1. Field of the Invention
The present invention pertains to medical implant devices, such as, without limitation, orthopedic implants, cardiac implants, dental implants, general surgical implants, neurological implants, gastrointestinal implants, urological implants, gynecological implants, or some other implantable medical device, and, in particular, to a method and apparatus for powering such a medical implant device that includes a wireless transponder and/or for reading such a medical implant device having an associated sensor.
2. Description of the Related Art
U.S. Pat. Nos. 7,333,013 and 7,932,825 describe a system wherein a medical implant device, such as, without limitation, an orthopedic (e.g., an artificial knee or hip) or cardiac implant (e.g., a pacemaker), has a radio frequency identification (RFID) tag mounted thereto. The RFID tag stores information relating to the implant and/or the patient, such as, without limitation, the implant type/model/serial number, the implant manufacturer, the procedure date, the hospital and/or the implanting surgeon. That information may later be obtained from outside of the patient's body when needed by reading the RFID tag using a properly equipped RFID reader device. For example, that information can be read by the surgeon or another healthcare professional during a post operative or later visit in order to obtain information needed by that individual during the visit in order to properly examine and treat the patient. As another example, that information can also be read and transmitted to a secure patient database for use in medical outcomes research performed by, for example, a healthcare organization or implant manufacturer.
In one particular implementation, described in U.S. Pat. Nos. 7,333,013 and 7,932,825, the RFID tag mounted to the implant is a passive RFID tag that includes an antenna, and may be read using a conventional RFID reader that is structured to read the implanted passive RFID tag over an air interface. In another particular implementation, an alternative RFID reader may be used, wherein the RFID reader is structured and configured to read the implanted RFID tag by making a direct (i.e., non-air interface) electrical connection to the RFID tag through the patient's living tissue using a probe provided as part of the RFID reader device (e.g., using transcutaneous contact and transcutaneous near field communication (TNFC) or transcutaneous for field communication (TFFC)). This latter implementation is described in U.S. Pat. Nos. 6,487,844, 7,228,183 and 7,825,807. In both of these implementations, the implanted RFID tag is powered by harvesting energy from the RF energy provided by the RFID reader.
Certain passive RFID tags provide a voltage output connection for powering other devices when such power is available from the energy harvested from an RFID reader. One use of this voltage is to power implanted sensors, which may be very simple in design because the RFID system provides a convenient method to communicate with the associated electronics.
As is known in the art, and as shown in
One type of sensor often used in association with passive RFID tags changes its conductivity when connected in an electrical circuit in order to report variations in the parameter to be measured. In one such embodiment, the sensor device is a voltage divider and is typically categorized as a resistor, i.e., a variable resistor. While an ideal variable resistor will essentially have an instantaneous response to an RF burst, such as burst 2, from an RFID reader, actual sensor implementations have dynamics associated with them where it takes a nonzero time for the sensor to reach a steady state output value. This behavior is similar to that of a resistive/capacitive (RC) circuit, exhibiting what is termed an RC time constant (shown in
If the RC and/or RL dynamics of the sensor are sufficiently fast, the reading can be accomplished within the time duration) of the energy burst of the RFID reader (e.g., within the duration, T, of burst 2 shown in
In one embodiment, an RFID reader device is provided that includes a primary RF source structured to output primary RF energy in a form wherein the primary RF energy comprises a plurality of RF bursts, with each consecutive pair of the RF bursts being separated by an associated time interval, and a supplemental RF source structured to output secondary continuous wave RF energy in between each of the RF bursts of the primary RF energy during at least a portion of each of the associated time intervals.
In another embodiment, a method of providing RF energy to a wireless transponder device is provided. The method includes outputting primary RF energy in a form wherein the primary RF energy comprises a plurality of RF bursts, with each consecutive pair of the RF bursts being separated by an associated time interval, and outputting secondary continuous wave RF energy in between each of the RF bursts of the primary RF energy during at least a portion of each of the associated time intervals.
In still a further embodiment, a wireless transponder device is provided that includes electronic circuitry structured to receive an output of a sensor device associated with the wireless transponder device, the output having a transient response portion followed by a steady state portion, and determine a reading for the sensor device based on the transient response portion and not the steady state portion of the output.
As used herein, the singular form of “a”, “an”, and “the” include plural references unless the context clearly dictates otherwise. As used herein, the statement that two or more parts or components are “coupled” shall mean that the parts are joined or operate together either directly or indirectly, i.e., through one or more intermediate parts or components, so long as a link occurs. As used herein, “directly coupled” means that two elements are directly in contact with each other. As used herein, “fixedly coupled” or “fixed” means that two components are coupled so as to move as one while maintaining a constant orientation relative to each other.
As used herein, the word “unitary” means a component is created as a single piece or unit. That is, a component that includes pieces that are created separately and then coupled together as a unit is not a “unitary” component or body. As employed herein, the statement that two or more parts or components “engage” one another shall mean that the parts exert a force against one another either directly or through one or more intermediate parts or components. As employed herein, the term “number” shall mean one or an integer greater than one (i.e., a plurality).
Directional phrases used herein, such as, for example and without limitation, top, bottom, left, right, upper, lower, front, back, and derivatives thereof, relate to the orientation of the elements shown in the drawings and are not limiting upon the claims unless expressly recited therein.
As described above, RFID transponder device 10 is a passive device powered by the RF signal sent by touch probe RFID reader device 12. One passive tag technology, known as backscatter technology, generates signals by backscattering the carder signal sent from the RFID reader. In another technology, described in U.S. Pat. Nos. 6,289,237, 6,615,074, 6,856,291, 7,057,514, and 7,084,605 (and commonly referred to as energy harvesting), RF energy from the RFID reader is harvested and converted to a DC voltage by an antenna/matching circuit/charge pump combination. The DC voltage is then used to power the circuitry that transmits information to the RFID reader at, for example, a different frequency.
In addition, RFID transponder device 10 further includes an implanted sensor device 18 that is operatively coupled to integrated circuit chip 14. Sensor device 18 is structured to measure one or more parameters relating to the state (e.g., health state) of patient 8 and provide that information to integrated circuit chip 14 so that it may then be communicated to touch probe RFID reader device 12 as described herein. In the exemplary embodiment, sensor device 18 exhibits RC and/or RL dynamics such that it take a certain time period for sensor device 18 to reach an accurate steady state value when it is making a measurement. Thus, in the exemplary embodiment, the output of sensor device 18 will resemble one of
As seen in
In the particular embodiment shown in
In the exemplary embodiment shown in
More particularly, radio module 36 further comprises a transmitter portion 44, a receiver portion 46, and a hybrid 48. Hybrid 48 may further comprise a circulator. Transmitter portion 44 preferably includes a local oscillator that generates an RF carrier frequency. Transmitter portion 44 sends a transmission signal modulated by the RF carrier frequency to hybrid 48, which in turn passes the signal to a touch probe device 50. Hybrid 48 connects transmitter portion 44 and receiver portion 46 to touch probe device 50 while isolating them from each other. In particular, hybrid 48 allows a relatively strong signal to be sent from transmitter portion 44 while simultaneously receiving a weaker signal received from RFID transponder device 10. Touch probe device 50 includes one or more electrical contacts or electrodes that are adapted to be selectively and temporarily mated and brought into electrical contact with probe contacts 16A and 16B of RFID transponder device 10. As such, the signals generated by touch probe RFID reader device 12, that would in known RFID readers be sent over an air interface, ma instead be directly transmitted (i.e., not over an air interface) to RFID transponder device 10 (e.g., through the living tissue of patient 8), and thus integrated circuit chip 14 provided therein. Similarly, the signals generated by integrated circuit chip 14, that in the prior art would have been sent via antenna over an air interface to an RFID reader, may instead be directly transmitted (i.e., not over an air interface) to RFID reader device 12 through touch probe device 50, in one particular embodiment, touch probe device 50 is a wand-like device having two conductors fixed at the end thereof with a center to center distance to accommodate the spacing of probe contacts 16A and 16B. In this embodiment, the wand-like touch probe device 50 is used to manually bring the conductors into electrical contact with probe contacts 16A and 16B through the tissue of patient 8 (i.e., transcutaneous contact) as needed.
The signals from RFID transponder device 10 (which may, for example, include the readings of sensor device 18) transmitted through touch probe device 50 are passed back to hybrid 48, which forwards the signals to receiver portion 46. Receiver portion 46 mixes the captured signals with the RF carrier frequency generated by the local oscillator to directly downconvert the captured signals to a baseband information signal, which is provided to DSP 40 for processing thereby.
In the exemplary embodiment, the RC and/or RL dynamics of sensor device 18 are such that it is not able to reach an accurate steady state value within the duration of the RF energy bursts output by touch probe RFID reader device 12. Thus, in order to avoid problems in obtaining accurate readings from sensor device 18, touch probe RFID reader device 12 is, as described, below, structured in a manner to provide RF energy used for powering for an extended period.
More specifically, as seen in
Thus, the combined output to touch probe 50 will appear as shown in
Furthermore, while RFID transponder device 10 shown in
In addition, in the exemplary embodiment, touch probe RFID reader device 12 employs a touch probe 50 having two electrical contacts. It will be understood, however, that the concept of the present invention may also be employed in a touch probe RFID reader device having a single electrical contact (a mono-probe) in conjunction with appropriately configured passive RFID transponder implementations as described in U.S. patent application Ser. No. 13/552,225.
Moreover, in one embodiment, the reading of sensor device 18 is based on the steady state output value of sensor device 18. In some implementations, however, the steady state output values of sensor device 18 may vary by only small amounts, thus making it difficult to discern different sensor readings. Thus, according to an alternative embodiment, the reading of sensor device 18 is based not on the steady state signal of sensor device 18, but instead on the transient portion of the signal that is output by sensor device 18.
More specifically, as noted elsewhere herein, sensor device 18 exhibits RC and/or RL dynamics such that its output for any particular reading will have a transient response portion followed by a steady state portion. The transient response portion will resemble an RC or RL curve as shown in, for example,
In the claims, any reference signs placed between parentheses shall not be construed as limiting the claim. The word “comprising” or “including” does not exclude the presence of elements or steps other than those listed in a claim. In a device claim enumerating several means, several of these means may be embodied by one and the same item of hardware. The word “a” or “an” preceding an element does not exclude the presence of a plurality of such elements. In any device claim enumerating several means, several of these means may be embodied by one and the same item of hardware. The mere filet that certain elements are recited in mutually different dependent claims does not indicate that these elements cannot be used in combination.
Although the invention has been described in detail for the purpose of illustration based on what is currently considered to be the most practical and preferred embodiments, it is to be understood that such detail is solely for that purpose and that the invention is not limited to the disclosed embodiments, but, on the contrary, is intended to cover modifications and equivalent arrangements that are within the spirit and scope of the appended claims. For example, it is to be understood that the present invention contemplates that, to the extent possible, one or more features of any embodiment can be combined with one or more features of any other embodiment.
This application claims priority under 35 U.S.C. § 119(e) from U.S. provisional patent application Ser. No. 61/823,598, entitled “Powering And Reading Implanted Devices” and filed on May 15, 2013, the contents of which are incorporated herein by reference.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2014/037621 | 5/12/2014 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2014/186245 | 11/20/2014 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
20060082470 | Zhu | Apr 2006 | A1 |
20060111051 | Barink | May 2006 | A1 |
20060232275 | Leussler | Oct 2006 | A1 |
20070173214 | Mickle | Jul 2007 | A1 |
20080129545 | Johnson et al. | Jun 2008 | A1 |
20080169928 | Mickle et al. | Jul 2008 | A1 |
20080183247 | Harding | Jul 2008 | A1 |
20090243837 | Chul Lee et al. | Oct 2009 | A1 |
20100013598 | Greene | Jan 2010 | A1 |
20100148965 | Alexis et al. | Jun 2010 | A1 |
20110187600 | Landt | Aug 2011 | A1 |
Number | Date | Country | |
---|---|---|---|
20160135917 A1 | May 2016 | US |
Number | Date | Country | |
---|---|---|---|
61823598 | May 2013 | US |