This invention is in the field of personal protective equipment for infectious diseases such as airborne viruses.
With the recent worldwide COVID-19 pandemic, there has been intense interest in personal protective equipment. Although the prior art contains numerous examples of various types of biohazard suits, such suits tend to be uncomfortable for prolonged periods. Thus, alternative personal protective equipment (PPE) designs that are more comfortable to wear are desirable.
The invention was inspired, in part, by the insight that prior art facemasks and biohazard suits, at least with regards to the face mask portion, tend to be “one size fits all.” However, in addition to differences in height and weight, different users also have quite differing facial structures. The length and width of the human face can vary. This variation can include differences in the size and position of the nose, mouth, and eyes. The structures of the forehead size, jaw size, and other features can also differ. Additionally, some users wear glasses (which themselves can have varying sizes and shapes), and some do not.
Another problem is that prior art facemasks generally bind tightly to various regions of the user's face, causing discomfort on prolonged use. Face shields, on the other hand, tend to trap moisture in the user's breath, leading to fogging and excess condensation.
The invention was also inspired, in part, by the insight that what is needed is an improved biohazard suit type PPE that allows a user to switch between different face shield designs rapidly. According to the invention, if the user is wearing glasses, the user may rapidly configure the PPE device to a face mask side to minimize fogging. If the user has a face with unusual contours, the user may wish to use a face mask side configured to provide ample room. If the user intends to eat or drink, the user may wish to use a face mask side configured to open and shut again as desired.
Thus, as will be discussed, in some embodiments, the invention comprises a PPE device configured with a rotating face cover assembly with a plurality of mask sides. These different mask sides can be configured for different user faces or other use cases. This rotating face cover assembly can be further configured to attach to a zip-up bodysuit that covers the user's entire body, enabling the user to avoid contamination while exposed to airborne infectious agents such as bacteria and viruses. However, by rotating the rotating face cover assembly, the user can rapidly select the mask side best optimized for a given user.
Embodiments that enable the device to be more comfortable, convenient, and have improved user protection in difficult environments are also discussed.
This circular collar is attached to a zip-up bodysuit (140). In use, the user (100) puts on the bodysuit (140), zips up the zippers (see
The body may generally comprise a microbial impermeable fabric, non-woven fabric, or plastic material formed from nylon or other type of synthetic polymer.
Thus, in some embodiments, the invention is a PPE device (120) configured for different types of human users. In addition to differences in their height, weight, these different types of users may also differ in the position or dimensions of their nose, mouth, or eye regions of their faces.
As previously discussed, and as shown in more detail in
Here, the plurality of mask sides (134a, 134b, 134c) are disposed between the circular base (132) and the mask top (138); and are connected to their neighboring mask sides, the circular base (132), and the mask top (138) to form a continuous covering surrounding all sides and head top of different types of user's heads;
In some embodiments, the circular base (132) and the circular collar (136) are configured with an adjustable mechanism enabling different mask sides to be positioned in front of the face of the users.
This adjustable mechanism can be various slots and tabs (135s) in the circular base (132) and circular collar (136) that enables the assembly (130) to fit into the circular base at various defined orientations, a sliding mechanism, or other types of mechanism. Here for simplicity, the multiple slots and tabs are shown, positioned at 90-degree angles on the circular base and circular collar. Although in this embodiment four slots/latches (135s) and corresponding tabs or latches are shown, this is not intended to be limiting. In other embodiments a smaller (e.g., 3) or larger (e.g., 5) number of slots/latches may be used.
In other embodiments, other attachment mechanisms, including zippers, hook and loop fasteners (e.g., Velcro), pressure fasteners, screw thread mechanisms, and other attachment mechanisms may be used.
In some embodiments, each mask side (134a, 134b, 134c) may be configured with a microbial filter element, a transparent element (which form the outline of the mask side itself), and various mask side supporting elements (135e) that are configured to shape portions of the surface of the mask side so that, when a user wears the mask, the surface of the mask side does not contact a nose, mouth, or eyes of at least one type of user.
The transparent element can be formed from any suitably microbial impermeable transparent material, including polycarbonate or Polyethylene terephthalate glycol (PETG) plastic or other type plastic, or various glass and glass-like materials including borosilicate glass, transparent aluminum oxide Al2O3 (often called sapphire glass), as well as various proprietary and chemically strengthened glass materials such as alkali-aluminosilicate sheet glass, sometimes called Gorilla Glass. Although the transparent element will often be impermeable to air, this is not always the case. As will be discussed, in some embodiments, the transparent element can also serve as an air filtration element and be at least somewhat permeable to air.
In some embodiments, each different mask side (e.g., 134a, 134b) may have different mask side supporting elements (135e). These enable a first mask side, such as 134a, to be optimized to maintain a first set of distances between the mask side and the nose, mouth, or eyes of a first type of human user. Similarly, a different mask side, such as 134b, may be optimized to maintain a different set of distances between this other mask side and the nose, mouth, or eyes of a different human user. This allows different users to select among different mask sides (e.g., 134a, 134b, 134c, etc.) that are most comfortable for each user's head geometry, eyewear, or use situation.
In some embodiments, either in place of this indented groove, or to supplement this indented groove, foam or other soft material may be used at (135g), approximately at the level of the user's nose bridge, to help prevent moist air from the user's nose and mouth area from rising and condensing in the eye region.
In some embodiments, the mask sides may comprise a transparent air-impermeable portion and a non-transparent air-permeable microbial filter. For example, in
Various materials may be used for the transparent air-impermeable portion of the mask, including polycarbonate, cellophane, borosilicate, PETG plastic, Sapphire glass, and Gorilla glass (Gorilla glass is a trademark of Corning Corporation). Generally, polycarbonate, cellophane, or other transparent plastic materials are lower cost and easier to use in manufacturing. However, glass materials may be used as needed.
For example, in some embodiments, such as when it is anticipated that the users may be working in environments with high levels of ultraviolet (UV) light, it may be useful to employ transparent materials or coatings that block a significant portion of the ambient UV light, such as blocking 50%, 90% or more of the ambient UV light. This can be done by, for example, configuring at least one mask side with transparent elements that further comprise a material or coating that blocks ultraviolet light. Suitable materials can include polycarbonate as well as certain types of glasses.
Further, in some embodiments, it may be anticipated that some uses may be exposed to sparks, hot oil droplets, or other high temperature particles. In such cases it may be further useful to form at least the transparent elements on at least one side of the mask from high melting point materials that are substantially impervious to damage from hot oil droplets, at least hot oil droplets at temperatures less than 200 degrees centigrade. Here use of glass materials, which can generally stand up to high temperatures of over 1000 degrees centigrade, may be preferred.
For example, the non-transparent air-permeable microbial filter (135ls) may comprise spunbond-meltblown polypropylene. In situations where both mask sides (135us and 135ls) include a transparent, air-permeable microbial filter, this transparent air-permeable microbial filter may comprise at least one microporous layer.
Optional valve arrangements: In some embodiments, the non-transparent air-permeable microbial filters may be supplemented or replaced by one or more breathing valves. These breathing valves are essentially one-way flaps with optional air filters on the openings. These valves open and close when the user's breathing creates a pressure gradient across the valve. Thus, these valves may admit filtered outside air when the user inhales. Alternatively, the valves may expel user exhaled air to the outside.
In some embodiments, there may be a first valve that opens when the user inhales, and a second valve that opens when the user exhales. In some embodiments, outside air may pass through one or more filters to remove microbial contaminants. Here, air pumps, such as electrical air pumps, may also be used (sometimes as a part of the suit) to help provide adequate airflow without overly tiring the user.
In some alternative embodiments, external air supplies, such as back mounted compressed air or oxygen cylinders, may also be used. Alternatively, air may be supplied by external air compressors, and delivered by flexible tubing. These embodiments will be discussed in more detail later in this disclosure.
In some embodiments, the user may also wear an optional inner face-mask (137) as a secondary protection against any leaks, as well as to help prevent moisture from the user's breath from fogging the transparent eye covering. In some embodiments, this inner face mask may itself comprise an air purifier.
In some embodiments, the plurality of mask sides can comprise at least three mask sides (such as 134a, 134b, 134c, etc.), and these three mask sides are disposed along different arc segments of the circular base (132). As previously discussed, this circular base (132) is configured to attach to the circular collar (136) at any of at least three different orientations. Typically, these at least three different orientations are spaced evenly apart along the circular base and circular collar. Alternatively, the circular base (132) can to attach to the circular collar (136) at one orientation. The base can then rotate about the circular collar to position the desired mask side in front of the user's face.
This radio transceiver may (131t), may for example, comprise a short-range radio transceiver such as a Wi-Fi or Bluetooth transceiver. The one or more sensors (131s) may comprise sensors configured to sample either the environment of the wearer inside the suit, such as temperature, humidity, carbon dioxide, etc., or alternatively or additionally also sample the outside environment outside of the suit. The results of these sensor measurements may be transmitted by the transmitter to one or more locations, including suit mounted displays, or other data recording and playback systems as desired.
Note that in some embodiments, at least one of the mask sides may be detachable mask sides. These detachable mask sides may be configured to be attached and detached from the rotating face cover assembly (130) through any of snaps (135f), buttons, zippers, or hook-and-loop fasteners. In some cases, the face mask side may be semi-detachable, such as detachable from the circular base, but not detachable from the mask top. Instead, the mask side may be attached to the mask top via a hinge (135h), so that the mask side may be temporarily raised for the user to eat or drink (160). This mask side can then be closed when the user has finished eating or drinking. Thus, in this embodiment, at least one mask may be configured to be raised and lowered in a “visor style” fashion.
In some embodiments, to help prevent the face cover assembly from wobbling due to rapid motion or accidental knocks, additional straps may be used to help affix the face cover assembly (130) to the bodysuit (140). Many alternative strap arrangements are possible.
In most embodiments, the PPE device (120) is configured so that a first type of human user can adjust a first mask side (such as 134a) in front of the first type of human user's face. A different type of human user can adjust a different mask side (such as 134b) in front of the different type of human user's face. As previously discussed, the circular collar (136) is attached to a zip-up bodysuit (140). This bodysuit (140) is configured to fit over the user's body. This zip-up bodysuit is typically comprised of microbial impermeable materials (such as a biohazard compatible fabric) to further protect the user from microbial contamination, such as viral contamination, from virus sources outside the user's body.
Note that in regions where two zippers join, such as (144), where (142a and 142b), there may be a need to ensure that the two zippers remain shut and do not leak. This joint region (144) is shown magnified in (144a). Here the two zipper heads may be held closed by magnetic clasps or by hook and loop fasteners, such as Velcro® fasteners (144b).
Put alternatively, as shown in
In some embodiments, the bodysuit may additionally contain tighteners, such as drawstrings or elastic bands (146a, 146b, 146c) or other elastomeric material to make the waist (146a), wrists (146b), and ankles (146c) of the bodysuit fit more snugly around the corresponding parts of the user. Additionally, in some embodiments, the bodysuit may be treated with fabric protectors, such as suitable water repellants, to help reduce the risk of microbial laden water droplets from adhering to the bodysuit, or penetrating through the bodysuit.
In some embodiments, the bodysuit may also comprise an arm-mounted user interface (152). This arm-mounted user interface can comprise, for example, a tablet computer with at least one processor, and a graphical user interface such as a touchscreen. This user interface may be used for a variety of different purposes. For example, in those embodiments where the system also has a motorized rotation control device, such as (131k), the user interface may be configured to control the operation of this motorized rotational control device, either directly, or by a intermediary transceiver arrangement such as by way of transceiver (131t). In other embodiments, such as when the system has various sensors (131s), the arm mounted user interface may be configured to display the results from these sensors, as well as other data.
In still other embodiments, a partially detachable mask may be attached to a hook, button, clasp, or other attachment mechanism that is attached on a hood, so that the detachable may be removed for eating or drinking, yet remain attached to the hood so that the detachable mask will need not be lost.
Supplemental Breathing Equipment
As previously discussed, although, in many embodiments, the user will obtain air through one or more microbial filter elements embedded in the sides of the mask, other embodiments are also possible.
In some embodiments, the bodysuit may be configured with carrying straps to carry one or more air or oxygen tanks. These air or oxygen tanks can be affixed to the bodysuit (for example on the back), and be configured to supply air or oxygen to the mask by way of suitable connecting tubes, valves, and optional air flow regulators.
These tanks can provide supplemental air that the user may draw upon during a decontamination process. Often, the most effective decontamination chemicals are chemicals that are toxic to humans. However, after leaving a highly contaminated environment, it may be occasionally be desirable instruct the user to close off access to the outside air (e.g., close any access port connecting the filter elements to the outside air), turn on valves connecting the mask with the air or oxygen mask, and then decontaminate the bodysuit with sterilizing agents. This way, the user inside the suit can be protected from such harsh sterilizing chemicals (which might otherwise penetrate a standard microbial filter), and receive adequate air during the duration of the sterilizing process.
Put alternatively, in some embodiments, the bodysuit or mask can be further configured with air or oxygen tank straps or holders (172), and at least one hose (176), valve (170), and air or oxygen tank (170). These will be configured to allow the user to obtain air or oxygen from the tank for at least the duration of a brief chemical sterilization process. Normally the tank should be able to supply the average user with adequate air for at least five minutes. However, it may be desirable to use larger tanks that can operate for 10 minutes, 15 minutes, 30 minutes or even longer, as desired.
Similarly, although often the microbial filter elements embedded in the sides of the mask will generally be continually open to allow the passage of air, at least during use, other configurations are also desirable and possible. In some embodiments, access to the microbial filter elements may be controlled by the previously discussed flaps or valves, which may be user adjustable, so that such valves can be closed, restricting access to the outside environment, as desired. Such user-controlled flaps or valves can be particularly useful during a decontamination process that uses toxic chemical agents.
Velcro® is a registered trademark of Velcro BVBA.
This application is a continuation in part of U.S. patent application Ser. No. 17/352,340, filed Jun. 20, 2021, application Ser. No. 17/352,340 was a continuation in part of U.S. patent application Ser. No. 17/093,213, filed Nov. 9, 2020, now U.S. Pat. No. 11,065,480, issued Jul. 20, 2021; the entire contents of these applications are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
622677 | Gallagher | Apr 1899 | A |
3221339 | Correale, Jr. | Dec 1965 | A |
3413972 | Depping | Dec 1968 | A |
3432860 | Durney | Mar 1969 | A |
3529594 | Charnley | Sep 1970 | A |
4552140 | Cowley | Nov 1985 | A |
4683880 | Werjefelt | Aug 1987 | A |
4845779 | Wheeler | Jul 1989 | A |
4889113 | Pelloux-Gervais | Dec 1989 | A |
4901370 | Suda | Feb 1990 | A |
5003973 | Ford | Apr 1991 | A |
5099525 | Millauro | Mar 1992 | A |
5226409 | Bower | Jul 1993 | A |
5253642 | Stackhouse | Oct 1993 | A |
5404577 | Zuckerman | Apr 1995 | A |
5452712 | Richardson | Sep 1995 | A |
5467765 | Maturaporn | Nov 1995 | A |
5819728 | Ritchie | Oct 1998 | A |
6134716 | Richardson | Oct 2000 | A |
6460538 | Kemp | Oct 2002 | B1 |
6701920 | Cox | Mar 2004 | B1 |
6854459 | Cox | Feb 2005 | B1 |
9931482 | Ritchie | Apr 2018 | B2 |
10449397 | VanDerWoude | Oct 2019 | B2 |
11202925 | Awad | Dec 2021 | B1 |
20030075174 | Shahaf | Apr 2003 | A1 |
20030135915 | Luppi | Jul 2003 | A1 |
20060137686 | Macris | Jun 2006 | A1 |
20080105255 | Resnick | May 2008 | A1 |
20120036622 | Carron | Feb 2012 | A1 |
20120066819 | Carron | Mar 2012 | A1 |
20140184407 | Patil | Jul 2014 | A1 |
20150004131 | Milstein | Jan 2015 | A1 |
20150273248 | Kuutti | Oct 2015 | A1 |
20150375019 | VanDerWoude | Dec 2015 | A1 |
20160008640 | Teetzel | Jan 2016 | A1 |
20160030774 | Graziani | Feb 2016 | A1 |
20160030776 | Rolland | Feb 2016 | A1 |
20160165973 | Yazdi | Jun 2016 | A1 |
20170137686 | Klamklang | May 2017 | A1 |
20180014597 | Cooke | Jan 2018 | A1 |
20190111288 | Isham | Apr 2019 | A1 |
20190231005 | Jefferis | Aug 2019 | A1 |
20200206544 | Vaughan | Jul 2020 | A1 |
20200275724 | Jefferis | Sep 2020 | A1 |
20200375272 | Ulmer | Dec 2020 | A1 |
20210001158 | Ishikawa | Jan 2021 | A1 |
20210331003 | Thompson | Oct 2021 | A1 |
Number | Date | Country | |
---|---|---|---|
20220134140 A1 | May 2022 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 17352340 | Jun 2021 | US |
Child | 17577200 | US | |
Parent | 17093213 | Nov 2020 | US |
Child | 17352340 | US |