiver; a motor fixed relative to the frame; a drive system connecting the motor to at least one of the sash and the panel; and a control input connected to the motor, wherein the control input is configured to receive a signal from at least one of a controller, a sensor, and a building management system. In an embodiment, the drive system includes a pulley and at least one of a chain and a cable. In another embodiment, at least one of the chain and the cable includes a first end, a second end, and a central portion, wherein the first end is connected to the sash proximate an upper portion of the sash, and wherein the second end is connected to the sash proximate a lower portion of the sash, and wherein the central portion is disposed about the pulley. In yet another embodiment, the motor includes a sash motor and wherein the drive system includes a sash drive system, wherein the sash motor and the sash drive system are configured to move the sash between the first position and the second position. In still another embodiment, the motor includes a panel motor and wherein the drive system includes a panel drive system, wherein the panel motor and the panel drive system are configured to move the panel.
In another embodiment of the above aspect, the controller is mounted to the window unit, wherein the window unit has an output connected to the control input. In an embodiment, the control unit is connected to at least one of a building power source, a battery, and a solar panel. In another embodiment, the solar panel is disposed on an exterior panel secured to the frame. In yet another embodiment, the exterior panel at least partially defines the receiver. In still another embodiment the solar panel, wherein the solar panel is disposed the panel.
In another embodiment of the above aspect, the panel includes at least one of a solar panel, a security panel, a screen, a mesh, a louver, and a reflective panel. In an embodiment, the motor is disposed in a motor compartment disposed at a second end of the frame, opposite the first end of the frame. In another embodiment, the motor is disposed in the receiver. In yet another embodiment, the sash is biased into the first position.
There are shown in the drawings, examples which are presently preferred, it being understood, however, that the technology is not limited to the precise arrangements and instrumentalities shown.
The technologies described herein are directed to a powered window system or unit that is intended for schools, health care, hotels, light commercial, residential, and other energy-conscious facilities. In addition to high air resistance, water resistance, and structural performance, examples of such window systems manage any or all of security, ventilation, energy savings, energy generation, and may meet American with Disabilities Act (ADA) requirements.
The powered window systems may be installed in a vertically- or horizontally-operating orientation. High performance insulated glass may be installed in the window sash. Examples of the window system may include a movable panel that covers and uncovers the window sash opening. The panel may provide insulation, improve security, and increase storm and/or impact resistance, among other functions. In addition, the panel can include a solar panel, decorative panel, screen, etc. Multiple panels can be utilized. Other accessories (such as ventilators) may be added to interior or exterior insulated panels. Ventilators may be used to exchange indoor and outdoor air at each discrete window unit, for ventilation, free cooling, etc. Additionally, warm air that may be present within the window unit itself due to solar heat gain could be vented to optimize energy usage and comfort within the building. Additionally, an insect-resistant screen may be unrolled automatically as either or both of the window sash or panel is opened, to prevent intrusion of insects.
Both the window sash and the panel cover may be operated by electric motor drive systems or mechanical drive systems to slide those elements remotely and independently. The motor, control components, sensor, and so on may be powered by a dedicated (e.g., battery) power system, building power system, and/or one or more solar cells. The solar cells may be integrated into an exterior portion of the window to maintain and charge the power system battery if present, or deliver electrical power back to the building power grid. The window system manages and conserves energy, and provides impact resistance, privacy, and security for the building, even when the sash is open. In certain examples, the window system may be controlled remotely. The movable window sash and panel may operate separately or together. An energy and/or security management system may control the window with little or no energy consumption. This window system may rely on sensors and a CPU to operate the window, communicate status, etc. The sash and panel may be controlled by an energy and security management system that may be integrated and powered with solar cells, building power, or otherwise. In various examples, this management system may open and close the window sash, open and close the panel, and/or manage the energy collection/distribution system.
The window system includes a frame that holds the window sash and the panel. The frame also contains electric motor drive systems or mechanical drive systems. One drive system may power the window sash to open and close the window for ventilation. Another drive system may power the panel to protect and/or insulate the window. In another example, a single drive system with a clutch mechanism may be used to actuate the window sash and panel. Additional drive systems or actuators may be used for other window functions if required or desired. The window frame also provides weatherstripping to control air flow and water control to prevent water from penetrating the structure in which the window is mounted. In addition, the window frame also provides insulation across the overall frame to insulate the window system.
With these broad concepts in mind, several examples of powered window systems are described below. For example,
The window frame 102 includes weather-resistant structural members joined in a manner to hold the other components. The frame 102 is secured to the building structure to provide a weather-resistant seal, typically at one or more side jambs 112, a head 114, and a sill 116. Weatherstripping and insulation may also be incorporated into the frame 102.
The sash 104 is generally installed on an interior (relative to the movable panel) of the window unit. This interior-mounted sash 104 may be an insulated glass assembly. The glass assembly may be of various thicknesses and may incorporate various high performance enhancements like glass coatings, gases between the panes of glass, and/or vacuum insulated glass. Coatings may be those available in the art, including but not limited to colored, electrochromatic, and reflective. In certain examples, the sash 104 may be substantially frameless, or the frame of the sash 104 may be hidden within the window frame 102. The sash 104 slides up and down or side-to-side in the frame 102 (depending on the installation orientation) and may be sealed with weatherstripping. The sash 104 may be attached to a sash drive system (e.g., the drive system 108) disposed within a drive cavity 120 of the window frame 102. The drive system 108 may be connected to the sash 104 within the side jambs 112 so as to be hidden from view during use. In certain examples, it may be desirable that the window sash 102 is not movable, e.g., in high-rise building applications where opening windows may be undesirable. The window system 100 may still perform other functionality as described herein, even though the sash 104 is not movable.
An exterior panel 126 may incorporate a solar panel and/or may be configured to resemble the exterior structure of the building in which the window system 100 is installed. As with the interior panel 118, this panel may also be insulated. In examples, this panel 126 may be removeable, but for security purposes, it may be desirable that only the interior panel 118 is removeable. The interior panel 118, exterior panel 126, sill 116, and side jambs 112 at least partially define a receiver 128. The receiver 128 is configured to receive both the panel 122 and the sash 104 when these components are in the open position. In examples, substantially all of the panel 122 and sash 104 may be received in the receiver 128 when in the open position. When in the closed position, a lower portion of either or both of the panel 122 and the sash 104 may still be disposed in the receiver 128 to maintain stability of those elements. The drive cavity 120 may be access via an access panel 128 on an interior side 130 of the window unit 100. An exterior drive cavity panel 132 may be finished to match the exterior aesthetics of the building, include a solar panel, etc. A spring, balance, or other biasing element 134 may be connected to either or both of the sash 104 and the panel 122. In the event of a power failure, drive system failure, or other condition, a user may activate a mechanical release that disengages the drive system 108 from the motor 106. The biasing element 134 would then force either or both of the sash 104 and panel 122 into the open position to allow for egress. In other examples, the weight of the sash 104 and panel 122 may be sufficient to lower those elements by gravity once released. The mechanical release may be desirable so a more routine power loss (e.g., due to a storm power outage) will not open the sash 104 and panel 122, thus maintaining security of the building. A spring balance may also be used to minimize the amount of energy required by the motor to raise or lower either the sash 104 or the panel 122.
The drive system 212 may include an emergency egress button or switch (not shown in
In
In
In
In
The window systems described herein may be incorporated into so-called “green” or “zero energy” buildings and may thus provide LEED credits to building owners and/or tenants. Each individual window unit may be controlled remotely or at the unit itself. If controlled at the window itself, a panel of the window system may include a controller in the form of buttons, switches, touchscreen(s) including a graphic user interface, or other such systems. A single controller disposed on a single window system may be used to control multiple window systems. The controller may communicate with the motors, actuators, sensors, and other elements in other window systems via wired or wireless connections. Sensor can include outdoor or indoor air temperature sensors, rain sensor, or other sensors.
With these general principles in mind, a specific example of a WMS 400 is further described in
Exterior sensors 408 may include weather sensors 408A and solar sensors 408B. Weather sensors 408A contemplate outdoor air temperature sensors, rain sensors, wind sensors, sensors that measure barometric pressures, and other sensors. Information derived from these sensors can be used to optimize functionality of the WMS 400. For example, activation of a rain sensor and a wind sensor may cause the WMS CPU 402 to close all sashes on a side of a building that may be susceptible to rain ingress. A desirable reading from the solar sensor 408B may cause the WMS CPU 402 to ensure movable solar panels are in place to receive an optimum amount of solar power. Other configurations and functionalities are contemplated.
User controls 410 contemplate any device that be activated by a user (either remotely or local to a window unit) so as to control come aspect of window operation. For example, a controller 410A may be a simple open/close switch to allow a user to operate the sash and or panel of the window. The controller 410A may also allow direct interaction with one or more functions of the window management system 400, via the WMS CPU 402. Indeed, each window may include a controller (e.g., a GUI) that allows a user to control any and all functions of the WMS 400, or a subset thereof. A panic button 410B may be incorporated such that, when activated, both the sash and the panel open to allow emergency egress via the window unit. An alarm may also be sent, e.g., to the building management system 404. Other configurations and functionalities are contemplated.
Motor controls 412 include actuators to actuate sash motor(s) 412A, panel motor(s) 412B, clutches 412C, and can also include overload sensor(s) 412D to detect potential problems associated with the motors. The operation of the motor controls would be apparent to a person of skill in the art. Interior sensors 414 include those that can sense or otherwise detect a condition in an interior of a building, either proximate a particular window unit, or elsewhere. These sensors include fire/smoke sensors 414A, HVAC sensors 414B, light level sensors 414C, temperature sensors 414D, and occupancy sensors 414E. Output from these sensors can trigger the WMS CPU 402 to take certain actions. For example, the WMS CPU 402 may open the windows and open the panels when the HVAC system is in a 100% outside air mode (to take advantage of free cooling available based on building load and outside temperature). By simply allowing air to escape the building via the open windows, power exhaust fans on an HVAC unit need not be operated to draw air through HVAC return ductwork, further saving on energy costs. In another embodiment, the sash may be kept closed and a natural or powered ventilator could be incorporated into the interior and exterior panels of the window system. Panels may be closed when occupancy sensors 414E do not detect the presence of room occupants, which may save on heating costs, if the panels are insulated and cover the glass sash. Other functions based on outputs of certain interior sensors 414 are contemplated.
Sash/panel sensors 416 may detect conditions directly related to the sash or panel. For example, a proximity sensor 416A may detect the proximity of, e.g., a user's arm, within the window opening and not operate the sash and/or panel even if instructed to do so by the WMS CPU 402, for the user's safety. An obstruction sensor 416B may detect an obstruction blocking movement of the sash or panel (e.g., a branch that may have fallen into the window) and prevent further movement (or reverse movement) of the panel so as not to cause damage thereto. An intrusion sensor 416C may detect a force applied to, e.g., an exterior of the sash, which would signal the WMS CPU 402 to active closure of the panel to further secure the building. An egress sensor 416D may detect a similar force applied to an interior of the sash and automatically open the sash and/or panel. Other sensors and functionalities are contemplated.
In its most basic configuration, operating environment 600 typically includes at least one processing unit 602 and memory 604. Depending on the exact configuration and type of computing device, memory 604 (storing, among other things, instructions to perform the device window operation methods described herein) may be volatile (such as RAM), non-volatile (such as ROM, flash memory, etc.), or some combination of the two. This most basic configuration is illustrated in
Operating environment 600 typically includes at least some form of computer readable media. Computer readable media can be any available media that can be accessed by processing unit 602 or other devices comprising the operating environment. By way of example, and not limitation, computer readable media may comprise computer storage media and communication media. Computer storage media includes volatile and nonvolatile, removable and non-removable media implemented in any method or technology for storage of information such as computer readable instructions, data structures, program modules or other data. Computer storage media includes, RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, digital versatile disks (DVD) or other optical storage, magnetic cassettes, magnetic tape, magnetic disk storage or other magnetic storage devices, solid state storage, or any other medium which can be used to store the desired information. Communication media embodies computer readable instructions, data structures, program modules, or other data in a modulated data signal such as a carrier wave or other transport mechanism and includes any information delivery media. The term “modulated data signal” means a signal that has one or more of its characteristics set or changed in such a manner as to encode information in the signal. By way of example, and not limitation, communication media includes wired media such as a wired network or direct-wired connection, and wireless media such as acoustic, RF, infrared and other wireless media. Combinations of the any of the above should also be included within the scope of computer readable media.
The operating environment 600 may be a single computer operating in a networked environment using logical connections to one or more remote computers. The remote computer may be a personal computer, a server, a router, a network PC, a peer device or other common network node, and typically includes many or all of the elements described above as well as others not so mentioned. The logical connections may include any method supported by available communications media. Such networking environments are commonplace in offices, enterprise-wide computer networks, intranets and the Internet.
In some examples, the components described herein comprise such modules or instructions executable by computer system 600 that may be stored on computer storage medium and other tangible mediums and transmitted in communication media. Computer storage media includes volatile and non-volatile, removable and non-removable media implemented in any method or technology for storage of information such as computer readable instructions, data structures, program modules, or other data. Combinations of any of the above should also be included within the scope of readable media. In some examples, computer system 600 is part of a network that stores data in remote storage media for use by the computer system 600.
In examples, the various systems and methods disclosed herein may be performed by one or more server devices. For example, in one embodiment, a single server, such as server 704 may be employed to perform the systems and methods disclosed herein. Portable device 702 may interact with server 704 via network 708 in send testing results from the device being tested for analysis or storage. In further examples, the portable device 702 may also perform functionality disclosed herein, such as by collecting and analyzing testing data.
In alternate examples, the methods and systems disclosed herein may be performed using a distributed computing network, or a cloud network. In such examples, the methods and systems disclosed herein may be performed by two or more servers, such as servers 704 and 706. Although a particular network embodiment is disclosed herein, one of skill in the art will appreciate that the systems and methods disclosed herein may be performed using other types of networks and/or network configurations.
The examples described herein may be employed using software, hardware, or a combination of software and hardware to implement and perform the systems and methods disclosed herein. Although specific devices have been recited throughout the disclosure as performing specific functions, one of skill in the art will appreciate that these devices are provided for illustrative purposes, and other devices may be employed to perform the functionality disclosed herein without departing from the scope of the disclosure.
This disclosure described some examples of the present technology with reference to the accompanying drawings, in which only some of the possible examples were shown. Other aspects may, however, be embodied in many different forms and should not be construed as limited to the examples set forth herein. Rather, these examples were provided so that this disclosure was thorough and complete and fully conveyed the scope of the possible examples to those skilled in the art.
Although specific examples were described herein, the scope of the technology is not limited to those specific examples. One skilled in the art will recognize other examples or improvements that are within the scope and spirit of the present technology. Therefore, the specific structure, acts, or media are disclosed only as illustrative examples. The scope of the technology is defined by the following claims and any equivalents therein.
This application claims priority to and the benefit of U.S. Provisional Patent Application No. 62/036,481, filed Aug. 12, 2014, the disclosure of which is hereby incorporated by reference herein in its entirety.
Number | Date | Country | |
---|---|---|---|
62036481 | Aug 2014 | US |