The present application relates generally to generators, and more particularly to instrumentation used for wirelessly measuring parameters inside a generator.
A generator is a component of a power plant that converts mechanical energy to electrical energy. The generator comprises a stator core wound by stator windings in which a current develops as a result of an electromagnetic force created by a rotating generator rotor.
A typical generator has a multitude of parameters that are measured with instrumentation such as sensors. Sensor networks have been used for monitoring various parameters of power generation units, such as generators, within a power generation plant, for example, to avoid possible system failures. While providing beneficial data on the operating conditions of the generator, the instrumentation is very costly. Approximately half of the instrumentation costs is due to the wiring associated with the instrumentation and conduit installation needed to support the wiring. Thus, switching over to wireless instrumentation would save on these costs along with simplifying the installation of the instrumentation.
New wireless data transmission technologies only partially enables the use of wireless instrumentation. Power is currently provided to the sensors and other instrumentation associated with measuring generator parameters through wiring. Other solutions for providing power to the sensors such as solar, vibration harvesting, heat differential harvesting, etc. have all failed to produce any usable amounts of power in a generator enclosure.
Thus, any wireless data solution would be vastly improved by providing power wirelessly to the instruments that reside on or near the generator. Consequently, it is an objective of this disclosure to provide a solution for wirelessly powering generator instrumentation.
Briefly described, aspects of the present disclosure relate to a system and method powering instrumentation of a generator wirelessly via magnetic induction.
The provided system includes a power generator source disposed within a casing of a generator, the generator capable of generating power. The power generating source harnessing the ambient electromagnetic energy within the generator casing produced by the generator to power a power source of a generator component. The generator component comprises a sensing component, the sensing component capable of collecting operational data related to parameters of the generator coupled to the power source and therefore receiving electrical power from the power generating source.
The provided method for powering a wireless sensor within a generator via magnetic induction includes generating power via magnetic induction within a generator casing to completely power a sensing component and providing the power to the sensing component. The sensing component collects operational data related to parameters of the generator.
To facilitate an understanding of embodiments, principles, and features of the present disclosure, they are explained hereinafter with reference to implementation in illustrative embodiments. Embodiments of the present disclosure, however, are not limited to use in the described systems or methods.
The components and materials described hereinafter as making up the various embodiments are intended to be illustrative and not restrictive. Many suitable components and materials that would perform the same or a similar function as the materials described herein are intended to be embraced within the scope of embodiments of the present disclosure.
Present embodiments relate to harvesting electromagnetic energy within a generator enclosure in order to power instrumentation for measuring parameters of the generator. The presently described system and method utilizes the time-varying magnetic field within the generator enclosure to produce an alternating current which may be rectified and used to power instrumentation. The system may store the power in, for example, a rechargeable battery.
Referring to
Sensors disposed within the generator casing 34 may be used to monitor various parameters within the generator 20. As an example of a sensor used to monitor a parameter within the generator 20, a thermal sensor 36, such as a thermocouple, may be inserted into the stator windings 24 as shown in order to measure the temperature of the internal components and cooling flows of the generator 20.
As an example of a sensor used within a generator, thermocouples and resistive thermal devices (RTDs) are temperature sensors utilized to give an indication of the condition of the generator. While thermocouples are used within this disclosure as an example of a generator sensor, other types of sensors such as pressure sensors measuring pressure, humidity sensors measuring the humidity at the location, level sensors measuring gas or fluid levels, and actuator sensors that measure valve or actuator positions, along with many other types of sensors may be utilized as the sensor measuring various conditions within the generator.
A control system 40 is also shown in
Referring now to
A power generating source may include a power coil 130 and a hub 120 containing circuitry to convert alternating circuit into direct current. The power coil 130 may comprise a simple loop or looped coil. The induced alternating current is introduced into the hub 120. From the power generating source 120, 130, a node 140 comprising one sensor may be powered. The node 140 communicates directly with the sensor 36. In an embodiment, the power generating source 120, 130 generates power in a range of 20 mW to 1 W.
The rectifier circuit 121 may be made up of diodes, for example. In an embodiment, the rectifier 121 may be a bridge rectifier 121. The output, in DC current, of the rectifier circuit 121 may then be conducted to the power source 122, which in the illustrated example of
In an embodiment, the sensor 36 may output its operational data to a wireless transmitter 60 for wireless transmission to an external receiver 41. The wireless transmitter 60 may be an antenna for example.
Within the generator casing 34, a plurality of circuits 100 for generating power may exist. Each circuit 100 may contain a hub 120 comprising 1-9 nodes 140, each node 140 comprising at least one sensor 36. In an embodiment, each node 140 is operably connected to the hub 120 within the circuit 100 via a wired connection. In the embodiment of the wired connection, each node 140 may lie approximately 100 meters from the hub 120. In another embodiment, each node 140 is operably connected to the hubs via a wireless connection. In the embodiment of the wireless connection, each node 140 may lie approximately 250 meters from the hub 120.
In an embodiment, the sensors 36 in a node 140 may be configured in a Hyper redundant configuration as described in U.S. patent application Ser. No. 15/229,244 which is hereby incorporated by reference. However, instead of an external power source delivering power to the sensor nodes via a wired configuration, the hyper-redundant configuration of sensor nodes may include a power generating source powering a power source for each sensor node so that the sensor nodes operate wirelessly.
The environment inside the generator casing 34 where the sensors 36 operate is subject to high temperatures and may include exposure to hydrogen which is known to be an explosive gas. Large generators in power plants are cooled with hydrogen as a rule. Thus, in an embodiment, the hub 120 including the rechargeable battery 122 and rectifier circuit 121 is encapsulated with epoxy preventing an influx of explosive gas. Likewise, each node 140 may also be encapsulated with epoxy to prevent an influx of explosive gas within the node of sensors.
Referring to
It may be appreciated that in operation, the disclosed system and method for powering instrumentation of a generator wirelessly via magnetic induction provides a reliable and cost-effective solution for measuring various parameters within a generator without the use of wiring eliminating costly wiring and failures due to wiring faults. Additionally, the system transmits the operational data quickly, in real-time, so that decisions about the operational aspects and fault conditions within the generator may be diagnosed quickly with appropriate changes and/or repairs made in due time. Furthermore, the system has the potential to provide auxiliary power for additional instrumentation located outside the generator without having to provide a wired solution.
While embodiments of the present disclosure have been disclosed in exemplary forms, it will be apparent to those skilled in the art that many modifications, additions, and deletions can be made therein without departing from the spirit and scope of the invention and its equivalents, as set forth in the following claims.