Exemplary embodiments described herein generally relate to the field of geophysical prospecting for hydrocarbons and, more particularly, to seismic data processing. Specifically, the exemplary embodiments relate to the technical fields of seismic simulation, reverse time depth migration, and full waveform inversion.
This section is intended to introduce various aspects of the art, which may be associated with exemplary embodiments of the present technological advancement. This discussion is believed to assist in providing a framework to facilitate a better understanding of particular aspects of the present technological advancement. Accordingly, it should be understood that this section should be read in this light, and not necessarily as admissions of prior art.
The perfectly matched layers (PML) absorbing boundary condition by Berenger (1994) is commonly used to approximate the radiation boundary condition for the sides and bottom of an earth model where the earth model is assumed to have infinite extent but the computational model has finite extent. Waves should not reflect from external boundaries of the computational model that are designated to have the radiation boundary condition.
In the standard form for PML as described by Marcinkovich and Olsen (2003), every derivative normal to an exterior boundary has a wave field dissipation operator applied. Several issues arise with standard PML operators. For general anisotropy, if the group velocity and the phase velocity have different signs for the direction normal to the boundary, PML goes unstable and energy can be amplified rather than attenuated at the boundary. The conventional design of PML dissipates in the direction of phase velocity, not in the actual direction of energy propagation as will be discussed below in the detailed description section. In addition, for elastic or anisotropic elastic wave propagation, thin high-contrast shear-velocity velocity layers on the boundary can create instability due to boundary or interface waves not behaving like body waves and again having a phase velocity vector with a different sign compared to the group velocity vector component normal to the boundary.
An ad hoc fix to the thin high-contrast shear wave velocity anomaly in the boundary zone has been to smooth the shear velocity earth model in the PML boundary zone. The smoother on the shear wave velocity needs to honor the rock physics constraints for stability and can be sensitive to how a full waveform inversion updates parameters near the boundary.
The frequency-domain form of the PML operator (eqn. 1)
and the non-split PML (NPML) operator (eqn. 2)
to be associated with spatial derivative terms are given above. The NPML can be easier to implement, but the results may not be as good as those achieved with the PML. To mitigate reflections from an external earth model boundary, derivative terms in the original set of wave propagation equations are replaced with either PML or NPML derivatives which damp the waves propagating to and from the boundary. In three-dimensional space, l=1, 2 or 3, and the above formulation allows the frequency in a direction normal to the boundary, which may be called the damping frequency parameter to be different from the damping frequency parameter in the other two directions. In the time domain, these operators correspond to a temporal convolution with a damped exponential in time. The difference between the PML operator and the NPML operator is an exchange of the order of the spatial derivative and the dissipation operator. These two operators are transposes of each other. They are not identical because the damping coefficients are spatially dependent. The dissipation operator Di can accordingly be defined in the frequency domain as
where ωi may be called the damping frequency parameter and ω is the frequency of propagation.
A method for exploring for hydrocarbons, including: simulating a seismic waveform, using a computer, wherein computations are performed on a computational grid representing a subsurface region, said computational grid using perfectly matched layer (PML) boundary conditions that use an energy dissipation operator to minimize non-physical wave reflections at grid boundaries; wherein, in the simulation, the PML boundary conditions are defined to reduce computational instabilities at a boundary by steps including, representing direction of energy propagation by a Poynting vector, and dissipating energy, with the dissipation operator, in a direction of energy propagation instead of in a phase velocity direction; and using the simulated waveform in performing full waveform inversion or reverse time migration of seismic data, and using a physical property model from the inversion or a subsurface image from the migration to explore for hydrocarbons.
While the present disclosure is susceptible to various modifications and alternative forms, specific example embodiments thereof have been shown in the drawings and are herein described in detail. It should be understood, however, that the description herein of specific example embodiments is not intended to limit the disclosure to the particular forms disclosed herein, but on the contrary, this disclosure is to cover all modifications and equivalents as defined by the appended claims. It should also be understood that the drawings are not necessarily to scale, emphasis instead being placed upon clearly illustrating principles of exemplary embodiments of the present technological advancement.
Exemplary embodiments are described herein. However, to the extent that the following description is specific to a particular, this is intended to be for exemplary purposes only and simply provides a description of the exemplary embodiments. Accordingly, the present technological advancement is not limited to the specific embodiments described below, but rather, it includes all alternatives, modifications, and equivalents falling within the true spirit and scope of the appended claims.
Perfectly Matched Layer (PML) boundary conditions are used to simulate non-reflecting external boundaries of a computational earth model in applications such as seismic simulation, reverse time depth migration (RTM) and full waveform inversion (FWI). Unfortunately, these boundary conditions have instabilities for several situations of critical interest for these applications. Particularly for the full wave form inversion application, the earth model is regularly and automatically updated and the algorithm will fail if the boundary conditions go unstable due to earth model modifications near the boundary zone. Typically, these instabilities occur whenever the group velocity vector normal to a boundary is in the opposite direction to the phase velocity vector. Two causes of that condition are commonly encountered; seismic anisotropy for certain types, and levels of anisotropy. Thin high-contrast shear velocity zones extending into the boundary zone may also make this happen.
The present technological advancement can provide a stable solution to this problem enabling full wave form inversion to proceed efficiently. For the seismic simulation and RTM applications, the present technological advancement can simplify and stabilize the earth model building process by providing more stable boundary conditions that work properly for a wider range of earth models.
In an exemplary embodiment, the PML/NPML work flow is modified to dissipate the energy associated with wave propagation normal to the boundary. The direction of energy propagation for anisotropic visco-elastic wave propagation is given by the Poynting vector represented by P below, and defined in terms of the stress tensor σij and the particle velocity vector νj.
Pi=−σijνj (4)
The Poynting vector describes energy flow for body waves, interface waves, guided waves and inhomogeneous waves in isotropic and anisotropic media. If a spatial derivative of the Poynting vector is taken normal to a boundary, then by the chain rule of differential calculus, this involves taking spatial derivatives of stress normal to the boundary scaled by particle velocity plus additional terms involving stress scaled by spatial derivatives of particle velocity normal to the boundary. These spatial derivatives normal to the boundary are the ones to be dissipated in the exemplary embodiment. Below is the directional spatial derivative of the ith component of the Poynting vector in the kth direction.
For simulation on a Cartesian grid, then the directions normal to a boundary are the same as the directions spatial derivatives are taken for computing strain rate or divergence of stress. Therefore, those spatial derivatives in directions normal to the boundary are the terms that should be dissipated to ensure small energy flow to or from the boundary. Therefore k will be equal to i for dissipation of the Poynting vector in the kth direction. This is denoted using the Kronecker delta notation below. This is a frequency-domain equation and the dissipation operator Dk is in the frequency domain.
Converting from particle velocity to particle displacement and applying the Kronecker delta on the right hand side yields the following.
where uj is displacement and εkj is the strain tensor. In the frequency domain, these factors are all multiplicative. It is easy to see that applying the dissipation operator in the kth direction on a stress component that includes index k will dissipate the Poynting vector in the kth direction. Likewise, the same is true for such an operator applied to a strain component that includes index k.
Any boundary condition needs to be studied in terms of stability. The total strain energy E in a system can be written in terms of either (a) strain and stiffness cijkl or (b) stress and compliance sijkl.
For stable rocks, the stiffness and compliance tensors are positive definite. Therefore any method that dissipates either strain or stress (or both) will reduce the total strain energy in the system and have stable characteristics.
Note that each Poynting vector boundary zone dissipation operator applied to dissipate the Poynting vector normal to the boundary can have the following characteristics. (1) The application of the boundary zone dissipation operator to the strain tensor keeps the strain tensor real and symmetric. (2) The application of the boundary zone dissipation operator to the stress tensor keeps the stress tensor real and symmetric. (3) The strain tensor mentioned in (1) can be strain with temporal derivatives or integrals of any order applied and the Poynting vector will still be dissipated. (4) The stress tensor mentioned in (2) can be stress with temporal derivatives or integrals of any order applied and the Poynting vector will still be dissipated.
The kinetic energy (per unit volume) in the system is the following.
One embodiment of the present technological advancement may be described as follows. ωi in the PML and NPML operators can be replaced by ωjk, with j and k referring to the directions associated with the derivatives used to compute either (a) strain or (b) divergence of the stress. nPML can be defined as the number of points in the PML boundary zone. First, the spatial derivatives are taken to create the strains and then dissipate the strains so that the order of the operators (e.g., whether the damping operator is performed first prior to the derivative (NPML) or the derivative is applied first and then damped (PML)) given matches that for PML. The damping frequency can be computed for derivatives in the jth direction and the kth direction as follows. (Here, the PML zone spatial length LPML is defined in terms of the spatial increment h and the number of grid points in the PML zone as LPML=h nPML. The scale factor of 2.25 is a number that works well for many applications; however it is not unique to the technological advancement and other scale factors can be used.
The two indices jk replace the single index l shown in Eqn. (3) to deal with situations where the stress (or strain?) tensor has non-zero off diagonal elements. In the frequency domain, the dissipation operator Djk for the present technological advancement can be written as follows.
For a finite difference implementation, the Djk operators should honor any grid staggering associated with a staggered grid (a grid where different stress components are defined on different grids that are staggered relative to each other) finite difference scheme.
For a frequency domain implementation, dissipation can be applied using the Djk operator to each Voigt strain and stress component in the boundary zone. This is exactly PML for the normal strains or normal stresses when j equals k. This formulation is not strictly PML for the shear strains or shear stresses where j does not equal k. Instead this is dissipation applied in a way that improves stability for elastic propagation, as no unbalanced torque is ever applied and total strain energy is always decreased. In this formulation, Poynting vectors for energy propagation normal to the boundary are always dissipated for any type of anisotropy.
For a time domain implementation, the following work flow can be used. An additional advantage to the present technological advancement in the time domain compared to standard PML algorithms is that fewer memory variables are used, helping to improve the balance between the memory allocations in the boundary zone versus that in the interior. The temporal convolution of the computed strain with the damped exponential can be computed via the following steps using an associated memory variable.
B=e−ω
A=B−1
ϕjkn
εjkpml=εjk+ϕjkn
ε is a strain (or stress) and φ is a memory variable. The dissipation operator on strain components and strain memory variables can be written as one matrix operator step. This time domain operator corresponds to the PML algorithm.
The matrix Djk is defined to be the time domain dissipation operator.
The transpose dissipation operator on stress and stress memory variables can also be written as one matrix operator step. This operator corresponds to the NPML algorithm.
The matrix DjkT is defined to be the transpose time domain dissipation operator.
Putting everything together provides a formula for computing density-weighted particle acceleration as a function of displacement and a system of operators that equal its own transpose. This type of operator design is useful for developing wave propagation operators with matching adjoint wave propagation operators for applications related to reverse time depth migration or full waveform inversion. The following equation (16) shows how this can be done, and is applicable to both the time domain and the frequency domain.
Variations on this algorithm can be done to choose wave propagation state vectors as strain and particle velocity, particle velocity and acceleration, particle velocity and stress, or many other combinations that fully describe the wave propagation initial conditions from a combination of seismic wavefields. Another variation can include a small background dissipation term for waves propagating in any direction within the boundary zone.
In all practical applications, the present technological advancement must be used in conjunction with a computer, programmed in accordance with the disclosures herein.
The computer system 2400 may also include computer components such as non-transitory, computer-readable media. Examples of computer-readable media include a random access memory (RAM) 2406, which may be SRAM, DRAM, SDRAM, or the like. The computer system 2400 may also include additional non-transitory, computer-readable media such as a read-only memory (ROM) 2408, which may be PROM, EPROM, EEPROM, or the like. RAM 2406 and ROM 2408 hold user and system data and programs, as is known in the art. The computer system 2400 may also include an input/output (I/O) adapter 2410, a communications adapter 2422, a user interface adapter 2424, and a display adapter 2418.
The I/O adapter 2410 may connect additional non-transitory, computer-readable media such as a storage device(s) 2412, including, for example, a hard drive, a compact disc (CD) drive, a floppy disk drive, a tape drive, and the like to computer system 2400. The storage device(s) may be used when RAM 2406 is insufficient for the memory requirements associated with storing data for operations of the present techniques. The data storage of the computer system 2400 may be used for storing information and/or other data used or generated as disclosed herein. For example, storage device(s) 2412 may be used to store configuration information or additional plug-ins in accordance with the present techniques. Further, user interface adapter 2424 couples user input devices, such as a keyboard 2428, a pointing device 2426 and/or output devices to the computer system 400. The display adapter 2418 is driven by the CPU 2402 to control the display on a display device 2420 to, for example, present information to the user regarding available plug-ins.
The architecture of system 2400 may be varied as desired. For example, any suitable processor-based device may be used, including without limitation personal computers, laptop computers, computer workstations, and multi-processor servers. Moreover, the present technological advancement may be implemented on application specific integrated circuits (ASICs) or very large scale integrated (VLSI) circuits. In fact, persons of ordinary skill in the art may use any number of suitable hardware structures capable of executing logical operations according to the present technological advancement. The term “processing circuit” encompasses a hardware processor (such as those found in the hardware devices noted above), ASICs, and VLSI circuits. Input data to the computer system 2400 may include various plug-ins and library files. Input data may additionally include configuration information.
The present techniques may be susceptible to various modifications and alternative forms, and the examples discussed above have been shown only by way of example. However, the present techniques are not intended to be limited to the particular examples disclosed herein. Indeed, the present techniques include all alternatives, modifications, and equivalents falling within the spirit and scope of the appended claims.
This application claims the benefit of U.S. Provisional Patent Application 62/111,956 filed Feb. 4, 2015, entitled POYNTING VECTOR MINIMAL REFLECTION BOUNDARY CONDITIONS, the entirety of which is incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
3812457 | Weller | May 1974 | A |
3864667 | Bahjat | Feb 1975 | A |
4159463 | Silverman | Jun 1979 | A |
4168485 | Payton et al. | Sep 1979 | A |
4434383 | Cho | Feb 1984 | A |
4545039 | Savit | Oct 1985 | A |
4562650 | Nagasawa et al. | Jan 1986 | A |
4575830 | Ingram et al. | Mar 1986 | A |
4594662 | Devaney | Jun 1986 | A |
4636957 | Vannier et al. | Jan 1987 | A |
4675851 | Savit et al. | Jun 1987 | A |
4686654 | Savit | Aug 1987 | A |
4707812 | Martinez | Nov 1987 | A |
4715020 | Landrum, Jr. | Dec 1987 | A |
4766574 | Whitmore et al. | Aug 1988 | A |
4780856 | Becquey | Oct 1988 | A |
4823326 | Ward | Apr 1989 | A |
4924390 | Parsons et al. | May 1990 | A |
4953657 | Edington | Sep 1990 | A |
4969129 | Currie | Nov 1990 | A |
4982374 | Edington et al. | Jan 1991 | A |
5260911 | Mason et al. | Nov 1993 | A |
5469062 | Meyer, Jr. | Nov 1995 | A |
5583825 | Carrazzone et al. | Dec 1996 | A |
5677893 | de Hoop et al. | Oct 1997 | A |
5715213 | Allen | Feb 1998 | A |
5717655 | Beasley | Feb 1998 | A |
5719821 | Sallas et al. | Feb 1998 | A |
5721710 | Sallas et al. | Feb 1998 | A |
5790473 | Allen | Aug 1998 | A |
5798982 | He et al. | Aug 1998 | A |
5822269 | Allen | Oct 1998 | A |
5838634 | Jones et al. | Nov 1998 | A |
5852588 | de Hoop et al. | Dec 1998 | A |
5878372 | Tabarovsky et al. | Mar 1999 | A |
5920838 | Norris et al. | Jul 1999 | A |
5924049 | Beasley et al. | Jul 1999 | A |
5999488 | Smith | Dec 1999 | A |
5999489 | Lazaratos | Dec 1999 | A |
6014342 | Lazaratos | Jan 2000 | A |
6021094 | Ober et al. | Feb 2000 | A |
6028818 | Jeffryes | Feb 2000 | A |
6058073 | VerWest | May 2000 | A |
6125330 | Robertson et al. | Sep 2000 | A |
6219621 | Hornbostel | Apr 2001 | B1 |
6225803 | Chen | May 2001 | B1 |
6311133 | Lailly et al. | Oct 2001 | B1 |
6317695 | Zhou et al. | Nov 2001 | B1 |
6327537 | Ikelle | Dec 2001 | B1 |
6374201 | Grizon et al. | Apr 2002 | B1 |
6381543 | Guerillot et al. | Apr 2002 | B1 |
6388947 | Washbourne et al. | May 2002 | B1 |
6480790 | Calvert et al. | Nov 2002 | B1 |
6522973 | Tonellot et al. | Feb 2003 | B1 |
6545944 | de Kok | Apr 2003 | B2 |
6549854 | Malinverno et al. | Apr 2003 | B1 |
6574564 | Lailly et al. | Jun 2003 | B2 |
6593746 | Stolarczyk | Jul 2003 | B2 |
6662147 | Fournier et al. | Dec 2003 | B1 |
6665615 | Van Riel et al. | Dec 2003 | B2 |
6687619 | Moerig et al. | Feb 2004 | B2 |
6687659 | Shen | Feb 2004 | B1 |
6704245 | Becquey | Mar 2004 | B2 |
6714867 | Meunier | Mar 2004 | B2 |
6735527 | Levin | May 2004 | B1 |
6754590 | Moldoveanu | Jun 2004 | B1 |
6766256 | Jeffryes | Jul 2004 | B2 |
6826486 | Malinverno | Nov 2004 | B1 |
6836448 | Robertsson et al. | Dec 2004 | B2 |
6842701 | Moerig et al. | Jan 2005 | B2 |
6859734 | Bednar | Feb 2005 | B2 |
6865487 | Charron | Mar 2005 | B2 |
6865488 | Moerig et al. | Mar 2005 | B2 |
6876928 | Van Riel et al. | Apr 2005 | B2 |
6882938 | Vaage et al. | Apr 2005 | B2 |
6882958 | Schmidt et al. | Apr 2005 | B2 |
6901333 | Van Riel et al. | May 2005 | B2 |
6903999 | Curtis et al. | Jun 2005 | B2 |
6905916 | Bartsch et al. | Jun 2005 | B2 |
6906981 | Vauge | Jun 2005 | B2 |
6927698 | Stolarczyk | Aug 2005 | B2 |
6944546 | Xiao et al. | Sep 2005 | B2 |
6947843 | Fisher et al. | Sep 2005 | B2 |
6970397 | Castagna et al. | Nov 2005 | B2 |
6977866 | Huffman et al. | Dec 2005 | B2 |
6999880 | Lee | Feb 2006 | B2 |
7046581 | Calvert | May 2006 | B2 |
7050356 | Jeffryes | May 2006 | B2 |
7069149 | Goff et al. | Jun 2006 | B2 |
7027927 | Routh et al. | Jul 2006 | B2 |
7072767 | Routh et al. | Jul 2006 | B2 |
7092823 | Lailly et al. | Aug 2006 | B2 |
7110900 | Adler et al. | Sep 2006 | B2 |
7184367 | Yin | Feb 2007 | B2 |
7230879 | Herkenoff et al. | Jun 2007 | B2 |
7271747 | Baraniuk et al. | Sep 2007 | B2 |
7330799 | Lefebvre et al. | Feb 2008 | B2 |
7337069 | Masson et al. | Feb 2008 | B2 |
7373251 | Hamman et al. | May 2008 | B2 |
7373252 | Sherrill et al. | May 2008 | B2 |
7376046 | Jeffryes | May 2008 | B2 |
7376539 | Lecomte | May 2008 | B2 |
7400978 | Langlais et al. | Jul 2008 | B2 |
7436734 | Krohn | Oct 2008 | B2 |
7480206 | Hill | Jan 2009 | B2 |
7584056 | Koren | Sep 2009 | B2 |
7599798 | Beasley et al. | Oct 2009 | B2 |
7602670 | Jeffryes | Oct 2009 | B2 |
7616523 | Tabti et al. | Nov 2009 | B1 |
7620534 | Pita et al. | Nov 2009 | B2 |
7620536 | Chow | Nov 2009 | B2 |
7646924 | Donoho | Jan 2010 | B2 |
7672194 | Jeffryes | Mar 2010 | B2 |
7672824 | Dutta et al. | Mar 2010 | B2 |
7675815 | Saenger et al. | Mar 2010 | B2 |
7679990 | Herkenhoff et al. | Mar 2010 | B2 |
7684281 | Vaage et al. | Mar 2010 | B2 |
7710821 | Robertsson et al. | May 2010 | B2 |
7715985 | Van Manen et al. | May 2010 | B2 |
7715986 | Nemeth et al. | May 2010 | B2 |
7725266 | Sirgue et al. | May 2010 | B2 |
7791980 | Robertsson et al. | Sep 2010 | B2 |
7835072 | Izumi | Nov 2010 | B2 |
7840625 | Candes et al. | Nov 2010 | B2 |
7940601 | Ghosh | May 2011 | B2 |
8121823 | Krebs et al. | Feb 2012 | B2 |
8223587 | Krebs | Jul 2012 | B2 |
8248886 | Neelamani et al. | Aug 2012 | B2 |
8428925 | Krebs et al. | Apr 2013 | B2 |
8437998 | Routh et al. | May 2013 | B2 |
8547794 | Gulati et al. | Oct 2013 | B2 |
8688381 | Routh et al. | Apr 2014 | B2 |
8694299 | Krebs | Apr 2014 | B2 |
8756042 | Tan | Jun 2014 | B2 |
8781748 | Laddoch et al. | Jul 2014 | B2 |
8965059 | Winbow | Feb 2015 | B2 |
9910189 | Dickens | Mar 2018 | B2 |
10089423 | Qiang | Oct 2018 | B2 |
10185046 | Anderson | Jan 2019 | B2 |
10241222 | Jiang | Mar 2019 | B2 |
20020099504 | Cross et al. | Jul 2002 | A1 |
20020120429 | Ortoleva | Aug 2002 | A1 |
20020183980 | Guillaume | Dec 2002 | A1 |
20040199330 | Routh et al. | Oct 2004 | A1 |
20040225438 | Okoniewski et al. | Nov 2004 | A1 |
20060235666 | Assa et al. | Oct 2006 | A1 |
20060255809 | Johnstad | Nov 2006 | A1 |
20070036030 | Baumel et al. | Feb 2007 | A1 |
20070038691 | Candes et al. | Feb 2007 | A1 |
20070274155 | Ikelle | Nov 2007 | A1 |
20080175101 | Saenger et al. | Jul 2008 | A1 |
20080306692 | Singer et al. | Dec 2008 | A1 |
20090006054 | Song | Jan 2009 | A1 |
20090067041 | Krauklis et al. | Mar 2009 | A1 |
20090070042 | Birchwood et al. | Mar 2009 | A1 |
20090083006 | Mackie | Mar 2009 | A1 |
20090164186 | Haase et al. | Jun 2009 | A1 |
20090164756 | Dokken et al. | Jun 2009 | A1 |
20090187391 | Wendt et al. | Jul 2009 | A1 |
20090248308 | Luling | Oct 2009 | A1 |
20090254320 | Lovatini et al. | Oct 2009 | A1 |
20090259406 | Khadhraoui et al. | Oct 2009 | A1 |
20100008184 | Hegna et al. | Jan 2010 | A1 |
20100018718 | Krebs et al. | Jan 2010 | A1 |
20100039894 | Abma et al. | Feb 2010 | A1 |
20100054082 | McGarry et al. | Mar 2010 | A1 |
20100088035 | Etgen et al. | Apr 2010 | A1 |
20100103772 | Eick et al. | Apr 2010 | A1 |
20100110417 | Xu | May 2010 | A1 |
20100118651 | Liu et al. | May 2010 | A1 |
20100142316 | Keers et al. | Jun 2010 | A1 |
20100161233 | Saenger et al. | Jun 2010 | A1 |
20100161234 | Saenger et al. | Jun 2010 | A1 |
20100185422 | Hoversten | Jul 2010 | A1 |
20100208554 | Chiu et al. | Aug 2010 | A1 |
20100212902 | Baumstein et al. | Aug 2010 | A1 |
20100246324 | Dragoset, Jr. et al. | Sep 2010 | A1 |
20100265797 | Robertsson et al. | Oct 2010 | A1 |
20100270026 | Lazaratos et al. | Oct 2010 | A1 |
20100286919 | Lee et al. | Nov 2010 | A1 |
20100299070 | Abma | Nov 2010 | A1 |
20110000678 | Krebs et al. | Jan 2011 | A1 |
20110040926 | Donderici et al. | Feb 2011 | A1 |
20110051553 | Scott et al. | Mar 2011 | A1 |
20110090760 | Rickett et al. | Apr 2011 | A1 |
20110131020 | Meng | Jun 2011 | A1 |
20110134722 | Virgilio et al. | Jun 2011 | A1 |
20110182141 | Zhamikov et al. | Jul 2011 | A1 |
20110182144 | Gray | Jul 2011 | A1 |
20110191032 | Moore | Aug 2011 | A1 |
20110194379 | Lee et al. | Aug 2011 | A1 |
20110222370 | Downton et al. | Sep 2011 | A1 |
20110227577 | Zhang et al. | Sep 2011 | A1 |
20110235464 | Brittan et al. | Sep 2011 | A1 |
20110238390 | Krebs et al. | Sep 2011 | A1 |
20110246140 | Abubakar et al. | Oct 2011 | A1 |
20110267921 | Mortel et al. | Nov 2011 | A1 |
20110267923 | Shin | Nov 2011 | A1 |
20110276320 | Krebs et al. | Nov 2011 | A1 |
20110288831 | Tan | Nov 2011 | A1 |
20110299361 | Shin | Dec 2011 | A1 |
20110320180 | Ai-Saleh | Dec 2011 | A1 |
20120010862 | Costen | Jan 2012 | A1 |
20120014215 | Saenger et al. | Jan 2012 | A1 |
20120014216 | Saenger et al. | Jan 2012 | A1 |
20120051176 | Liu | Mar 2012 | A1 |
20120073824 | Routh | Mar 2012 | A1 |
20120073825 | Routh | Mar 2012 | A1 |
20120082344 | Donoho | Apr 2012 | A1 |
20120143506 | Routh et al. | Jun 2012 | A1 |
20120215506 | Rickett et al. | Aug 2012 | A1 |
20120218859 | Soubaras | Aug 2012 | A1 |
20120236686 | Shin | Sep 2012 | A1 |
20120275264 | Kostov et al. | Nov 2012 | A1 |
20120275267 | Neelamani et al. | Nov 2012 | A1 |
20120290214 | Huo et al. | Nov 2012 | A1 |
20120314538 | Washbourne et al. | Dec 2012 | A1 |
20120316790 | Washbourne et al. | Dec 2012 | A1 |
20120316844 | Shah et al. | Dec 2012 | A1 |
20130003500 | Neelamani | Jan 2013 | A1 |
20130060539 | Baumstein | Mar 2013 | A1 |
20130060544 | Bakker | Mar 2013 | A1 |
20130064431 | Winbow | Mar 2013 | A1 |
20130081752 | Kurimura et al. | Apr 2013 | A1 |
20130182538 | Lin | Jul 2013 | A1 |
20130238246 | Krebs et al. | Sep 2013 | A1 |
20130279290 | Poole | Oct 2013 | A1 |
20130282292 | Wang et al. | Oct 2013 | A1 |
20130311149 | Tang | Nov 2013 | A1 |
20130311151 | Plessix | Nov 2013 | A1 |
20140207426 | Shin | Jul 2014 | A1 |
20140350861 | Wang et al. | Nov 2014 | A1 |
20140358504 | Baumstein et al. | Dec 2014 | A1 |
20140372043 | Hu | Dec 2014 | A1 |
20150272506 | Childs | Oct 2015 | A1 |
20160223697 | Vdovina | Aug 2016 | A1 |
20160238723 | Brytik | Aug 2016 | A1 |
20170206288 | Gordon | Jul 2017 | A1 |
20170336522 | Jiang | Nov 2017 | A1 |
Number | Date | Country |
---|---|---|
2 796 631 | Nov 2011 | CA |
1 094 338 | Apr 2001 | EP |
1 746 443 | Jan 2007 | EP |
2 390 712 | Jan 2004 | GB |
2 391 665 | Feb 2004 | GB |
WO 2006037815 | Apr 2006 | WO |
WO 2007046711 | Apr 2007 | WO |
WO 2008042081 | Apr 2008 | WO |
WO 2008123920 | Oct 2008 | WO |
WO 2009067041 | May 2009 | WO |
WO 2009117174 | Sep 2009 | WO |
WO 2010085822 | Jul 2010 | WO |
WO 2011040926 | Apr 2011 | WO |
WO 2011091216 | Jul 2011 | WO |
WO 2011093945 | Aug 2011 | WO |
WO 2012024025 | Feb 2012 | WO |
WO 2012041834 | Apr 2012 | WO |
WO 2012083234 | Jun 2012 | WO |
WO 2012134621 | Oct 2012 | WO |
WO 2012170201 | Dec 2012 | WO |
WO 2013081752 | Jun 2013 | WO |
WO 2016108896 | Jul 2016 | WO |
Entry |
---|
Anil Zenginoglu, “Hyperboloidal layers for hyperbolic equations on unbounded domains”, Journal of Computational Physics 230 (2011) 2286-2302 (Year: 2011). |
Tarantola, A. (1986), “A strategy for nonlinear elastic inversion of seismic reflection data,” Geophysics 51(10), pp. 1893-1903. |
Tarantola, A. (1988), “Theoretical background for the inversion of seismic waveforms, including elasticity and attenuation,” Pure and Applied Geophysics 128, pp. 365-399. |
Tarantola, A. (2005), “Inverse Problem Theory and Methods for Model Parameter Estimation,” SIAM, pp. 79. |
Tarantola, A. (1984), “Inversion of seismic reflection data in the acoustic approximation,” Geophysics 49, pp. 1259-1266. |
Trantham, E.C. (1994), “Controlled-phase acquisition and processing,” SEG Expanded Abstracts 13, pp. 890-894. |
Tsvankin, I. (2001), “Seismic Signatures and Analysis of Reflection Data in Anisotropic Media,” Elsevier Science, p. 8. |
Valenciano, A.A. (2008), “Imaging by Wave-Equation Inversion,” A Dissertation, Stanford University, 138 pgs. |
Van Groenestijn, G.J.A. et al. (2009), “Estimating primaries by sparse inversion and application to near-offset reconstruction,” Geophyhsics 74(3), pp. A23-A28. |
Van Manen, D.J. (2005), “Making wave by time reversal,” SEG International Exposition and 75th Annual Meeting, Expanded Abstracts, pp. 1763-1766. |
Verschuur, D.J. (2009), Target-oriented, least-squares imaging of blended data, 79th Annual Int'l. Meeting, SEG Expanded Abstracts, pp. 2889-2893. |
Verschuur, D.J. et al. (1992), “Adaptive surface-related multiple elimination,” Geophysics 57(9), pp. 1166-1177. |
Verschuur, D.J. (1989), “Wavelet Estimation by Prestack Multiple Elimination,” SEG Expanded Abstracts 8, pp. 1129-1132. |
Versteeg, R. (1994), “The Marmousi experience: Velocity model determination on a synthetic complex data set,” The Leading Edge, pp. 927-936. |
Vigh, D. et al. (2008), “3D prestack plane-wave, full-waveform inversion,” Geophysics 73(5), pp. VE135-VE144. |
Wang, Y. (2007), “Multiple prediction through inversion: Theoretical advancements and real data application,” Geophysics 72(2), pp. V33-V39. |
Wang, K. et al. (2009), “Simultaneous full-waveform inversion for source wavelet and earth model,” SEG Int'l. Expo. & Ann. Meeting, Expanded Abstracts, pp. 2537-2541. |
Weglein, A.B. (2003), “Inverse scattering series and seismic exploration,” Inverse Problems 19, pp. R27-R83. |
Wong, M. et al. (2010), “Joint least-squares inversion of up- and down-going signal for ocean bottom data sets,” SEG Expanded Abstracts 29, pp. 2752-2756. |
Wu R-S. et al. (2006), “Directional illumination analysis using beamlet decomposition and propagation,” Geophysics 71(4), pp. S147-S159. |
Xia, J. et al. (2004), “Utilization of high-frequency Rayleigh waves in near-surface geophysics,” The Leading Edge, pp. 753-759. |
Xie, X. et al. (2002), “Extracting angle domain information from migrated wavefield,” SEG Expanded Abstracts21, pp. 1360-1363. |
Xie, X.-B. et al. (2006), “Wave-equation-based seismic illumination analysis,” Geophysics 71(5), pp. S169-S177. |
Yang, K. et al. (2000), “Quasi-Orthogonal Sequences for Code-Division Multiple-Access Systems,” IEEE Transactions on Information Theory 46(3), pp. 982-993. |
Yoon, K. et al. (2004), “Challenges in reverse-time migration,” SEG Expanded Abstracts 23, pp. 1057-1060. |
Young, J. et al. (2011), “An application of random projection to parameter estimation in partial differential equations,” SIAM, 20 pgs. |
Zhang, Y. (2005), “Delayed-shot 3D depth migration,” Geophysics 70, pp. E21-E28. |
Ziolkowski, A. (1991), “Why don't we measure seismic signatures?,” Geophysics 56(2), pp. 190-201. |
U.S. Appl. No. 14/329,431, filed Jul. 11, 2014, Krohn et al. |
U.S. Appl. No. 14/330,767, filed Jul. 14, 2014, Tang et al. |
Berenger, J., “A Perfectly Matched Layer for the Absorption of Electromagnetic Waves,” Journal of Computational Physics 114, pp. 185-200, 1994. |
Marcinkovich, C. et al., “On the implementation of perfectly matched layers in a three-dimensional fourth-order velocity-stress finite difference scheme,” Journal of Geophysical Research 108(65), pp. 18-1-18-16, May 27, 2003. |
Mora, P. (1987), “Elastic Wavefield Inversion,” PhD Thesis, Stanford University, pp. 22-25. |
Mora, P. (1989), “Inversion = migration + tomography,” Geophysics 64, pp. 888-901. |
Nazarian, S. et al. (1983), “Use of spectral analysis of surface waves method for determination of moduli and thickness of pavement systems,” Transport Res. Record 930, pp. 38-45. |
Neelamani, R., (2008), “Simultaneous sourcing without compromise,” 70th Annual Int'l. Conf. and Exh., EAGE, 5 pgs. |
Neelamani, R. (2009), “Efficient seismic forward modeling using simultaneous sources and sparsity,” SEG Expanded Abstracts, pp. 2107-2111. |
Nocedal, J. et al. (2006), “Numerical Optimization, Chapt. 7—Large-Scale Unconstrained Optimization,” Springer, New York, 2nd Edition, pp. 165-176. |
Nocedal, J. et al. (2000), “Numerical Optimization-Calculating Derivatives,” Chapter 8, Springer Verlag, pp. 194-199. |
Ostmo, S. et al. (2002), “Finite-difference iterative migration by linearized waveform inversion in the frequency domain,” SEG Int'l. Expo. & 72nd Ann. Meeting, 4 pgs. |
Park, C.B. et al. (1999), “Multichannel analysis of surface waves,” Geophysics 64(3), pp. 800-808. |
Park, C.B. et al. (2007), “Multichannel analysis of surface waves (MASW)—active and passive methods,” The Leading Edge, pp. 60-64. |
Pica, A. et al. (2005), “3D Surface-Related Multiple Modeling, Principles and Results,” 2005 SEG Ann. Meeting, SEG Expanded Abstracts 24, pp. 2080-2083. |
Plessix, R.E. et al. (2004), “Frequency-domain finite-difference amplitude preserving migration,” Geophys. J. Int. 157, pp. 975-987. |
Porter, R.P. (1989), “Generalized holography with application to inverse scattering and inverse source problems,” In E. Wolf, editor, Progress in Optics XXVII, Elsevier, pp. 317-397. |
Pratt, R.G. et al. (1998), “Gauss-Newton and full Newton methods in frequency-space seismic waveform inversion,” Geophys. J. Int. 133, pp. 341-362. |
Pratt, R.G. (1999), “Seismic waveform inversion in the frequency domain, Part 1: Theory and verification in a physical scale model,” Geophysics 64, pp. 888-901. |
Rawlinson, N. et al. (2008), “A dynamic objective function technique for generating multiple solution models in seismic tomography,” Geophys. J. Int. 178, pp. 295-308. |
Rayleigh, J.W.S. (1899), “On the transmission of light through an atmosphere containing small particles in suspension, and on the origin of the blue of the sky,” Phil. Mag. 47, pp. 375-384. |
Romero, L.A. et al. (2000), Phase encoding of shot records in prestack migration, Geophysics 65, pp. 426-436. |
Ronen S. et al. (2005), “Imaging Downgoing waves from Ocean Bottom Stations,” SEG Expanded Abstracts, pp. 963-967. |
Routh, P. et al. (2011), “Encoded Simultaneous Source Full-Wavefield Inversion for Spectrally-Shaped Marine Streamer Data,” SEG San Antonio 2011 Ann. Meeting, pp. 2433-2438. |
Ryden, N. et al. (2006), “Fast simulated annealing inversion of surface waves on pavement using phase-velocity spectra,” Geophysics 71(4), pp. R49-R58. |
Sambridge, M.S. et al. (1991), “An Alternative Strategy for Non-Linear Inversion of Seismic Waveforms,” Geophysical Prospecting 39, pp. 723-736. |
Schoenberg, M. et al. (1989), “A calculus for finely layered anisotropic media,” Geophysics 54, pp. 581-589. |
Schuster, G.T. et al. (2010), “Theory of Multisource Crosstalk Reduction by Phase-Encoded Statics,” SEG Denver 2010 Ann. Meeting, pp. 3110-3114. |
Sears, T.J. et al. (2008), “Elastic full waveform inversion of multi-component OBC seismic data,” Geophysical Prospecting 56, pp. 843-862. |
Sheen, D-H. et al. (2006), “Time domain Gauss-Newton seismic waveform inversion in elastic media,” Geophysics J. Int. 167, pp. 1373-1384. |
Shen, P. et al. (2003), “Differential semblance velocity analysis by wave-equation migration,” 73rd Ann. Meeting of Society of Exploration Geophysicists, 4 pgs. |
Sheng, J. et al. (2006), “Early arrival waveform tomography on near-surface refraction data,” Geophysics 71, pp. U47-U57. |
Sheriff, R.E.et al. (1982), “Exploration Seismology”, pp. 134-135. |
Shih, R-C. et al. (1996), “Iterative pre-stack depth migration with velocity analysis,” Terrestrial, Atmospheric & Oceanic Sciences 7(2), pp. 149-158. |
Shin, C. et al. (2001), “Waveform inversion using a logarithmic wavefieid,” Geophysics 49, pp. 592-606. |
Simard, P.Y. et al. (1990), “Vector Field Restoration by the Method of Convex Projections,” Computer Vision, Graphics and Image Processing 52, pp. 360-385. |
Sirgue, L. (2004), “Efficient waveform inversion and imaging: A strategy for selecting temporal frequencies,” Geophysics 69, pp. 231-248. |
Soubaras, R. et al. (2007), “Velocity model building by semblance maximization of modulated-shot gathers,” Geophysics 72(5), pp. U67-U73. |
Spitz, S. (2008), “Simultaneous source separation: a prediction-subtraction approach,” 78th Annual Int'l. Meeting, SEG Expanded Abstracts, pp. 2811-2815. |
Stefani, J. (2007), “Acquisition using simultaneous sources,” 69th Annual Conf. and Exh., EAGE Extended Abstracts, 5 pgs. |
Symes, W.W. (2007), “Reverse time migration with optimal checkpointing,” Geophysics 72(5), pp. P.SM213-P.SM221. |
Symes, W.W. (2009), “Interface error analysis for numerical wave propagation,” Compu. Geosci. 13, pp. 363-371. |
Tang, Y. (2008), “Wave-equation Hessian by phase encoding,” SEG Expanded Abstracts 27, pp. 2201-2205. |
Tang, Y. (2009), “Target-oriented wave-equation least-squares migration/inversion with phase-encoded Hessian,” Geophysics 74, pp. WCA95-WCA107. |
Tang, Y. et al. (2010), “Preconditioning full waveform inversion with phase-encoded Hessian,” SEG Expanded Abstracts 29, pp. 1034-1037. |
Abt, D.L. et al. (2010), “North American lithospheric discontinuity structured imaged by Ps and Sp receiver functions”, J. Geophys. Res., 24 pgs. |
Akerberg, P., et al. (2008), “Simultaneous source separation by sparse radon transform,” 78th SEG Annual International Meeting, Expanded Abstracts, pp. 2801-2805. |
Aki, K. et al. (1980), “Quantitative Seismology: Theory and Methods vol. I—Chapter 7—Surface Waves in a Vertically Heterogenous Medium,” W.H. Freeman and Co., pp. 259-318. |
Aki, K. et al. (1980), “Quantitative Seismology: Theory and Methods vol. I,” W.H. Freeman and Co., p. 173. |
Aki et al. (1980), “Quantitative Seismology, Theory and Methods,” Chapter 5.20, W.H. Freeman & Co., pp. 133-155. |
Amundsen, L. (2001), “Elimination of free-surface related multiples without need of the source wavelet,” Geophysics 60(1), pp. 327-341. |
Anderson, J.E. et al. (2008), “Sources Near the Free-Surface Boundary: Pitfalls for Elastic Finite-Difference Seismic Simulation and Multi-Grid Waveform Inversion,” 70th EAGE Conf. & Exh., 4 pgs. |
Barr, F.J. et al. (1989), “Attenuation of Water-Column Reverberations Using Pressure and Velocity Detectors in a Water-Bottom Cable,” 59th Annual SEG meeting, Expanded Abstracts, pp. 653-656. |
Baumstein, A. et al. (2009), “Scaling of the Objective Function Gradient for Full Wavefield Inversion,” SEG Houston 2009 Int'l. Expo and Annual Meeting, pp. 224-2247. |
Beasley, C. (2008), “A new look at marine simultaneous sources,” The Leading Edge 27(7), pp. 914-917. |
Beasley, C. (2012), “A 3D simultaneous source field test processed using alternating projections: a new active separation method,” Geophsyical Prospecting 60, pp. 591-601. |
Beaty, K.S. et al. (2003), “Repeatability of multimode Rayleigh-wave dispersion studies,” Geophysics 68(3), pp. 782-790. |
Beaty, K.S. et al. (2002), “Simulated annealing inversion of multimode Rayleigh wave dispersion waves for geological structure,” Geophys. J. Int. 151, pp. 622-631. |
Becquey, M. et al. (2002), “Pseudo-Random Coded Simultaneous Vibroseismics,” SEG Int'l. Exposition and 72th Annl. Mtg., 4 pgs. |
Ben-Hadj-Ali, H. et al. (2009), “Three-dimensional frequency-domain full waveform inversion with phase encoding,” SEG Expanded Abstracts, pp. 2288-2292. |
Ben-Hadj-Ali, H. et al. (2011), “An efficient frequency-domain full waveform inversion method using simultaneous encoded sources,” Geophysics 76(4), pp. R109-R124. |
Benitez, D. et al. (2001), “The use of the Hilbert transform in ECG signal analysis,” Computers in Biology and Medicine 31, pp. 399-406. |
Berenger, J-P. (1994), “A Perfectly Matched Layer for the Absorption of Electromagnetic Waves,” J. of Computational Physics 114, pp. 185-200. |
Berkhout, A.J. (1987), “Applied Seismic Wave Theory,” Elsevier Science Publishers, p. 142. |
Berkhout, A.J. (1992), “Areal shot record technology,” Journal of Seismic Exploration 1, pp. 251-264. |
Berkhout, A.J. (2008), “Changing the mindset in seismic data acquisition,” The Leading Edge 27(7), pp. 924-938. |
Beylkin, G. (1985), “Imaging of discontinuities in the inverse scattring problem by inversion of a causal generalized Radon transform,” J. Math. Phys. 26, pp. 99-108. |
Biondi, B. (1992), “Velocity estimation by beam stack,” Geophysics 57(8), pp. 1034-1047. |
Bonomi, E. et al. (2006), “Wavefield Migration plus Monte Carlo Imaging of 3D Prestack Seismic Data,” Geophysical Prospecting 54, pp. 505-514. |
Boonyasiriwat, C. et al. (2010), 3D Multisource Full-Waveform using Dynamic Random Phase Encoding, SEG Denver 2010 Annual Meeting, pp. 1044-1049. |
Boonyasiriwat, C. et al. (2010), 3D Multisource Full-Waveform using Dynamic Random Phase Encoding, SEG Denver 2010 Annual Meeting, pp. 3120-3124. |
Bunks, C., et al. (1995), “Multiscale seismic waveform inversion,” Geophysics 60, pp. 1457-1473. |
Burstedde, G. et al. (2009), “Algorithmic strategies for full waveform inversion: 1D experiments,” Geophysics 74(6), pp. WCC17-WCC46. |
Chavent, G. et al. (1999), “An optimal true-amplitude least-squares prestack depth-migration operator,” Geophysics 64(2), pp. 508-515. |
Choi, Y. et al. (2011), “Application of encoded multisource waveform inversion to marine-streamer acquisition based on the global correlation,” 73rd EAGE Conference, Abstract, pp. F026. |
Choi, Y et al. (2012), “Application of multi-source waveform inversion to marine stream data using the global correlation norm,” Geophysical Prospecting 60, pp. 748-758. |
Clapp, R.G. (2009), “Reverse time migration with random boundaries,” SEG International Exposition and Meeting, Expanded Abstracts, pp. 2809-2813. |
Dai, W. et al. (2010), “3D Multi-source Least-squares Reverse Time Migration,” SEG Denver 2010 Annual Meeting, pp. 3120-3124. |
Delprat-Jannuad, F. et al. (2005), “A fundamental limitation for the reconstruction of impedance profiles from seismic data,” Geophysics 70(1), pp. R1-R14. |
Dickens, T.A. et al. (2011), RTM angle gathers using Poynting vectors, SEG Expanded Abstracts 30, pp. 3109-3113. |
Donerici, B. et al. (1005), “Improved FDTD Subgridding Algorithms Via Digital Filtering and Domain Overriding,” IEEE Transactions on Antennas and Propagation 53(9), pp. 2938-2951. |
Downey, N. et al. (2011), “Random-Beam Full-Wavefield Inversion,” 2011 San Antonio Annual Meeting, pp. 2423-2427. |
Dunkin, J.W. et al. (1973), “Effect of Normal Moveout on a Seismic Pluse,” Geophysics 38(4), pp. 635-642. |
Dziewonski A. et al. (1981), “Preliminary Reference Earth Model”, Phys. Earth Planet. Int. 25(4), pp. 297-356. |
Ernst, F.E. et al. (2000), “Tomography of dispersive media,” J. Acoust. Soc. Am 108(1), pp. 105-116. |
Ernst, F.E. et al. (2002), “Removal of scattered guided waves from seismic data,” Geophysics 67(4), pp. 1240-1248. |
Esmersoy, C. (1990), “Inversion of P and SV waves from multicomponent offset vertical seismic profiles”, Geophysics 55(1), pp. 39-50. |
Etgen, J.T. et al. (2007), “Computational methods for large-scale 3D acoustic finite-difference modeling: A tutorial,” Geophysics 72(5), pp. SM223-SM230. |
Fallat, M.R. et al. (1999), “Geoacoustic inversion via local, global, and hybrid algorithms,” Journal of the Acoustical Society of America 105, pp. 3219-3230. |
Fichtner, A. et al. (2006), “The adjoint method in seismology I. Theory,” Physics of the Earth and Planetary Interiors 157, pp. 86-104. |
Forbriger, T. (2003), “Inversion of shallow-seismic wavefields: I. Wavefield transformation,” Geophys. J. Int. 153, pp. 719-734. |
Gao, H. et al. (2008), “Implementation of perfectly matched layers in an arbitrary geometrical boundary for leastic wave modeling,” Geophysics J. Int. 174, pp. 1029-1036. |
Gibson, B. et al. (1984), “Predictive deconvolution and the zero-phase source,” Geophysics 49(4), pp. 379-397. |
Godfrey, R. J. et al. (1998), “Imaging the Foiaven Ghost,” SEG Expanded Abstracts, 4 pgs. |
Griewank, A. (1992), “Achieving logarithmic growth of temporal and spatial complexity in reverse automatic differentiation,” 1 Optimization Methods and Software, pp. 35-54. |
Griewank, A. (2000), Evaluating Derivatives: Principles and Techniques of Algorithmic Differentiation, Society for Industrial and Applied Mathematics, 49 pgs. |
Griewank, A. et al. (2000), “Algorithm 799: An implementation of checkpointing for the reverse or adjoint mode of computational differentiation,” 26 ACM Transactions on Mathematical Software, pp. 19-45. |
Griewank, A. et al. (1996), “Algorithm 755: A package for the automatic differentiation of algorithms written in C/C++,” ACM Transactions on Mathematical Software 22(2), pp. 131-167. |
Haber, E. et al. (2010), “An effective method for parameter estimation with PDE constraints with multiple right hand sides,” Preprint—UBC http://www.math.ubc.ca/˜haber/pubs/PdeOptStochV5.pdf. |
Hampson, D.P. et al. (2005), “Simultaneous inversion of pre-stack seismic data,” SEG 75th Annual Int'l. Meeting, Expanded Abstracts, pp. 1633-1637. |
Heinkenschloss, M. (2008), :“Numerical Solution of Implicity Constrained Optimization Problems,” CAAM Technical Report TR08-05, 25 pgs. |
Helbig, K. (1994), “Foundations of Anisotropy for Exploration Seismics,” Chapter 5, pp. 185-194. |
Herrmann, F.J. (2010), “Randomized dimensionality reduction for full-waveform inversion,” EAGE abstract G001, EAGE Barcelona meeting, 5 pgs. |
Holschneider, J. et al. (2005), “Characterization of dispersive surface waves using continuous wavelet transforms,” Geophys. J. Int. 163, pp. 463-478. |
Hu, L.Z. et al. (1987), “Wave-field transformations of vertical seismic profiles,” Geophysics 52, pp. 307-321. |
Huang, Y. et al. (2012), “Multisource least-squares migration of marine streamer and land data with frequency-division encoding,” Geophysical Prospecting 60, pp. 663-680. |
Igel, H. et al. (1996), “Waveform inversion of marine reflection seismograms for P impedance and Poisson's ratio,” Geophys. J. Int. 124, pp. 363-371. |
Ikelle, L.T. (2007), “Coding and decoding: Seismic data modeling, acquisition, and processing,” 77th Annual Int'l. Meeting, SEG Expanded Abstracts, pp. 66-70. |
Jackson, D.R. et al. (1991), “Phase conjugation in underwater acoustics,” J. Acoust. Soc. Am. 89(1), pp. 171-181. |
Jing, X. et al. (2000), “Encoding multiple shot gathers in prestack migration,” SEG International Exposition and 70th Annual Meeting Expanded Abstracts, pp. 786-789. |
Kennett, B.L.N. (1991), “The removal of free surface interactions from three-component seismograms”, Geophys. J. Int. 104, pp. 153-163. |
Kennett, B.L.N. et al. (1988), “Subspace methods for large inverse problems with multiple parameter classes,” Geophysical J. 94, pp. 237-247. |
Krebs, J.R. (2008), “Fast Full-wavefield seismic inversion using encoded sources,” Geophysics 74(6), pp. WCC177-WCC188. |
Krohn, C.E. (1984), “Geophone ground coupling,” Geophysics 49(6), pp. 722-731. |
Kroode, F.T. et al. (2009), “Wave Equation Based Model Building and Imaging in Complex Settings,” OTC 20215, 2009 Offshore Technology Conf., Houston, TX, May 4-7, 2009, 8 pgs. |
Kulesh, M. et al. (2008), “Modeling of Wave Dispersion Using Continuous Wavelet Transforms II: Wavelet-based Frequency-velocity Analysis,” Pure Applied Geophysics 165, pp. 255-270. |
Lancaster, S. et al. (2000), “Fast-track ‘colored’ inversion,” 70th SEG Ann. Meeting, Expanded Abstracts, pp. 1572-1575. |
Lazaratos, S. et al. (2009), “Inversion of Pre-migration Spectral Shaping,” 2009 SEG Houston Int'l. Expo. & Ann. Meeting, Expanded Abstracts, pp. 2383-2387. |
Lazaratos, S. (2006), “Spectral Shaping Inversion for Elastic and Rock Property Estimation,” Research Disclosure, Issue 511, pp. 1453-1459. |
Lazaratos, S. et al. (2011), “Improving the convergence rate of full wavefield inversion using spectral shaping,” SEG Expanded Abstracts 30, pp. 2428-2432. |
Lecomte, I. (2008), “Resolution and illumination analyses in PSDM: A ray-based approach,” The Leading Edge, pp. 650-663. |
Lee, S. et al. (2010), “Subsurface parameter estimation in full wavefield inversion and reverse time migration,” SEG Denver 2010 Annual Meeting, pp. 1065-1069. |
Levanon, N. (1988), “Radar Principles,” Chpt. 1, John Whitey & Sons, New York, pp. 1-18. |
Liao, Q. et al. (1995), “2.5D full-wavefield viscoacoustic inversion,” Geophysical Prospecting 43, pp. 1043-1059. |
Liu, F. et al. (2007), “Reverse-time migration using one-way wavefield imaging condition,” SEG Expanded Abstracts 26, pp. 2170-2174. |
Liu, F. et al. (2011), “An effective imaging condition for reverse-time migration using wavefield decomposition,” Geophysics 76, pp. S29-S39. |
Maharramov, M. et al. (2007) , “Localized image-difference wave-equation tomography,” SEG Annual Meeting, Expanded Abstracts, pp. 3009-3013. |
Malmedy, V. et al. (2009), “Approximating Hessians in unconstrained optimization arising from discretized problems,” Computational Optimization and Applications, pp. 1-16. |
Martin, G.S. et al. (2006), “Marmousi2: An elastic upgrade for Marmousi,” The Leading Edge, pp. 156-166. |
Meier, M.A. et al. (2009), “Converted wave resolution,” Geophysics, 74(2):doi:10.1190/1.3074303, pp. Q1-Q16. |
Moghaddam, P.P. et al. (2010), “Randomized full-waveform inversion: a dimenstionality-reduction approach,” 80th SEG Ann. Meeting, Expanded Abstracts, pp. 977-982. |
Mora, P. (1987), “Nonlinear two-dimensional elastic inversion of multi-offset seismic data,” Geophysics 52, pp. 1211-1228. |
Haber, E. et al. (2010), “An effective method for parameter estimation with PDE constraints with multiple right hand sides,” Preprint—UBC http://www.math.ubc.caf˜haber/pubs/PdeOptStochV5.pdf. |
Levanon, N. (1988), “Radar Principles,” Chpt. 1, John Whiley & Sons, New York, pp. 1-18. |
Number | Date | Country | |
---|---|---|---|
20160223697 A1 | Aug 2016 | US |
Number | Date | Country | |
---|---|---|---|
62111956 | Feb 2015 | US |