Pre-alignment surgical cassette interface

Information

  • Patent Grant
  • 10265217
  • Patent Number
    10,265,217
  • Date Filed
    Wednesday, July 17, 2013
    11 years ago
  • Date Issued
    Tuesday, April 23, 2019
    5 years ago
Abstract
A phacoemulsification surgical console, and a related system and method. The console, system and method may include a cassette receiver suitable for receiving a surgical cassette, a controller suitable for controlling provided aspects of the phacoemulsification; and a pre-alignment feature along a lower portion under and proximate to the cassette receiver, extending outwardly from the lower portion, and suitable for aligning the surgical cassette to the cassette receiver. The pre-alignment feature may comprise a shelf.
Description
TECHNICAL FIELD OF THE INVENTION

The present invention is generally related to methods, devices, and systems for pre-aligning a surgical cassette for providing surgical fluid flows, particularly during treatment of an eye.


BACKGROUND OF THE INVENTION

The optical elements of the eye include both a cornea (at the front of the eye) and a lens within the eye. The lens and cornea work together to focus light onto the retina at the back of the eye. The lens also changes in shape, adjusting the focus of the eye to vary between viewing near objects and far objects. The lens is found just behind the pupil, and within a capsular bag. This capsular bag is a thin, relatively delicate structure which separates the eye into anterior and posterior chambers.


With age, clouding of the lens or cataracts are fairly common. Cataracts may form in the hard central nucleus of the lens, in the softer peripheral cortical portion of the lens, or at the back of the lens near the capsular bag.


Cataracts can be treated by the replacement of the cloudy lens with an artificial lens.


Phacoemulsification systems often use ultrasound energy to fragment the lens and aspirate the lens material from within the capsular bag. This may allow the capsular bag to be used for positioning of the artificial lens, and maintains the separation between the anterior portion of the eye and the vitreous humour in the posterior chamber of the eye.


During cataract surgery and other therapies of the eye, accurate control over the volume of fluid within the eye is highly beneficial. For example, while ultrasound energy breaks up the lens and allows it to be drawn into a treatment probe with an aspiration flow, a corresponding irrigation flow may be introduced into the eye so that the total volume of fluid in the eye does not change excessively. If the total volume of fluid in the eye is allowed to get too low at any time during the procedure, the eye may collapse and cause significant tissue damage. Similarly, excessive pressure within the eye may strain and injure tissues of the eye.


While a variety of specific fluid transport mechanisms have been used in phacoemulsification and other treatment systems for the eyes, aspiration flow systems can generally be classified in two categories: 1) volumetric-based aspiration flow systems using positive displacement pumps; and 2) vacuum-based aspiration systems using a vacuum source, typically applied to the aspiration flow through an air-liquid interface. These two categories of aspiration flow systems each have unique characteristics that render one more suitable for some procedures than the other, and vice versa.


Among positive displacement aspiration systems, peristaltic pumps (which use rotating rollers that press against a flexible tubing to induce flow) are commonly employed. Such pumps provide accurate control over the flow volume. The pressure of the flow, however, is less accurately controlled and the variations in vacuum may result in the feel or traction of the handpiece varying during a procedure. Peristaltic and other displacement pump systems may also be somewhat slow.


Vacuum-based aspiration systems provide accurate control over the fluid pressure within the eye, particularly when combined with gravity-fed irrigation systems. While vacuum-based systems can result in excessive fluid flows in some circumstances, they provide advantages, for example, when removing a relatively large quantity of the viscous vitreous humour from the posterior chamber of the eye. However, Venturi pumps and other vacuum-based aspiration flow systems are subject to pressure surges during occlusion of the treatment probe, and such pressure surges may decrease the surgeon's control over the eye treatment procedure.


Different tissues may be aspirated from the anterior chamber of the eye with the two different types of aspiration flow. For example, vacuum-induced aspiration flow may quickly aspirate tissues at a significant distance from a delicate structure of the eye (such as the capsular bag), while tissues that are closer to the capsular bag are aspirated more methodically using displacement-induced flows.


Conventionally, fluid aspiration systems include a console and a fluidic cassette mounted on the console. The fluidic cassette is typically changed for each patient and cooperates with the console to provide fluid aspiration. Generally, a single type of cassette is used by a particular console, regardless of whether the procedure will require positive displacement aspiration, vacuum-based aspiration, or both. U.S. Pat. No. 8,070,712; U.S. Published Application 2008011431; and U.S. Published Application 20080114291 provide examples of cassettes currently used in the marketplace, the contents of each are herewith incorporated by reference in their entirety as if set forth herein.


Such a cassette is typically physically mated to the afore-discussed console. In providing the physical association between the cassette and the console, at least the aspiration/pumping aspects discussed above must be properly aligned as between the cassette and the console, at least in order to provide proper functionality to the fluidics systems. As such, misalignment may lead to system malfunction, inoperability, or poor performance. However, currently available systems that provide for the alignment of placement and attitude of the cassette onto the console suffer from a variety of issues, including jamming, breakage, and inability to assess a sound alignment and cassette attitude, among others.


More particularly, the surgical cassette may be inadvertently or deliberately mis-loaded into the receiving interface of the console. This mis-loading may occur in such a way so as to cause jamming of the cassette between the side-clamps that are interior to the receiving area of the console and are provided to receive the cassette. A mis-load may particularly occur when the planar attitude of the cassette is tilted rotationally toward the left or right of the receiving area of the console. Although misalignment occurs less frequently as expertise in use of the console increases, even the most expert users experience an occasional mis-load.


In the known art, alignment features may thus be provided, such as an “alignment key” on one of the console receiving area or the cassette, or exterior clamps, such as on the exterior portion of the console and on the top and bottom of the receiving area. However, these solutions in the known art still frequently suffer from jamming due to misalignment, such as due to inadvertent misalignment of the alignment key or improper orientation with respect to one of the top clamp or the bottom clamp. Additionally, these solutions fail to provide suitable for handling of the administration tubing that typical provides the fluid aspiration discussed above.


In light of the above, it would be advantageous to provide improved devices, systems, and methods for eye surgery.


SUMMARY OF THE INVENTION

The present invention provides a phacoemulsification surgical console, and a related system and method. The console may include a cassette receiver suitable for receiving a surgical cassette, a controller suitable for controlling provided aspects of the phacoemulsification; and a pre-alignment feature along a lower portion under and proximate to the cassette receiver, extending outwardly from the lower portion, and suitable for aligning the surgical cassette to the cassette receiver. The pre-alignment feature may comprise a shelf.


A method in accordance with the invention may include receiving a bottom portion of a cassette upon a pre-alignment feature adjacent to a lower portion of a cassette receiver of the console, and receiving a top portion of the cassette into an upper portion of the cassette receiver upon rotation of the top portion of the cassette into the upper portion of the cassette receiver about an axis along contact points between the cassette and the pre-alignment feature. The method may further include clamping the cassette into the cassette receiver following an aligned receiving of the bottom portion and an aligned receiving of the top portion. The method may further include ejecting the cassette following use following the receiving steps, and the cassette may rest at least partially on the pre-alignment feature following the ejecting.


A phacoemulsification system according to the invention may include a surgical cassette and a surgical console. The surgical console may include a cassette receiver suitable for receiving the surgical cassette, a controller suitable for controlling provided aspects of the phacoemulsification, and a pre-alignment feature along a lower portion under and proximate to the cassette receiver.


Accordingly, the present invention may provide improved devices, systems, and methods for eye surgery.





BRIEF DESCRIPTION OF THE DRAWINGS

The present invention is best understood with reference to the following detailed description of the invention and the drawings in which:



FIG. 1 schematically illustrates an eye treatment system in which a cassette couples an eye treatment probe with an eye treatment console;



FIG. 2 illustrates an exemplary surgical cassette having a surgical fluid pathway network for use in the system of FIG. 1;



FIG. 3 is a perspective view of an exemplary drain bag port;



FIG. 4a is a back view of an exemplary surgical cassette;



FIG. 4b is a perspective back view of an exemplary surgical cassette;



FIG. 4c is a perspective back view of an exemplary surgical cassette;



FIG. 5a is an exploded view of an exemplary surgical cassette;



FIG. 5b is a top view of the back of the front plate of an exemplary surgical cassette;



FIG. 6 is an exploded view of an exemplary surgical cassette;



FIG. 7 is an exploded view of an exemplary surgical cassette;



FIG. 8 is a perspective view of the front of an exemplary surgical cassette;



FIG. 9a is a perspective view of the front of an exemplary surgical cassette with a drain bag;



FIG. 9b is a perspective view of the back of an exemplary surgical cassette with a drain bag and flexible conduit;



FIG. 10a is a perspective view of the back of an exemplary gasket;



FIG. 10b is a perspective view of the front of an exemplary gasket;



FIG. 11 is a top view of an exemplary surgical console;



FIG. 11a is a perspective view of the front of an exemplary surgical console;



FIG. 12 is a top view of an exemplary surgical console with a surgical cassette coupled therewith;



FIG. 13 is a perspective view of an exemplary surgical consol with a surgical cassette coupled therewith;



FIG. 14a is a cross-sectional view of an exemplary surgical cassette clamping mechanism;



FIG. 14b detailed view of the exemplary surgical cassette interface (part A) as illustrated in FIG. 14a;



FIG. 15a is a perspective view of an exemplary surgical cassette clamp;



FIG. 15b is a perspective view of an exemplary surgical cassette clamp;



FIG. 16a is a cross-sectional view of an exemplary surgical cassette detection mechanism;



FIG. 16b is a cross-sectional view of an exemplary surgical cassette detection mechanism;



FIG. 17a is a cross-section view of an exemplary peristaltic pump roller assembly;



FIG. 17b is a detailed view of the exemplary peristaltic pump roller assembly (part B) as illustrated in FIG. 17a;



FIG. 18 is a cross-sectional view of an exemplary surgical cassette illustrating the peristaltic pump tube and peristaltic pump profile;



FIG. 19 is a perspective view illustrating a surgical console having a pre-alignment feature; and



FIG. 20 is a perspective view illustrating the insertion of a surgical cassette into a surgical console using a pre-alignment feature.





DETAILED DESCRIPTION OF THE INVENTION

Reference will now be made in detail to embodiments of the invention, examples of which are illustrated in the accompanying drawings. While the invention will be described in conjunction with the embodiments, it will be understood that they are not intended to limit the invention to those embodiments. On the contrary, the invention is intended to cover alternatives, modifications, and equivalents, which may be included within the spirit and scope of the invention, such as is defined by the appended claims.


Referring to FIG. 1, a system 10 for treating an eye E of a patient P generally includes an eye treatment probe handpiece 12 coupled to a console 14 by a cassette 100 mounted on the console. Handpiece 12 may include a handle for manually manipulating and supporting an insertable probe tip. The probe tip has a distal end which is insertable into the eye, with one or more lumens in the probe tip allowing irrigation fluid to flow from the console 14 and/or cassette 100 into the eye. Aspiration fluid may also be withdrawn through a lumen of the probe tip, with the console 14 and cassette 100 generally including a vacuum aspiration source, a positive displacement aspiration pump, or both to help withdraw and control a flow of surgical fluids into and out of eye E. As the surgical fluids may include biological materials that should not be transferred between patients, cassette 100 will often comprise a disposable (or alternatively, sterilizable) structure, with the surgical fluids being transmitted through flexible conduits 18, also referred to in the pertinent art as administrative tubing, of the cassette that avoid direct contact in between those fluids and the components of console 14.


When a distal end of the probe tip of handpiece 12 is inserted into an eye E, for example, for removal of a lens of a patient with cataracts, an electrical conductor and/or pneumatic line (not shown) may supply energy from console 14 to an ultrasound transmitter of the handpiece, a cutter mechanism, or the like. Alternatively, the handpiece 12 may be configured as an irrigation/aspiration (I/A) or vitrectomy handpiece. Also, the ultrasonic transmitter may be replaced by other means for emulsifying a lens, such as a high energy laser beam. The ultrasound energy from handpiece 12 helps to fragment the tissue of the lens, which can then be drawn into a port of the tip by aspiration flow. So as to balance the volume of material removed by the aspiration flow, an irrigation flow through handpiece 12 (or a separate probe structure) may also be provided, with both the aspiration and irrigations flows being controlled by console 14.


So as to avoid cross-contamination between patients without incurring excessive expenditures for each procedure, cassette 100 and its flexible conduit 18 may be disposable. Alternatively, the flexible conduit or tubing may be disposable, with the cassette body and/or other structures of the cassette being sterilizable. Regardless, the disposable components of the cassette are typically configured for use with a single patient, and may not be suitable for sterilization. The cassette will interface with reusable (and often quite expensive) components of console 14, which may include one or more peristaltic pump rollers, a Venturi or other vacuum source, a controller 40, and the like.


Controller 40 may include an embedded microcontroller and/or many of the components common to a personal computer, such as a processor, data bus, a memory, input and/or output devices (including a touch screen user interface 42), and the like. Controller 40 will often include both hardware and software, with the software typically comprising machine readable code or programming instructions for implementing one, some, or all of the methods described herein. The code may be embodied by a tangible media such as a memory, a magnetic recording media, an optical recording media, or the like. Controller 40 may have (or be coupled to) a recording media reader, or the code may be transmitted to controller 40 by a network connection such as an internet, an intranet, an Ethernet, a wireless network, or the like. Along with programming code, controller 40 may include stored data for implementing the methods described herein, and may generate and/or store data that records perimeters with corresponding to the treatment of one or more patients. Many components of console 14 may be found in or modified from known commercial phacoemulsification systems from Abbott Medical Optics Inc. of Santa Ana, Calif.; Alcon Manufacturing, Ltd. of Ft. Worth, Texas; Bausch and Lomb of Rochester, New York; and other suppliers.



FIG. 2 illustrates a surgical cassette of the present invention, including components of surgical cassette 100. Surgical cassette 100 is an assembly of fluid pathways and connected tubing configured to manage one or more of the following: fluid inflow, fluid outflow, fluid vacuum level, and fluid pressure in a patient's eye E when coupled with console 14. Surgical cassette 100 may include grip loop handle 101, which provides a sterile means for holding and positioning surgical cassette 100 under finger grip control. In an embodiment, grip loop handle 101 is designed for an index finger to pass completely thru the loop of the handle. The grip loop handle 101 may also be designed for the pad of the thumb to rest on outer top surface of grip loop handle 101.


In an embodiment, surgical cassette 100 may include a thumb shield 102. As illustrated in FIG. 2, thumb shield 102 may have a raised border above grip loop handle 101, which is configured and dimensioned to surround a sterile gloved thumb to reduce potential for contact with non-sterile surfaces during insertion of surgical cassette 100 into console. Thumb shield 102 may have one or more surface elements. For example, thumb shield 102 may have one or more generally horizontally extending raised surfaces to constrain the tip of the thumb from extending beyond the upper shielded coverage of the frame of surgical cassette 100. Thumb shield 102 may have in the alternative or in addition to the one or more horizontally extending raised surface, one or more generally vertically extending raised surfaces to constrain the side of the thumb from slipping sideways (left or right) beyond the coverage of the thumb shield 102 constraining surface(s).


In an embodiment, surgical cassette 100 may include drain bag port 103. As illustrated in FIG. 2, drain bag port 103 is an axially extending cylindrical port with a central opening to enable the transfer of fluid from the inside of the surgical cassette 100 manifold to an externally attached collection reservoir such as drain bag or collection vessel 140 (see FIGS. 9a and 9b). In an embodiment as illustrated in FIG. 3, drain bag port 103 may have one or more recessed notches 103a in the end face of drain bag port 103 to provide one or more gaps for fluid to flow into an externally attached bag. Such a feature helps to minimize the potential for the bag surface to obstruct fluid outflow through the port. Inside surface feature 103b may be configured to accept a male slip luer fitting to support the connection to external tubing sets.


As illustrated in FIG. 2, surgical cassette 100 may include a drain bag hook 104. Drain bag hook 104 is a mechanical feature extending outward from the surface of surgical cassette 104 and is configured to interface with a corresponding slot feature in the drain bag 140 (see FIG. 9a) to support the weight of the drain bag as it collects fluid.


Surgical cassette 100 may also include one or more clamping domes 106. As illustrated in FIG. 2, clamping domes 106 may be a raised pattern of spherical domed surfaces with a single high-point to provide low friction wiping contact surfaces during loading and concentrate axial clamping forces in specific zones after loading surgical cassette 100 with console 14. It is also envisioned that the one or more clamping domes 106 may be of any shape or size suitable for its function or desired aesthetic look and feel.


In an embodiment, surgical cassette 100 may include peristaltic pump tube 107. FIG. 4a shows the backside of surgical cassette and peristaltic pump tube 107. Peristaltic pump tube 107 may be an elastomeric length of tubing that is configured to generate positive displacement of fluid flow in the direction of pump roller (not shown) when a portion of the tubing is compressed between the peristaltic pump rollers of console 14 and the backing plate pump profile 108 of the surgical cassette 100. It is also envisioned that any type of flow-based pump and corresponding components may be used with surgical cassette 100. In an embodiment, backing plate pump profile 108 may be comprised of contoured surfaces formed on the inside of cassette frame/front plate 100a to provide a compressing tubing while creating peristaltic pumping flow.


As illustrated in FIGS. 4a, 4b, and 4c, surgical cassette 100 may have axial mating plane surfaces 105. Axial mating plane surfaces 105 are outer border faces of cassette frame/front plate 100a that form a surface mating with console 14 within cassette receiver 123 after loading.


In an embodiment, surgical cassette 100 may also include one or more peristaltic tube form retainers 109. (See FIGS. 4a, 4b, 4c, 5, 6, and 18) Clamping surfaces formed between the cassette frame/front plate 100a and backing plate 100b are configured to axially retain the tubing to maintain consistency of tubing stretch and provide centering of tubing within peristaltic pump profile 108. Form retainers 109 may comprise mating sections 109a of cassette frame front plate 100a. Form retainers 109 are configured and dimensioned to shape peristaltic pump tube 107 and in the embodiment illustrated in the figures, to guide peristaltic pump tube 107 into an approximately 180 degree turn on each end of tube 107.


In an embodiment as illustrated in FIGS. 4a, 4b, and 4c, backing plate 100b may be recessed within cassette frame/front plate 100a such that when surgical cassette 100 is inserted into console 14, backing plate 100b does not touch the cassette receiver 123. In the alternative, backing plate 100b may be configured and dimensioned to touch cassette receiver 123.


Referring to FIGS. 5a, 5b, 6, 7, and 18, surgical cassette 100 may also include one or more pump tube interface ports 110. Pump tube interface ports 110 are inlet and outlet transition ports to transition fluid flow from internal molded manifold fluid flow channels 111 to peristaltic pump tube 107. In an embodiment, surgical cassette 100 may also include one or more manifold fluid flow channels 111. Manifold fluid flow channels 111 are fluid flow pathways formed as raised surfaces allowing fluid to flow in internal channels between the raised surfaces and outer perimeter sealing border of gasket 120 to retain fluid within the manifold fluid flow channels 111 under positive pressure and vacuum conditions. Manifold fluid flow channels 111 may comprise irrigation flow channel 111a, which is a pathway with an inlet tubing port from balance salt solution (BSS) irrigation bottle metered by valves to one or more, preferably two outlet ports: (1) aspiration tubing outlet port 118 connected to an external surgical handpiece 12 flowing fluid to the eye, which may be metered or controlled by irrigation valve 113; and (2) venting line 111b providing BSS irrigation fluid into an aspiration line of flexible conduits 18 which may be metered or controlled by vent valve 114.


Manifold fluid flow channels 111 may also have aspiration flow channel 111b. Aspiration flow channel 111b may include a pressure/vacuum sensor element 111c, a pumping outlet port 111d, and two inlet ports comprising aspiration fluid inflow from tubing line connected to external surgical handpiece 12 and venting fluid inflow from BSS irrigation bottle, which may be metered by vent valve 114. Manifold fluid flow channels 111 may also comprise vent flow channel 111c. Vent flow channel 111c is a pathway configured to provide BSS irrigation fluid into the aspiration line, which may be metered by vent valve 114 to reduce vacuum level in the aspiration line following handpiece 12 tip obstruction or occlusion. Manifold fluid flow channels 111 may also have manifold channel sealing surfaces 112, which comprise the top surface or portion thereof of the channels 111.


Referring to FIGS. 4a, 4b, 4c, 5, and 6, surgical cassette 100 may include irrigation valve 113, which in an embodiment may have a dome-like shape. Irrigation valve 113 may be an elastomeric deformable surface which allows irrigation flow from a BSS bottle to external surgical handpiece 12 when uncompressed and shuts off flow when deformed inwards towards manifold fluid flow channels 111. Surgical cassette 100 may also include vent valve 114, which in an embodiment may have a dome-like shape. Vent valve 114 may be an elastomeric deformable surface which allows irrigation flow from the BSS bottle through the aspiration line that coupled with the external surgical handpiece 12 resulting in vacuum level reduction when uncompressed and shuts off flow when deformed inwards towards manifold fluid flow channels 111. The level of fluid flow may be controlled based upon the level of compression of valves (113 and 114)—from full flow to intermediate flow to no flow.


In an embodiment illustrated in FIGS. 5a, 5b, and 6, surgical cassette 100 may have irrigation valve control surface 115. Irrigation valve control surface 115 may be a raised sealing surface in manifold fluid flow channels 111 that provides irrigation fluid flow reduction or shutoff from the BSS irrigation bottle to an irrigation inlet fitting of surgical handpiece 12 when irrigation valve control dome is compressed or activated. Surgical handpiece 100 may also include vent valve control surface 116. Vent valve control surface 116 may be a raised sealing surface in manifold fluid flow channels 111 that provides shutoff of venting of irrigation fluid flow from the BSS irrigation bottle to an aspiration fitting of surgical handpiece 12 when vent valve 114 is compressed or activated.


In an embodiment illustrated in FIG. 8, surgical cassette 100 may include irrigation inlet tubing port 117, aspiration outlet tubing port 118, and irrigation outlet tubing port 119. Irrigation inlet tubing port 117 may be a connection port for tubing extending to the BSS irrigation bottle to deliver irrigation fluid to manifold fluid flow channels 111. Aspiration outlet tubing port 118 may be a connection port for tubing extending to the surgical handpiece 12 irrigation fitting to deliver irrigation fluid from manifold fluid flow channels 111 to patient's eye E. Irrigation outlet tubing port 119 may be a connection port for tubing extending to the surgical handpiece 12 aspiration fitting for removing fluid from a patient's eye E by means of a pump, such as a flow-based pump, preferably a peristaltic pump comprising the peristaltic pump tube 107. In an embodiment, surgical cassette 100 may also include or in the alternative of drain bag port 103, optional drain port 103c, which may be connected to an external tubing line or reservoir. In an embodiment, drain port 103c may be closed by a plug or similar device known in the art.


Surgical cassette 100 may include gasket 120 as illustrated in FIGS. 10a and 10b, which may be an integrated elastomeric fluid channel sealing gasket. Gasket 120 may include a vacuum/pressure sensor diaphragm 120a, irrigation valve control dome 113, and vent valve control dome 113. Gasket 120 may also include fluid channel sealing surfaces 120b. Vacuum/pressure sensor diaphragm 120a may be a sealed flexible annular membrane with a central magnetic coupling disk which deforms: (1) proportionally outwards under fluid pressure conditions compressing a magnetically-coupled force displacement transducer of console 14 allowing for non-fluid contact measurement of fluid pressure level inside the aspiration fluid pathways of surgical cassette 100; and (2) proportionally inwards under fluid vacuum conditions extending the magnetically-coupled force displacement transducer of console 14 allowing for non-fluid contact measurement of fluid vacuum level inside the aspiration fluid pathways of surgical cassette 100. In an embodiment, gasket 120 may have one or more fluid channel sealing surfaces 120d, which may be a raised lip portion of the gasket 120. In the embodiment shown in FIG. 10a, two such sealing surfaces 120b are illustrated.


In an embodiment, gasket 120 may be molded onto the backing plate 100b by co-molding or any other process known in the art. Co-molding the gasket 120 and backing plate 100b result in a combination of elastomeric features of gasket 120 and rigid features of backing plate 100b.


In an embodiment, surgical cassette 100 may also include pressure/vacuum sensor concentric alignment ring 121 as illustrated in FIGS. 4a, 4b, 4c, and 5a. Alignment ring 121 may include a pattern of a radially oriented rib features defining a circular arc of a specific diameter and location to provide for concentric alignment between the center of the magnetically-coupled force displacement transducer 131 of console 14 and the center of vacuum/pressure diaphragm 120a of surgical cassette 100. The pattern may comprise one or more radially oriented rib features, preferably a minimum of three radially oriented rib features.


In FIGS. 11, 11a, 12 and 13, fluidics module 122 is illustrated according to an embodiment of the present invention. Fluidics module 122 comprises an assembly of components mounted in console 14 for interfacing with surgical cassette 100. Fluidics module 122 may have one or more of the components described herein. Fluidics module 122 may have cassette receiver 123, cassette pre-load detection pin 124, and pre-load detection switch 125 (shown in FIG. 16a). Cassette receiver 123 may be a section of fluidics module 122 defining an engagement area for loading and aligning surgical cassette 100 in its intended position relative to various components of fluidics module 122. Cassette receiver 123 may have tapered lead-in pre-alignment surfaces 123a, which may include outside vertical and horizontal border surfaces of cassette receiver 123 that may be tapered towards the center of the opening of cassette receiver 123 to guide surgical cassette 100 into a substantially centered position during off-angle insertion. Cassette receiver 123 may also have axial interface surface 123b, which may include planar engagement surfaces where cassette frame/front plate 100a bottoms out when fully constrained by rotary clamps 126, 127.


Cassette pre-load detection pin 124 may be a spring-loaded pin displaced rearwards when surgical cassette 100 is initially inserted with an end or side surface triggering a switch and initiating closure of rotary clamps 126, 127. Pre-load detection switch 125 may be a switch component that changes electrical output state when cassette pre-load detection pin 124 has been displaced to a specific axial position indicating surgical cassette 100 is in an appropriate position for loading engagement by rotary clamps 126, 127 (see FIGS. 15a and 15b). In an optional embodiment, as shown in FIG. 16b, a second detection switch 142 may be located next to or behind detection switch 125 to monitor the position of pre-load detection pin 124 to verify that surgical cassette 100 reaches its intended interface position at the completion of the cassette clamping mechanism closure.


Left rotary clamp 126 may be a rotating clamping component configured with specific surfaces to clamp surgical cassette 100 when rotated in a counter-clockwise direction as viewed from the top T and specific ejection surfaces to disengage surgical cassette 100 when rotated in the opposite direction. Right rotary clamp 127 may be a rotating clamping component configured with specific surfaces to clamp surgical cassette 100 when rotated in a clockwise direction as viewed from top T and specific ejection surfaces to disengage surgical cassette 100 when rotated in the opposite direction.


In an embodiment, fluidics module 122 may have a left clamping motor actuator 128 and a right clamping motor actuator 129. Left clamping motor actuator 128 may be a reversible rotary actuator powered by electricity, pneumatics, hydraulics, or any other means know in the art, that controls the rotational position of the left rotary clamp 126 to alternately load and eject surgical cassette 100. Right clamping motor actuator 129 may be a reversible rotary actuator powered by electricity, pneumatics, hydraulics, or any other means know in the art, that controls the rotational position of the right rotary clamp 127 to alternately load and eject surgical cassette 100. The actuation of the motor actuators 128 and 129 may be simultaneously or individually controlled.


In an embodiment, fluidics module 122 may have a pump roller assembly 130. Pump roller assembly may have a configuration of multiple roller elements in a circular or substantially circular pattern which produce peristaltic flow-based fluid transport when rotated against compressed fluid-filled peristaltic pump tube 107.


In an embodiment, fluidics module 122 may have a force displacement transducer 131. Force displacement transducer 131 may operate by means of a magnetic coupling, such that fluid vacuum inside manifold fluid flow channels 111 causes deformation inwards of vacuum/pressure sensor diaphragm 120a in surgical cassette 100, which axially extends force displacement transducer 131 resulting in a change of an electrical output signal in proportion to a vacuum level. Positive fluid pressure in manifold fluid flow channels 111 results in an outward extension of vacuum/pressure sensor diaphragm 120a and compression of the force displacement transducer 131.


In an embodiment, fluidics module 122 may have irrigation valve plunger 132 and vent valve plunger 133. Irrigation valve plunger 132 may have an axial extension of the plunger that compresses irrigation valve 113 of surgical cassette 100 resulting in a decrease or shutoff of irrigation flow to external irrigation tubing line of flexible conduit 18. Irrigation valve plunger 132 may also operate by a spring-loaded retraction of the plunger to allow varying levels of irrigation flow. Vent valve plunger 133 may have an axial extension of the plunger that compresses vent valve 114 of surgical cassette 100 resulting in a decrease or shutoff of irrigation venting flow to external aspiration tubing line of flexible conduit 18. Vent valve plunger 133 may also operate by a spring-loaded retraction of the plunger to allow irrigation pressure fluid flow to vent vacuum level in aspiration tubing line of flexible conduit 18.


In an embodiment, fluidics module 122 may have one or more of the following components: peristaltic drive motor actuator 134, peristaltic pump motor drive pulley 135, peristaltic drive belt 136, peristaltic roller driven pulley 137, and pump roller guide bearings 138. Peristaltic drive motor actuator 134 may be a reversible rotary actuator powered by electricity, pneumatics, hydraulics, or any other means known in the art that controls the rotational position of the peristaltic pump roller assembly 130. Peristaltic pump motor drive pulley 135 may have a pulley wheel connected to the rotary drive shaft of peristaltic drive motor actuator 134 to provide a mating interface for peristaltic drive belt 136 when peristaltic drive motor actuator 134 is oriented on an offset parallel axis to peristaltic pump roller assembly 130 for reducing overall height of fluidics module 122. Peristaltic roller driven pulley 137 may have a pulley wheel connected to rotary shaft peristaltic pump roller assembly 130. Peristaltic drive belt 136 may be a belt connecting peristaltic pump motor drive pulley 135 to peristaltic roller driven pulley 137 to transfer rotation of the pump drive motor shaft to the peristaltic pump roller assembly 130.


Pump roller guide bearings 138 may have at least one low friction bearing placed in concentric alignment with peristaltic pump roller assembly 130 to guide shaft rotation of peristaltic pump roller assembly 130. Pump roller guide bearings 138 may compensate for off-axis forces from compression of peristaltic pump tube 107 by peristaltic pump roller assembly 130 and peristaltic drive belt 136 tension between pulleys 135 and 137.


In an embodiment, fluidics module 122 may have rotary pump roller position encoder 139. Rotary pump roller position encoder may have an electronic output signal indicating rotary position of peristaltic pump roller assembly 130, which may be used to derive and confirm intended rotational speed during peristaltic pumping. Rotary pump roller position encoder 139 may also be used to provide controlled rotary position changes for the following purposes: increase or decrease pressure level in fluid line by a target amount by transferring a pre-determined volume of fluid into or out of the fluid line faster than closed-loop pressure monitoring allows based on an algorithm assuming a known overall system volume; and/or increase or decrease vacuum level in fluid line by a target amount by transferring a pre-determined volume of fluid into or out of fluid line faster than closed-loop vacuum monitoring allows based on an algorithm assuming a known overall system volume.



FIG. 19 is an illustration of an exemplary embodiment having a pre-alignment feature 902 for aiding in the alignment of cassette 100 for insertion into cassette receiver 123 (shown in FIG. 20) on the console. In the illustration, the pre-alignment feature 902 comprises a shelf having multiple shelf components 902a, 902b, 902c, 902d, 902e extending outward beyond the plane formed by the cassette receiver 123 at the face of the console. The multiple components of feature 902 may allow for guidance of cassette 100 into cassette receiver 123, and the simultaneous guidance of administrative tubing 18 such as may be correspondent to at least irrigation inlet tubing port 117, aspiration outlet tubing port 118, and irrigation outlet tubing port 119 of cassette 100 into the slots formed between shelf components 902b and 902c, and between components 902c and 902d, and between components 902d and 902e. Pre-alignment feature 902 may be provided in conjunction with secondary pre-alignment aspects, such as the tapered lead-in pre-alignment surfaces 123a referenced above, which may guide the cassette 100 to be centered in the opening of cassette receiver 123. By way of non-limiting example, such pre-alignment surfaces 123a may comprise an extension of the profile of the cassette 100 geometry, such as in the upper right and left hand corners of the cassette receiver 123, to serve as the secondary pre-alignment aspect.


Upon proper alignment of cassette 100 with feature 902, and of tubing 18 into slots formed by shelf components 902a, 902b, 902c, 902d, 902e, the cassette may be detected in cassette receiver 123, such as by cassette pre-load detection pins 124. Once a properly aligned cassette 100 is detected, the cassette may be affirmatively received into cassette receiver 123, such as by actuation of left and right rotary clamps 126, 127.


As such, pre-alignment feature 902 may provide an additional guiding element for facilitating the proper loading of cassette 100 into the cassette receiver 123 associated with the surgical console. The pre-alignment feature 902 may be formed as a protruding area along the lower edge of the cassette receiver 123 by any known method, and may be integral to, or separately formed from, the front face of the console. The feature 902 may be, for example, molded plastic formed integrally with the console, or may be glued onto or otherwise attached to the face of the console. Thus, feature 902 may be molded, machined, or otherwise fabricated by suitable means understood to those skilled in the pertinent arts. The distance by which the feature 902 extends outwardly from the console may vary for different features 902, or may vary as between feature components 902a, 902b, 902c, 902d, 902e within a single feature 902. Additionally, the extension distance outward may vary along the length of each individual component 902a, 902b, 902c, 902d, 902e.


The pre-alignment feature may have a semicircular, rectangular, or triangular cross-sectional shape, and the slots formed by feature components 902a, 902b, 902c, 902d, 902e are provided vertically from the upper portion to the lower portion of feature 902 and may be of semicircular, rectangular, or triangular shape. As referenced, the slots may receive administrative tubing 18, or the slots may receive, or partially receive, irrigation inlet tubing port 117, aspiration outlet tubing port 118, or irrigation outlet tubing port 119, by way of non-limiting example. Thereby, the slots may further aid in the alignment of cassette 100 into cassette receiver 123.


Accordingly, in addition to providing pre-alignment for the cassette 100 and for the administrative tubing 18, the pre-alignment feature may also provide a support shelf on which at least a portion of the surgical cassette 100 may rest during insertion to and ejection from the cassette receiver 123. More particularly, if, for example, the surgical cassette 100 is ejected from the cassette receiver 123 outside of the immediate physical control of a user, the surgical cassette 100 may rest on the support shelf provided by the pre-alignment feature 902 such that the surgical cassette 100 is precluded from falling to the floor of the surgical room. The support shelf provided by feature 902 may also allow for the hands-free inspection of the surgical cassette 100 by a user prior to insertion into the cassette receiver 123. As such, the upper portion of feature 902, and/or one or more of feature components 902a, 902b, 902c, 902d, 902e may have physically associated therewith a high friction surface for retaining the lower portion of cassette 100. Such a high friction surface may be, for example, rubber, or an uneven and/or roughed surface.


Operation of Surgical Cassette and Console


The following describes an example of operating surgical cassette 100 and console 14 according to an embodiment of the present invention. A surgical technician grasps surgical cassette 100 by placing an index finger through the opening of grip loop handle 101 and gripping handle 101 with thumb pressure on thumb shield 102 (outer top surface of handle). The surgical technician's hand can remain sterile while tubing lines are handed off to supporting non-sterile staff to make connections to the non-sterile BSS irrigation bottle. With the surgical technician's thumb being shielded from inadvertent contact with non-sterile outer surfaces of console 14 by means of thumb shield 102, surgical cassette 100 may be directly inserted into cassette receiver 123 of fluidics module 122 with centering guidance provided by tapered outer surfaces 123a. The direct axial insertion of surgical cassette 100 into cassette receiver 123 of fluidics module 122 results in axial mating plane surfaces 105 contacting ejection surfaces 126b and 127b of left and right rotary clamps 126,127. (See FIGS. 14a, 14b, 15a, and 15b).


Approximately synchronized with contacting ejection surfaces 126b and 127b of rotary clamps 126, 127, cassette pre-load detection pin 124 is compressed triggering a switch signal to be sent from cassette pre-load detection switch 125 to the control means of console 14. Triggering of cassette pre-load detection switch 125, triggers rotation of clamping motor actuators 128, 129 and contact between loading clamp surfaces 126a, 127a of rotary clamps 126, 127 and clamping domes 106 on cassette frame/front plate 100a. Clamping motor actuators 128, 129 will continue to rotate until axial mating plane surfaces 105 of cassette frame/front plate 100a are compressed fully flat and parallel to mounting reference surfaces of fluidic module 122.


Surgical cassette 100 is guided into horizontal and vertical preferred alignment by concentric alignment of ribs 121 of pressure/vacuum sensor diaphragm 120a of surgical cassette 100 with outer ring surface 131a (see FIG. 11a) of force displacement transducer 131. See FIG. 11a. After tubing connections are made to external accessories (e.g., handpiece 12 with attached phaco needle tip and irrigation sleeve (not shown)), surgical staff initiates a fluid priming of tubing lines and internal cassette fluid pathways (i.e. manifold fluid flow channels 111) with irrigation fluid delivered from an irrigation source (e.g. BSS bottle).


In an additional embodiment shown in FIG. 20 and employing, for example, the pre-alignment shelf feature 902 of FIG. 19, the cassette 100 may initially have a lower portion thereof aligned with the uppermost portion of feature 902, and/or may have at least tubing 18 associated with irrigation inlet tubing port 117, aspiration outlet tubing port 118, and irrigation outlet tubing port 119 (see FIG. 19) aligned with the slots formed between feature components 902a, 902b, 902c, 902d, 902e. Once this alignment is achieved, the top portion of cassette 100 may be rotated toward the upper portion of the cassette receiver 123 about an axis running laterally along the contact points between the pre-alignment feature 902 and the bottom portion of the cassette. If this rotation occurs subject to a proper alignment of the cassette 100 along shelf feature 902, the cassette will be received fully into cassette receiver 123 by clamps 126, 127.


Moreover, in certain exemplary embodiments cassette 100 need not be rotated to be inserted into the cassette receiver 123. That is, cassette 100 may be placed directly into the cassette receiver 123, such as using pre-alignment feature 902 as an insertion guide.


Console 14 may verify one or more of the following: proper tubing connections, fluid line sealing, and fluid control operation during the priming procedure by generating flow through aspiration pathways of manifold fluid flow channels 111 by rotating peristaltic pump roller assembly 130 against outer surface of peristaltic pump tube 107 in compression against peristaltic pump profile 108 of backing plate 100b.


Desired and/or appropriate pressure and vacuum levels are verified by means of the magnetically-coupled pressure/vacuum sensor diaphragm 120 pulling outwards on force displacement transducer 131 in proportion to an actual vacuum level and pushing inwards in proportion to actual pressure levels.


Fluid flow may be metered on and off or varied by means of extending and retracting irrigation and vent valve plungers 132, 133, which shutoff or vary fluid flow when extended to compress sealing surfaces of irrigation valve 113 and vent valve 114 against irrigation and vent valve surfaces 115, 116.


A surgical user may control the outflow rate of fluid from externally attached tubing accessories (e.g., handpiece 12 with attached phaco tip and irrigation sleeve (not shown)) by selecting desired aspiration pump flow rate which is converted by one or more control algorithms of console 14 into speed of rotation of peristaltic pump roller assembly 130.


According to an embodiment, to enable reduced overall height of fluidics module 122, peristaltic drive motor actuator 134 may be configured as a parallel axis drive mechanism such as the belt drive and pulley mechanism described herein. In another embodiment, peristaltic drive motor actuator 134 may be oriented such that the drive shaft is perpendicular to the peristaltic pump roller assembly 130 using one or more gears to couple the peristaltic drive motor actuator 134 with the peristaltic pump roller assembly 130. This in turn would also enable a reduction of overall height of fluidics module 122.


Referring to FIGS. 16a, 16b, 17a, and 17b, in another embodiment, using a non-axial drive connection between peristaltic drive motor actuator 134 and peristaltic pump roller assembly 130, a rotary pump roller position encoder 139, which may be any type of indicator known in the art, may be mounted onto the rotating shaft of peristaltic pump roller assembly 130 to detect slippage or asynchronous rotation of peristaltic drive motor actuator 134 with respect to peristaltic pump roller assembly 130. Since peristaltic pumping is generated in direct proportion to peristaltic pump roller assembly 130 to rotational speed of peristaltic drive motor actuator 134 during slippage conditions, placement of rotary pump roller position encoder 139 onto peristaltic pump roller assembly 130 provides increased accuracy and reliability of intended operation.


When the surgical procedure is completed, surgical staff initiate ejection of surgical cassette 100 from fluidics module 122 by activating ejection switch 141 (see FIG. 11a) which signals the clamp motor actuators 128, 129 to reverse rotation and disengage axial mating plane surfaces 105 of surgical cassette 100 from axial interface surface 123b of fluidics module 122 by a controlled distance.


In an embodiment, the final ejected position of surgical cassette 100 results in surgical cassette 100 still being retained on its outer border edges within the lead-in portion 123a (see FIGS. 11 and 11a) of cassette receiver 123 to prevent surgical cassette 100 having internal surgical waste fluid from falling onto the floor.


All references cited herein are hereby incorporated by reference in their entirety including any references cited therein.


Although the present invention has been described in terms of specific embodiments, changes and modifications can be carried out without departing from the scope of the invention which is intended to be limited only by the scope of the claims.

Claims
  • 1. A phacoemulsification surgical console, comprising: a cassette receiver including a receiving space suitable for receiving a surgical cassette inserted horizontally through an opening in a vertical surface of the cassette receiver;a controller suitable for controlling provided aspects of a phacoemulsification provided at least partially by the phacoemulsification surgical console; anda pre-alignment feature along a lower portion of the surgical console, under and proximate to the cassette receiver, extending outwardly from the lower portion, and suitable for aligning the surgical cassette to the cassette receiver, wherein,the pre-alignment feature contacts a portion of a housing of the surgical cassette, andthe pre-alignment feature comprising a shelf including multiple shelf components extending in a longitudinal direction and defining a plurality of slots spaced from each other in the longitudinal direction, the plurality of slots extending vertically to the receiving space from the lower portion.
  • 2. The console of claim 1, wherein the shelf extends outwardly away from the receiving space beyond a plane of the opening into the cassette receiver.
  • 3. The console of claim 2, wherein the distance by which the shelf extends outwardly away from the receiving space varies along the longitudinal direction of the shelf.
  • 4. The console of claim 1, wherein the plurality of slots are each configured to receive administrative tubing suitable for providing the aspects of the phacoemulsification.
  • 5. The console of claim 1, wherein the plurality of slots are each configured to receive at least one of ports and tubing of the surgical cassette suitable for providing the aspects of the phacoemulsification.
  • 6. The console of claim 5, wherein the ports comprise at least an irrigation inlet tubing port, an irrigation outlet tubing port, and an aspiration outlet tubing port.
  • 7. The console of claim 1, wherein the cassette receiver includes at least one detector for a presence of the surgical cassette.
  • 8. The console of claim 7, wherein the cassette receiver includes at least two clamps for receiving a detected surgical cassette.
  • 9. The console of claim 8, wherein the at least two clamps comprise rotary clamps.
  • 10. The console of claim 1, wherein the pre-alignment feature is integral with the lower portion.
  • 11. The console of claim 1, wherein the pre-alignment feature comprises molded plastic.
  • 12. The console of claim 1, wherein the pre-alignment feature comprises a machined element.
  • 13. The console of claim 1, wherein the pre-alignment feature comprises a semicircular cross-section.
  • 14. The console of claim 1, wherein the pre-alignment feature comprises a high friction surface including at least one of a rubber, uneven, or roughened surface.
  • 15. A phacoemulsification system, comprising: a surgical cassette; anda surgical console, comprising:a cassette receiver including a receiving space suitable for receiving the surgical cassette horizontally through an opening in a vertical surface of the cassette receiver,a controller suitable for controlling provided aspects of a phacoemulsification at least partially provided by the phacoemulsification system; anda pre-alignment feature along a lower portion of the surgical console, under and proximate to the cassette receiver, extending outwardly from the lower portion, and suitable for aligning the surgical cassette to the cassette receiver, wherein, the pre-alignment feature contacts a portion of a housing of the surgical cassette, andthe pre-alignment feature comprising a shelf including multiple shelf components extending in a longitudinal direction and defining a plurality of slots spaced from each other in the longitudinal direction, the plurality of slots extending vertically to the receiving space from the lower portion.
  • 16. The phacoemulsification system of claim 15, further comprising at least one secondary pre-alignment aspect extending outwardly from the cassette receiver and being suitable for further aligning the surgical cassette to the cassette receiver.
  • 17. The console of claim 1, wherein the plurality of slots extend parallel to each other in a direction perpendicular to the longitudinal direction.
  • 18. The console of claim 1, wherein the multiple shelf components extend below a bottom edge of the shelf such that the plurality of slots formed between the multiple shelf components also extend below the bottom edge of the shelf.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation-in-part of U.S. patent application Ser. No. 13/776,988, filed on Feb. 26, 2013, which claims priority to U.S. provisional application No. 61/612,307, entitled “Surgical Cassette”, filed on Mar. 17, 2012, the entire contents of which are hereby incorporated by reference in their entirety for all purposes as if fully set forth herein.

US Referenced Citations (336)
Number Name Date Kind
1848024 Owen Mar 1932 A
2123781 Huber Jul 1938 A
2990616 Balamuth et al. Jul 1961 A
3076904 Claus et al. Feb 1963 A
3116697 Theodore Jan 1964 A
3439680 Thomas, Jr. Apr 1969 A
3526218 Robert et al. Sep 1970 A
3526219 Lewis Sep 1970 A
3781142 Zweig Dec 1973 A
3857387 Shock Dec 1974 A
4017828 Watanabe et al. Apr 1977 A
4037491 Newbold Jul 1977 A
4189286 Murry et al. Feb 1980 A
4193004 Lobdell et al. Mar 1980 A
4247784 Henry Jan 1981 A
4276023 Phillips et al. Jun 1981 A
4286464 Tauber et al. Sep 1981 A
4479760 Bilstad Oct 1984 A
4537561 Xanthopoulos Aug 1985 A
4564342 Weber et al. Jan 1986 A
4590934 Malis et al. May 1986 A
4662829 Nehring May 1987 A
4665621 Ackerman et al. May 1987 A
4706687 Rogers et al. Nov 1987 A
4735558 Kienholz et al. Apr 1988 A
4757814 Wang et al. Jul 1988 A
4758220 Sundblom et al. Jul 1988 A
4772263 Dorman et al. Sep 1988 A
4773897 Scheller et al. Sep 1988 A
4790816 Sundblom et al. Dec 1988 A
4818186 Pastrone et al. Apr 1989 A
4819317 Bauer et al. Apr 1989 A
4837857 Scheller et al. Jun 1989 A
4920336 Meijer Apr 1990 A
4920645 Baudouin May 1990 A
4921477 Davis May 1990 A
4925444 Orkin May 1990 A
4933943 Scheller et al. Jun 1990 A
4941518 Williams et al. Jul 1990 A
4954960 Lo et al. Sep 1990 A
4961424 Kubota et al. Oct 1990 A
4965417 Massie Oct 1990 A
4983901 Lehmer Jan 1991 A
4998972 Chin et al. Mar 1991 A
5006110 Garrison et al. Apr 1991 A
5020535 Parker et al. Jun 1991 A
5026387 Thomas Jun 1991 A
5032939 Mihara et al. Jul 1991 A
5039973 Carballo Aug 1991 A
5091656 Gahn Feb 1992 A
5108367 Epstein et al. Apr 1992 A
5110270 Morrick May 1992 A
5125891 Hossain et al. Jun 1992 A
5160317 Costin Nov 1992 A
5195960 Hossain et al. Mar 1993 A
5195961 Takahashi et al. Mar 1993 A
5195971 Sirhan Mar 1993 A
5230614 Zanger et al. Jul 1993 A
5242404 Conley et al. Sep 1993 A
5249121 Baum et al. Sep 1993 A
5268624 Zanger Dec 1993 A
5271379 Phan et al. Dec 1993 A
5273517 Barone Dec 1993 A
5282787 Wortrich Feb 1994 A
5323543 Steen et al. Jun 1994 A
5342293 Zanger Aug 1994 A
5350357 Kamen et al. Sep 1994 A
5351676 Putman Oct 1994 A
5354268 Peterson et al. Oct 1994 A
5364144 Satterfield et al. Nov 1994 A
5388569 Kepley Feb 1995 A
5445506 Afflerbaugh Aug 1995 A
5454783 Grieshaber et al. Oct 1995 A
5464391 DeVale Nov 1995 A
5470211 Knott et al. Nov 1995 A
5470312 Zanger et al. Nov 1995 A
5499969 Beuchat et al. Mar 1996 A
5505330 Nunes Apr 1996 A
5520652 Peterson May 1996 A
5531697 Olsen et al. Jul 1996 A
5533976 Zaleski et al. Jul 1996 A
5549461 Newland Aug 1996 A
5554894 Sepielli Sep 1996 A
5558240 Karp Sep 1996 A
5561575 Eways Oct 1996 A
5569188 Mackool Oct 1996 A
5580347 Reimels Dec 1996 A
5591127 Barwick, Jr. et al. Jan 1997 A
5653887 Wahl et al. Aug 1997 A
5657000 Ellingboe Aug 1997 A
5676530 Nazarifar Oct 1997 A
5676649 Boukhny et al. Oct 1997 A
5676650 Grieshaber et al. Oct 1997 A
5693020 Rauh Dec 1997 A
5697898 Devine Dec 1997 A
5697910 Cole et al. Dec 1997 A
5700240 Barwick, Jr. et al. Dec 1997 A
5724264 Rosenberg et al. Mar 1998 A
5728130 Ishikawa et al. Mar 1998 A
5733256 Costin Mar 1998 A
5745647 Krause Apr 1998 A
5746713 Hood et al. May 1998 A
5747824 Jung et al. May 1998 A
5752918 Fowler et al. May 1998 A
5777602 Schaller et al. Jul 1998 A
5805998 Kodama Sep 1998 A
5807075 Jacobsen et al. Sep 1998 A
5810766 Barnitz et al. Sep 1998 A
5830176 MacKool Nov 1998 A
5843109 Mehta et al. Dec 1998 A
5859642 Jones Jan 1999 A
5871492 Sorensen Feb 1999 A
5879298 Drobnitzky et al. Mar 1999 A
5883615 Fago et al. Mar 1999 A
5899674 Jung et al. May 1999 A
5928257 Kablik et al. Jul 1999 A
5938655 Bisch et al. Aug 1999 A
5983749 Holtorf Nov 1999 A
6002484 Rozema et al. Dec 1999 A
6024428 Uchikata Feb 2000 A
6028387 Boukhny Feb 2000 A
D423349 Lyons et al. Apr 2000 S
6062829 Ognier May 2000 A
6077285 Boukhny Jun 2000 A
6086598 Appelbaum et al. Jul 2000 A
6109895 Ray et al. Aug 2000 A
6117126 Appelbaum et al. Sep 2000 A
6139320 Hahn Oct 2000 A
6150623 Chen Nov 2000 A
6159175 Strukel et al. Dec 2000 A
6179829 Bisch et al. Jan 2001 B1
6200287 Keller et al. Mar 2001 B1
6219032 Rosenberg et al. Apr 2001 B1
6251113 Appelbaum et al. Jun 2001 B1
6260434 Holtorf Jul 2001 B1
6360630 Holtorf Mar 2002 B2
6368269 Lane Apr 2002 B1
6383804 Ward, Jr. et al. May 2002 B1
6411062 Baranowski et al. Jun 2002 B1
6424124 Ichihara et al. Jul 2002 B2
6436072 Kullas et al. Aug 2002 B1
6452120 Chen Sep 2002 B1
6452123 Chen Sep 2002 B1
6491661 Boukhny et al. Dec 2002 B1
6511454 Nakao Jan 2003 B1
6537445 Muller Mar 2003 B2
6595948 Suzuki et al. Jul 2003 B2
6632214 Morgan et al. Oct 2003 B2
6674030 Chen et al. Jan 2004 B2
6830555 Rockley et al. Dec 2004 B2
6852092 Kadziauskas et al. Feb 2005 B2
6862951 Peterson et al. Mar 2005 B2
6908451 Brody et al. Jun 2005 B2
6962488 Davis et al. Nov 2005 B2
6962581 Thoe Nov 2005 B2
6986753 Bui Jan 2006 B2
7011761 Muller Mar 2006 B2
7012203 Hanson et al. Mar 2006 B2
7070578 Leukanech et al. Jul 2006 B2
7073083 Litwin, Jr. et al. Jul 2006 B2
7087049 Nowlin et al. Aug 2006 B2
7103344 Menard Sep 2006 B2
7167723 Zhang Jan 2007 B2
7168930 Cull et al. Jan 2007 B2
7169123 Kadziauskas et al. Jan 2007 B2
7236766 Freeburg Jun 2007 B2
7236809 Fischedick et al. Jun 2007 B2
7242765 Hairston Jul 2007 B2
7244240 Nazarifar et al. Jul 2007 B2
7289825 Fors et al. Oct 2007 B2
7300264 Souza Nov 2007 B2
7316664 Kadziauskas et al. Jan 2008 B2
7336976 Ito Feb 2008 B2
7381917 Dacquay et al. Jun 2008 B2
7439463 Brenner et al. Oct 2008 B2
7465285 Hutchinson et al. Dec 2008 B2
7470277 Finlay et al. Dec 2008 B2
7526038 McNamara Apr 2009 B2
7591639 Kent Sep 2009 B2
7731484 Yamamoto et al. Jun 2010 B2
7776006 Childers et al. Aug 2010 B2
7811255 Boukhny et al. Oct 2010 B2
7883521 Rockley et al. Feb 2011 B2
7921017 Claus et al. Apr 2011 B2
7967777 Edwards et al. Jun 2011 B2
8070712 Muri et al. Dec 2011 B2
8075468 Min et al. Dec 2011 B2
D693463 Burger et al. Nov 2013 S
D698019 Oliveira Jan 2014 S
20010023331 Kanda et al. Sep 2001 A1
20010047166 Wuchinich Nov 2001 A1
20010051788 Paukovits et al. Dec 2001 A1
20020019215 Romans Feb 2002 A1
20020019607 Bui Feb 2002 A1
20020045887 DeHoogh et al. Apr 2002 A1
20020070840 Fischer et al. Jun 2002 A1
20020098859 Murata Jul 2002 A1
20020137007 Beerstecher Sep 2002 A1
20020179462 Silvers Dec 2002 A1
20020183693 Peterson et al. Dec 2002 A1
20030028091 Simon et al. Feb 2003 A1
20030047434 Hanson et al. Mar 2003 A1
20030050619 Mooijman et al. Mar 2003 A1
20030073980 Finlay et al. Apr 2003 A1
20030083016 Evans et al. May 2003 A1
20030108429 Angelini et al. Jun 2003 A1
20030125717 Whitman Jul 2003 A1
20030190244 Davis et al. Oct 2003 A1
20030224729 Arnold Dec 2003 A1
20030226091 Platenberg et al. Dec 2003 A1
20040019313 Childers et al. Jan 2004 A1
20040035242 Peterson et al. Feb 2004 A1
20040037724 Haser et al. Feb 2004 A1
20040068300 Kadziauskas et al. Apr 2004 A1
20040092922 Kadziauskas et al. May 2004 A1
20040097868 Kadziauskas et al. May 2004 A1
20040106915 Thoe Jun 2004 A1
20040124157 Briggs Jul 2004 A1
20040127840 Gara Jul 2004 A1
20040193182 Yaguchi et al. Sep 2004 A1
20040212344 Tamura et al. Oct 2004 A1
20040215127 Kadziauskas et al. Oct 2004 A1
20040224641 Sinn Nov 2004 A1
20040253129 Sorensen et al. Dec 2004 A1
20050039567 Peterson et al. Feb 2005 A1
20050054971 Steen et al. Mar 2005 A1
20050065462 Nazarifar et al. Mar 2005 A1
20050069419 Cull Mar 2005 A1
20050070859 Cull et al. Mar 2005 A1
20050070871 Lawton et al. Mar 2005 A1
20050095153 Demers et al. May 2005 A1
20050103607 Mezhinsky May 2005 A1
20050109595 Mezhinsky et al. May 2005 A1
20050118048 Traxinger Jun 2005 A1
20050119679 Rabiner et al. Jun 2005 A1
20050130098 Warner Jun 2005 A1
20050187513 Rabiner et al. Aug 2005 A1
20050197131 Ikegami Sep 2005 A1
20050209552 Beck et al. Sep 2005 A1
20050209560 Boukhny et al. Sep 2005 A1
20050228266 McCombs Oct 2005 A1
20050236936 Shiv et al. Oct 2005 A1
20050245888 Cull Nov 2005 A1
20050261628 Boukhny et al. Nov 2005 A1
20050267504 Boukhny et al. Dec 2005 A1
20060035585 Washiro Feb 2006 A1
20060036180 Boukhny et al. Feb 2006 A1
20060041220 Boukhny et al. Feb 2006 A1
20060046659 Haartsen et al. Mar 2006 A1
20060074405 Malackowski et al. Apr 2006 A1
20060078448 Holden Apr 2006 A1
20060114175 Boukhny Jun 2006 A1
20060145540 Mezhinsky Jul 2006 A1
20060219049 Horvath et al. Oct 2006 A1
20060219962 Dancs et al. Oct 2006 A1
20060224107 Claus et al. Oct 2006 A1
20060236242 Boukhny et al. Oct 2006 A1
20070016174 Millman et al. Jan 2007 A1
20070049898 Hopkins et al. Mar 2007 A1
20070060926 Escaf Mar 2007 A1
20070073214 Dacquay et al. Mar 2007 A1
20070073309 Kadziauskas et al. Mar 2007 A1
20070078379 Boukhny et al. Apr 2007 A1
20070085611 Gerry et al. Apr 2007 A1
20070107490 Artsyukhovich et al. May 2007 A1
20070231205 Williams et al. Oct 2007 A1
20070233003 Radgowski et al. Oct 2007 A1
20070248477 Nazarifar et al. Oct 2007 A1
20070249942 Salehi et al. Oct 2007 A1
20070252395 Williams et al. Nov 2007 A1
20080015493 Childers et al. Jan 2008 A1
20080033342 Staggs Feb 2008 A1
20080066542 Gao Mar 2008 A1
20080067046 Dacquay et al. Mar 2008 A1
20080082040 Kubler et al. Apr 2008 A1
20080112828 Muri et al. May 2008 A1
20080114289 Muri et al. May 2008 A1
20080114290 King et al. May 2008 A1
20080114291 Muri et al. May 2008 A1
20080114300 Muri et al. May 2008 A1
20080114311 Muri et al. May 2008 A1
20080114312 Muri et al. May 2008 A1
20080114372 Edwards et al. May 2008 A1
20080114387 Hertweck et al. May 2008 A1
20080125694 Domash May 2008 A1
20080125695 Hopkins et al. May 2008 A1
20080125697 Gao May 2008 A1
20080125698 Gerg et al. May 2008 A1
20080129695 Li Jun 2008 A1
20080146989 Zacharias Jun 2008 A1
20080200878 Davis et al. Aug 2008 A1
20080243105 Horvath Oct 2008 A1
20080262476 Krause et al. Oct 2008 A1
20080281253 Injev et al. Nov 2008 A1
20080294087 Steen et al. Nov 2008 A1
20080312594 Urich et al. Dec 2008 A1
20090005712 Raney Jan 2009 A1
20090005789 Charles Jan 2009 A1
20090048607 Rockley Feb 2009 A1
20090087327 Voltenburg, Jr. et al. Apr 2009 A1
20090124974 Crank et al. May 2009 A1
20090163853 Cull et al. Jun 2009 A1
20100036256 Boukhny et al. Feb 2010 A1
20100057016 Dale et al. Mar 2010 A1
20100069825 Raney Mar 2010 A1
20100069828 Steen et al. Mar 2010 A1
20100140149 Fulkerson et al. Jun 2010 A1
20100152685 Goh Jun 2010 A1
20100185150 Zacharias Jul 2010 A1
20100249693 Links Sep 2010 A1
20100280435 Raney et al. Nov 2010 A1
20110092887 Wong et al. Apr 2011 A1
20110092924 Wong et al. Apr 2011 A1
20110092962 Ma et al. Apr 2011 A1
20110098721 Tran et al. Apr 2011 A1
20110160646 Kadziauskas et al. Jun 2011 A1
20110208047 Fago Aug 2011 A1
20110251569 Turner et al. Oct 2011 A1
20110300010 Jarnagin et al. Dec 2011 A1
20120065580 Gerg et al. Mar 2012 A1
20120078181 Smith et al. Mar 2012 A1
20120083735 Pfouts Apr 2012 A1
20120083736 Pfouts et al. Apr 2012 A1
20120083800 Andersohn Apr 2012 A1
20130072853 Wong et al. Mar 2013 A1
20130169412 Roth Jul 2013 A1
20130184676 Kamen et al. Jul 2013 A1
20130245543 Gerg et al. Sep 2013 A1
20130267892 Woolford et al. Oct 2013 A1
20130289475 Muri et al. Oct 2013 A1
20130336814 Kamen et al. Dec 2013 A1
20140088558 Holtwick et al. Mar 2014 A1
20140178215 Baxter et al. Jun 2014 A1
20140188076 Kamen et al. Jul 2014 A1
20140276424 Davis et al. Sep 2014 A1
20160151564 Magers et al. Jun 2016 A1
Foreign Referenced Citations (73)
Number Date Country
2006235983 May 2007 AU
3826414 Feb 1989 DE
56019 Jul 1982 EP
0124687 Nov 1984 EP
424687 May 1991 EP
0519993 Dec 1992 EP
619993 Oct 1994 EP
1010437 Jun 2000 EP
1072285 Jan 2001 EP
1113562 Jul 2001 EP
1310267 May 2003 EP
1464310 Oct 2004 EP
1469440 Oct 2004 EP
1550406 Jul 2005 EP
1704839 Sep 2006 EP
1779879 May 2007 EP
1787606 May 2007 EP
1849443 Oct 2007 EP
1849444 Oct 2007 EP
1857128 Nov 2007 EP
1867349 Dec 2007 EP
1310267 Jan 2008 EP
1873501 Jan 2008 EP
1900347 Mar 2008 EP
1925274 May 2008 EP
1867349 Nov 2008 EP
2264369 Dec 2006 ES
2230301 Oct 1990 GB
2352887 Feb 2001 GB
2438679 Dec 2007 GB
57024482 Feb 1982 JP
S58167333 Oct 1983 JP
S62204463 Sep 1987 JP
2005195653 Jul 2005 JP
2008188110 Aug 2008 JP
9220310 Nov 1992 WO
WO-9315777 Aug 1993 WO
9317729 Sep 1993 WO
9324082 Dec 1993 WO
WO-9405346 Mar 1994 WO
9632144 Oct 1996 WO
9737700 Oct 1997 WO
9818507 May 1998 WO
9917818 Apr 1999 WO
0000096 Jan 2000 WO
0070225 Nov 2000 WO
WO-0122696 Mar 2001 WO
0226286 Apr 2002 WO
WO-0228449 Apr 2002 WO
0234314 May 2002 WO
WO-03102878 Dec 2003 WO
WO-04096360 Nov 2004 WO
WO-2004114180 Dec 2004 WO
05084728 Sep 2005 WO
05092023 Oct 2005 WO
05092047 Oct 2005 WO
06101908 Sep 2006 WO
06125280 Nov 2006 WO
2007121144 Oct 2007 WO
2007143677 Dec 2007 WO
2007143797 Dec 2007 WO
WO-2007149637 Dec 2007 WO
2008030872 Mar 2008 WO
2008060859 May 2008 WO
2008060902 May 2008 WO
2008060995 May 2008 WO
2009123547 Oct 2009 WO
2010054146 May 2010 WO
2010054225 May 2010 WO
2010151704 Dec 2010 WO
2012151062 Nov 2012 WO
WO-2013142009 Sep 2013 WO
2015009945 Jan 2015 WO
Non-Patent Literature Citations (46)
Entry
International Search Report and Written Opinion for Application No. PCT/US2014/047055, dated Oct. 17, 2014, 11 pages.
Definition of “Parameter”, Retrieved from the Internet: < URL: http://dictionary.reference.com/browse/parameter>.
European Search Report for Application No. EP10164058, dated Jun. 25, 2010, 2 pages.
European Search Report for Application No. EP13184138 9, dated Oct. 24, 2013, 7 pages.
Examination Report dated Mar. 28, 2012 for European Application No. EP09791072 filed Jul. 31, 2009, 3 pages.
International Preliminary Report on Patentability and Written Opinion for Application No. PCT/US07/083880, dated May 12, 2009, 7 pages.
International Preliminary Report on Patentability and Written Opinion for Application No. PCT/US07/084163, dated May 12, 2009, 8 pages.
International Preliminary Report on Patentability and Written Opinion for Application No. PCT/US08/064240, dated Nov. 24, 2009, 7 pages.
International Preliminary Report on Patentability and Written Opinion for Application No. PCT/US2006/38978, dated Apr. 16, 2008, 8 pages.
International Preliminary Report on Patentability and Written Opinion for Application No. PCT/US2006/39868, dated Apr. 16, 2008, 6 pages.
International Preliminary Report on Patentability and Written Opinion for Application No. PCT/US2008/072974, dated Feb. 16, 2010, 6 pages.
International Preliminary Report on Patentability and Written Opinion for Application No. PCT/US2009/052473, dated Feb. 1, 2011, 7 pages.
International Preliminary Report on Patentability and Written Opinion for Application No. PCT/US2009/063479, dated May 10, 2011, 11 pages.
International Preliminary Report on Patentability and Written Opinion for Application No. PCT/US2009/063589, dated May 10, 2011, 12 pages.
International Search Report and Written Opinion, dated Mar. 2, 2010, and International Preliminary Report on Patentability, dated May 10, 2011, for Application No. PCT/US2009/063482, 13 pages.
International Search Report and Written Opinion, dated Nov. 2, 2009, and International Preliminary Report on Patentability, dated Feb. 1, 2011, for Application No. PCT/US2009/052466, 12 pages.
International Search Report and Written Opinion, dated May 10, 2010, and International Preliminary Report on Patentability, dated May 10, 2011, for Application No. PCT/US2009/063569, 17 pages.
International Search Report and Written Opinion, dated Feb. 11, 2010, and International Preliminary Report on Patentability, dated May 10, 2011, for Application No. PCT/US2009/063486, 13 pages.
International Search Report for Application No. PCT/US2006/38978, dated Feb. 27, 2007, 3 pages.
International Search Report for Application No. PCT/US2006/39868, dated Nov. 12, 2007, 3 pages.
International Search Report for Application No. PCT/US2009/063479, dated Jun. 11, 2010. 5 pages.
International Search Report for Application No. PCT/US2009/063589, dated Jul. 21, 2010, 7 pages.
International Search Report for Application No. PCT/US2013/027728, dated Jul. 31, 2013, 9 pages.
Merritt R., et al., Wireless Nets Starting to link Medical Gear [online] 2004 [retrieved on Feb. 12, 2007], Retrieved from the Internet: <http://www.embedded.com/news/embeddedindustry/17200577?_requestid=174370>.
Boyd, “Preparing for the Transition” in: The Art and the Science of Cataract Surgery, Chapter 7, 2001, pp. 93-133.
Co-pending U.S. Appl. No. 13/922,475, filed Jun. 20, 2013.
English Human Translation of JP57024482 from Feb. 9, 1982.
International Preliminary Report on Patentability and Written Opinion for Application No. PCT/US07/083875, dated May 12, 2009, 8 pages.
International Preliminary Report on Patentability and Written Opinion for Application No. PCT/US07/084157, dated May 12, 2009, 10 pages.
International Search Report for Application No. PCT/US07/083875, dated May 7, 2008, 4 pages.
International Search Report for Application No. PCT/US07/083880, dated May 30, 2008, 4 pages.
International Search Report for Application No. PCT/US07/084157, dated Apr. 1, 2008, 3 pages.
International Search Report for Application No. PCT/US07/084163, dated Apr. 1, 2008, 3 pages.
International Search Report for Application No. PCT/US08/064240, dated Oct. 29, 2008, 3 pages.
International Search Report for Application No. PCT/US08/071704, dated Nov. 26, 2008, 3 pages.
International Search Report for Application No. PCT/US08/072974, dated Feb. 23, 2009, 2 pages.
International Search Report for Application No. PCT/US2009/052473, dated Nov. 2, 2009, 3 pages.
Phacoemulsification. Oct. 12, 2006. Wikipedia.com. Jun. 19, 2009 <http://en.wikipedia.org/wiki/Phacoemulsification>.
European Search Report for Application No. EP16199518, dated Mar. 22, 2017, 9 pages.
European Search Report for Application No. EP16202917, dated May 2, 2017, 6 pages.
International Preliminary Report on Patentability for Application No. PCT/US2009/052465, dated Feb. 1, 2011, 4 pages.
International Search Report and Written Opinion for Application No. PCT/US2009/052465, dated Mar. 22, 2010, 6 pages.
International Search Report and Written Opinion for Application No. PCT/US2015/058655, dated Jan. 28, 2016, 13 pages.
International Search Report and Written Opinion for Application No. PCT/US2015/066036, dated Jul. 4, 2016, 20 pages.
International Search Report and Written Opinion for Application No. PCT/US2016/049970, dated Dec. 5, 2016, 12 pages.
International Search Report and Written Opinion for Application No. PCT/US2016/061648, dated Feb. 7, 2017, 12 pages.
Related Publications (1)
Number Date Country
20130303978 A1 Nov 2013 US
Provisional Applications (1)
Number Date Country
61612307 Mar 2012 US
Continuation in Parts (1)
Number Date Country
Parent 13776988 Feb 2013 US
Child 13944726 US