This application is a national phase of PCT application No. PCT/DE2008/001603, filed Oct. 6, 2008, which claims priority to German Application No. DE 10 2007 050 953.9, filed Oct. 23, 2007, all of which are incorporated by reference herein.
The present invention relates to a device for manufacturing patterns in layers, which encompasses a mounting plate, guides for moving a spreader device and a drop dispensing system, a vertically displaceable and exchangeable build platform as well as a material feeding device, wherein the main elements of the device are mounted to the mounting platform before it is introduced into a housing and is fixed therein. The present invention further relates to use of such a device.
Today, the development of components represents new demands on the producing industry. The increasing time and cost pressure can be confronted in that new methods, such as rapid prototyping and rapid tooling are used.
A method (Object) is thus known, for example, where a polymeric material, which can be hardened, is applied in the form of liquid droplets onto a vertically displaceable build platform or workpiece platform selectively within a contour of the corresponding cross section of the desired object by means of a displaceable dispensing device and is hardened by means of UV radiation. The desired component is created layer by layer by means of repeated application. The object is subsequently removed from the build platform.
In the case of another method, a layer of a free-flowing particulate material is settled in an area on a build table. A binder material in the form of liquid droplets is then applied onto the layer of particulate material in a selected partial area by means of a displaceable dispensing device. Binder material and particulate material form a solidified structure. Further layers are in each case formed by repeating the afore-mentioned steps. The solidified structure is then separated from non-solidified portions of the particulate material.
Different devices are known to carry out such so-called rapid prototyping methods, which are known from the state of the art.
A typical embodiment of a device according to DE0010047614, e.g., consists of a welded tube frame supporting adapted guide tracks. Such frames are joined from a plurality of elements and are set up extensively. Due to the fact that the joining areas are located around the frame parts, the component parts must be fully machined all around. The casing is then hung on the completely mounted device and thereby does not have any supporting function.
A very simple device, which substantially consists of profiled sheet metal parts, to which simple rod guides are screwed directly, is known from WO20030160667. At any rate, this embodiment has limitations with reference to the device accuracy and is thus only suitable for smaller device dimensions, because the guide deviations do not stand out so much in that case. However, it has proven to be disadvantageous in the case of all of the devices known from the state of the art and from practice that the mounting and adjusting of the system is time-intensive and expensive.
According to the invention, this objective is solved in the case of a device for manufacturing patterns of the afore-mentioned type in layers by using a mounting plate, to which all of the process-relevant positioning units and conveying devices are mounted before the mounting plate together with the attached devices is introduced into a housing and is fixed therein.
For this, the mounting plate encompasses cut-outs for the build platform, the powder supply and removal as well as for maintenance units for the drop dispensing apparatus, such as cleaning and capping station, e.g.
In addition, the mounting plate encompasses fastening possibilities for the positioning axes of the drop dispensing unit and the spreader device as well as for the positioning unit of the build platform.
The mounting plate is thereby dimensioned in such a manner that, when being fixed on only a few points, it does not deform or only within narrow margins, so as to ensure the accuracy in the case of the application mechanisms.
This applies in particular for the stress caused by weight of the attached units and weight of the particulate material on the build platform during the layering process.
The mounting platform is thereby embodied as a plane plate, e.g. of a fully machined aluminum plate.
The build platform is located in a construction cylinder, which is advantageously embodied as an exchangeable container. The construction cylinder contains a build platform, which can be moved in the direction of the cylinder and which cannot slip out of the construction cylinder in its lower end position. On its lateral edge facing the wall of the construction cylinder, the build platform encompasses a seal, which keeps the applied particulate material from flowing by. To introduce the weight forces of the exchangeable container and the additional friction forces caused by the friction between build platform and exchangeable container wall into the mounting plate in the shortest possible way, a guide for the exchangeable container is located on the underside of the mounting plate. The exchangeable container in turn encompasses guide elements on the two opposite upper ends on the outsides of the construction cylinder.
Via these guide elements, the exchangeable container can easily be introduced into the device and is thereby fixed in vertical direction. Roller guides, e.g., are suitable as guide elements. The rollers can be arranged on the underside of the mounting platform along the introduction path of the exchangeable container, e.g. The exchangeable container then again encompasses a matching guide rail, which engages with the rollers in a positive manner or encloses them in a positive manner.
Advantageously, a stop, which defines an end position of the exchangeable container in the device, is located at the end of the introduction path. After introduction into the device, the exchangeable container is fixed by means of a holding device.
The movement of the build platform takes place via a vertical hoisting mechanism, which is orthogonally attached to the mounting plate. The hoisting mechanism can consist of one or a plurality of threaded spindles, e.g., which are mounted in an intermediate platform so as to be pivot-mounted in spindle nuts, with said intermediate platform being located below the build platform. The threaded spindles can be actuated via a common belt drive and a servomotor.
When using two or a plurality of simultaneously operating spindles, an additional guide of the hoisting mechanism can become unnecessary, because the build platform can be sufficiently fixed in its position with said spindles and all moments of tilt are sufficiently discharged. The intermediate platform can then be fastened to the mounting platform via spacer plates, e.g. In the alternative, the hoisting mechanism can also be affixed on the side of the exchangeable container and can then be equipped with guide elements, such as rails comprising guide carriages, e.g. The build platform in the exchangeable container is then connected to the hoisting system in a non-positive manner via a coupling element. This can be, e.g., a pneumatically actuated zero point clamping system, as it is known from tooling machines. All of the displacement movements are transferred onto the build platform via the coupling and all forces and moments acting on the build platform, such as, e.g., frictional forces of the seal between container wall and platform, densification forces in response to the layer application and gravitational forces are in turn guided into the hoisting system by means of the particulate material. The axes for the movement of the spreader unit and for the drop dispensing apparatus are mounted on the mounting plate. Axes refer to combinations of guide system and drive. The guide task can be fulfilled by rails and carriages, e.g., wherein the carriages comprising recirculating ball systems rolling on the rail.
The drop dispensing apparatus is typically moved across the build field in a meander-style during the layering process. This movement is reached by means of a system of axes, which are aligned orthogonally to one another. Due to the dimension of the build field, a pair of axes to be arranged along the opposite sides of the build field is usually necessary to support a further axis as connection.
The movement requires a most constant speed across the long displacement distance (X-axis) and accurate positioning across the short displacement distance (Y-axis). To minimize masses moved and wear of the axes, it proves to be advantageous for the individual axis to form the X-axis and for the pair of axes to serve as Y-axis.
In the process, the drop dispensing apparatus preferably operates only in the area of constant speed in response to movement across the X-axis, so as to locally meter the drops accurately onto the build field. The drops are thus released here conform to impulses of a measuring unit system attached to the X-axis. A belt drive axis, providing an even run, can be used as movement system. Alternatively a threaded spindle axis be used. Due to the better positioning in this case, a linear measuring system is not necessary and can be replaced by an encoder mounted to the motor. Last but not least, a linear drive, as it is increasingly found in tooling machines, can also be used. The Y-axis, however, must position accurately, which requires a threaded spindle drive or a linear drive.
The spreader apparatus, however, needs to be moved across the construction field at a speed, as constant as possible, while releasing particulate material onto the build platform. Belt drives as well as threaded spindle drives as well as linear drives are suitable for this kind of movement.
The axes arrangement for the spreader apparatus may not collide with the axes for the drop dispensing apparatus. Due to the size of the build field and to reduce moment loading onto an axis, it is likely to use a pair of axes, which is arranged parallel to the Y-axis of the drop dispensing apparatus.
To simplify the apparatus, it is possible to have no separate pair of axes for the spreader apparatus and using the Y-axis pair for the drop dispensing apparatus as well as for the spreader apparatus simultaneously instead. This takes place by mounting the spreader device onto the guide carriages of the Y-axis next to the X-axis.
A feeder mechanism for refilling the spreader apparatus with particulate material is located at the end of the displacement distance. This material feed preferably takes place by means of a conveying system, which is operated from a particulate material reservoir below the mounting platform or outside of the device. In addition, a further particulate material reservoir is available below the mounting platform for excess particulate material, which is pushed above the edge of the build platform by means of the spreader unit. This particulate quantity is preferably discharged through an ejection slit in the mounting platform when the spreader unit moves across it.
A further ejection slit is located on the opposite side of the construction field at the beginning of the travel of the spreader device.
The device can be closed by means of a casing. For safety reasons, there is a need for a hood, which protects the user from particulate dusts and process vapors and which prevents accidental contact to moving parts, in particular in the processing room above the mounting platform. This hood should be movable in such a manner so as to allow the best possible access to the elements of the device during standstill. A flap mechanism, which makes it possible to open the hood, is suitable for this purpose. The flap mechanism can be affixed directly to the mounting platform. A seal introduced into the mounting platform further shields the processing room from the environment.
To further shield the processing room from the underside of the mounting platform, the introduction path for the exchangeable container can be covered by a housing. A door arranged at the beginning of the introduction path closes the introduction path during the process.
When the mounting platform is dimensioned to be sufficiently large so as to cover the outer edge of a casing located there below, the processing room can thus be sealed sufficiently towards the bottom.
The casing below the mounting platform can be embodied in such a manner that it simultaneously functions as a rack and supports the mounting platform. In an advantageous embodiment, the casing consists of a single component, which encloses the device, e.g. of profiled and welded sheet metal parts, which accommodates the mounting platform.
Component assemblies, such as control cabinet, fluid and compressed air supply, can be accommodated in a space-saving manner in the enclosed room below the mounting platform.
Due to the embodiment of the mounting platform as a plane plate, the effort for orienting the pair of axes to one another is minimized. Only the parallelism of the axes must be checked. Simple stops of the axes can be introduced into the mounting plate by means of alignment pins and can provide for the correct position of the axes at least on one side. In response to a sufficient dimensioning of the mounting platform, the casing at the accommodation of the mounting platform must not be machined, which considerably reduces the production costs. To fasten the mounting plate, only vertically displaceable fastening elements must then be used at different locations, to adjust the distance of the mounting platform to the casing.
To simplify the mounting of the device, all attachment parts can be mounted, adjusted and wired to the mounting plate while placed outside of the casing. Preferably, this takes place on a separate simple mounting rack. The accessibility is thereby better than in the fully assembled state in the casing.
A preferred embodiment will be described below by means of the drawings.
It is thus objective of the present invention to provide a device for manufacturing patterns in layers, which is as accurate as possible, easy to mount and yet cost-effective to make.
Accordingly, pursuant to a first aspect of the present invention, there is contemplated a device for manufacturing patterns in layers, encompassing a vertically displaceable build platform, a dispensing device for applying binder material onto the build platform, wherein the device additionally encompasses a mounting platform, to which all displacement units for the dispensing device and for the build platform are affixed.
The first aspect of the present invention may be further characterized by one or any combination of the features described herein, such as a spreader device for applying fluid is provided; all displacement units of the spreader device are further affixed to the mounting platform; the dispensing device and/or the spreader device are further affixed to the mounting plate.
The build platform 62 is mounted below the mounting platform along a Z-axis 26. The introduction room for the exchangeable container 2 (not shown) is shielded by means of the casing 27.
Number | Date | Country | Kind |
---|---|---|---|
10 2007 050 953 | Oct 2007 | DE | national |
Number | Name | Date | Kind |
---|---|---|---|
774971 | Smith | Apr 1904 | A |
3239080 | Corompt | Mar 1966 | A |
4247508 | Housholder | Jan 1981 | A |
4369025 | Von Der Weid | Jan 1983 | A |
4575330 | Hull | Mar 1986 | A |
4665492 | Masters | May 1987 | A |
4752352 | Feygin | Jun 1988 | A |
4752498 | Fudim | Jun 1988 | A |
4863538 | Deckard | Aug 1989 | A |
4938816 | Beaman et al. | Jul 1990 | A |
4944817 | Bourell et al. | Jul 1990 | A |
5017753 | Deckard | May 1991 | A |
5031120 | Pomerantz et al. | Jul 1991 | A |
5047182 | Sundback et al. | Sep 1991 | A |
5053090 | Beaman et al. | Oct 1991 | A |
5059266 | Yamane et al. | Oct 1991 | A |
5076869 | Bourell et al. | Dec 1991 | A |
5120476 | Scholz | Jun 1992 | A |
5126529 | Weiss et al. | Jun 1992 | A |
5127037 | Bynum | Jun 1992 | A |
5132143 | Deckard | Jul 1992 | A |
5134569 | Masters | Jul 1992 | A |
5136515 | Helinski | Aug 1992 | A |
5140937 | Yamane et al. | Aug 1992 | A |
5147587 | Marcus et al. | Sep 1992 | A |
5149548 | Yamane et al. | Sep 1992 | A |
5155324 | Deckard et al. | Oct 1992 | A |
5156697 | Bourell et al. | Oct 1992 | A |
5182170 | Marcus et al. | Jan 1993 | A |
5204055 | Sachs et al. | Apr 1993 | A |
5216616 | Masters | Jun 1993 | A |
5248456 | Evans, Jr. et al. | Aug 1993 | A |
5252264 | Forderhase et al. | Oct 1993 | A |
5284695 | Barlow et al. | Feb 1994 | A |
5296062 | Bourell et al. | Mar 1994 | A |
5316580 | Deckard | May 1994 | A |
5340656 | Sachs et al. | Aug 1994 | A |
5342919 | Dickens, Jr. et al. | Aug 1994 | A |
5352405 | Beaman et al. | Oct 1994 | A |
5354414 | Feygin | Oct 1994 | A |
5382308 | Bourell et al. | Jan 1995 | A |
5387380 | Cima et al. | Feb 1995 | A |
5398193 | deAngelis | Mar 1995 | A |
5431967 | Manthiram et al. | Jul 1995 | A |
5482659 | Sauerhoefer | Jan 1996 | A |
5490962 | Cima et al. | Feb 1996 | A |
5503785 | Crump et al. | Apr 1996 | A |
5506607 | Sanders, Jr. | Apr 1996 | A |
5518060 | Cleary et al. | May 1996 | A |
5518680 | Cima et al. | May 1996 | A |
5555176 | Menhennett et al. | Sep 1996 | A |
5573055 | Melling et al. | Nov 1996 | A |
5597589 | Deckard | Jan 1997 | A |
5616294 | Deckard | Apr 1997 | A |
5637175 | Feygin et al. | Jun 1997 | A |
5639070 | Deckard | Jun 1997 | A |
5639402 | Barlow et al. | Jun 1997 | A |
5647931 | Retallick et al. | Jun 1997 | A |
5658412 | Retallick et al. | Aug 1997 | A |
5665401 | Serbin et al. | Sep 1997 | A |
5717599 | Menhennett et al. | Feb 1998 | A |
5730925 | Mattes et al. | Mar 1998 | A |
5740051 | Sanders, Jr. et al. | Apr 1998 | A |
5749041 | Lakshminarayan et al. | May 1998 | A |
5753274 | Wilkening et al. | May 1998 | A |
5807437 | Sachs et al. | Sep 1998 | A |
5824250 | Whalen | Oct 1998 | A |
5851465 | Bredt | Dec 1998 | A |
5884688 | Hinton et al. | Mar 1999 | A |
5902441 | Bredt et al. | May 1999 | A |
5902537 | Almquist et al. | May 1999 | A |
5934343 | Gaylo et al. | Aug 1999 | A |
5940674 | Sachs et al. | Aug 1999 | A |
5943235 | Earl et al. | Aug 1999 | A |
5989476 | Lockard et al. | Nov 1999 | A |
6007318 | Russell et al. | Dec 1999 | A |
6036777 | Sachs | Mar 2000 | A |
6042774 | Wilkening et al. | Mar 2000 | A |
6048188 | Hull et al. | Apr 2000 | A |
6048954 | Barlow et al. | Apr 2000 | A |
6116517 | Heinzl et al. | Aug 2000 | A |
6133353 | Bui et al. | Oct 2000 | A |
6146567 | Sachs et al. | Nov 2000 | A |
6147138 | Hochsmann et al. | Nov 2000 | A |
6155331 | Langer et al. | Dec 2000 | A |
6164850 | Speakman | Dec 2000 | A |
6165406 | Jang et al. | Dec 2000 | A |
6169605 | Penn et al. | Jan 2001 | B1 |
6193922 | Ederer | Feb 2001 | B1 |
6210625 | Matsushita | Apr 2001 | B1 |
6217816 | Tang | Apr 2001 | B1 |
6243616 | Droscher et al. | Jun 2001 | B1 |
6259962 | Gothait | Jul 2001 | B1 |
6270335 | Leyden et al. | Aug 2001 | B2 |
6305769 | Thayer et al. | Oct 2001 | B1 |
6322728 | Brodkin et al. | Dec 2001 | B1 |
6335097 | Otsuka et al. | Jan 2002 | B1 |
6375874 | Russell et al. | Apr 2002 | B1 |
6395811 | Nguyen et al. | May 2002 | B1 |
6401001 | Jang et al. | Jun 2002 | B1 |
6403002 | Van Der Geest | Jun 2002 | B1 |
6405095 | Jang et al. | Jun 2002 | B1 |
6416850 | Bredt et al. | Jul 2002 | B1 |
6423255 | Hoechsmann et al. | Jul 2002 | B1 |
6436334 | Hattori et al. | Aug 2002 | B1 |
6467525 | Herreid et al. | Oct 2002 | B2 |
6476122 | Leyden | Nov 2002 | B1 |
6500378 | Smith | Dec 2002 | B1 |
6554600 | Hofmann et al. | Apr 2003 | B1 |
6596224 | Sachs et al. | Jul 2003 | B1 |
6610429 | Bredt et al. | Aug 2003 | B2 |
6658314 | Gothait | Dec 2003 | B1 |
6672343 | Perret et al. | Jan 2004 | B1 |
6713125 | Sherwood et al. | Mar 2004 | B1 |
6722872 | Swanson et al. | Apr 2004 | B1 |
6733528 | Abe et al. | May 2004 | B2 |
6827988 | Krause et al. | Dec 2004 | B2 |
6830643 | Hayes | Dec 2004 | B1 |
6838035 | Ederer et al. | Jan 2005 | B1 |
6896839 | Kubo et al. | May 2005 | B2 |
7004222 | Ederer et al. | Feb 2006 | B2 |
7120512 | Kramer et al. | Oct 2006 | B2 |
7137431 | Ederer et al. | Nov 2006 | B2 |
7153463 | Leuterer et al. | Dec 2006 | B2 |
7204684 | Ederer | Apr 2007 | B2 |
7291002 | Russell et al. | Nov 2007 | B2 |
7296990 | Devos et al. | Nov 2007 | B2 |
7332537 | Bredt et al. | Feb 2008 | B2 |
7348075 | Farr et al. | Mar 2008 | B2 |
7378052 | Harryson | May 2008 | B2 |
7387359 | Hernandez et al. | Jun 2008 | B2 |
7455805 | Oriakhi et al. | Nov 2008 | B2 |
7497977 | Nielsen et al. | Mar 2009 | B2 |
7531117 | Ederer | May 2009 | B2 |
7597835 | Marsac | Oct 2009 | B2 |
7641461 | Khoshnevis | Jan 2010 | B2 |
7665636 | Ederer | Feb 2010 | B2 |
7736578 | Ederer | Jun 2010 | B2 |
7748971 | Hochsmann | Jul 2010 | B2 |
7767130 | Elsner | Aug 2010 | B2 |
7790096 | Merot et al. | Sep 2010 | B2 |
7799253 | Höschmann et al. | Sep 2010 | B2 |
8186415 | Marutani et al. | May 2012 | B2 |
8574485 | Kramer | Nov 2013 | B2 |
8951033 | Höchsmann et al. | Feb 2015 | B2 |
9327450 | Hein et al. | May 2016 | B2 |
20010045678 | Kubo et al. | Nov 2001 | A1 |
20010050031 | Bredt et al. | Dec 2001 | A1 |
20020015783 | Harvey | Feb 2002 | A1 |
20020016387 | Shen | Feb 2002 | A1 |
20020026982 | Bredt et al. | Mar 2002 | A1 |
20020079601 | Russell et al. | Jun 2002 | A1 |
20020090410 | Tochimoto et al. | Jul 2002 | A1 |
20020111707 | Li et al. | Aug 2002 | A1 |
20020155254 | McQuate et al. | Oct 2002 | A1 |
20020167100 | Moszner et al. | Nov 2002 | A1 |
20030004599 | Herbak | Jan 2003 | A1 |
20030083771 | Schmidt | May 2003 | A1 |
20030114936 | Sherwood et al. | Jun 2003 | A1 |
20040003738 | Imiolek et al. | Jan 2004 | A1 |
20040012112 | Davidson et al. | Jan 2004 | A1 |
20040025905 | Ederer et al. | Feb 2004 | A1 |
20040026418 | Ederer et al. | Feb 2004 | A1 |
20040035542 | Ederer | Feb 2004 | A1 |
20040036200 | Patel et al. | Feb 2004 | A1 |
20040038009 | Leyden et al. | Feb 2004 | A1 |
20040045941 | Herzog et al. | Mar 2004 | A1 |
20040056378 | Bredt et al. | Mar 2004 | A1 |
20040094058 | Kasperchik et al. | May 2004 | A1 |
20040104515 | Swanson et al. | Jun 2004 | A1 |
20040112523 | Crom | Jun 2004 | A1 |
20040145088 | Patel et al. | Jul 2004 | A1 |
20040170765 | Ederer et al. | Sep 2004 | A1 |
20040187714 | Napadensky et al. | Sep 2004 | A1 |
20040207123 | Patel et al. | Oct 2004 | A1 |
20040239009 | Collins et al. | Dec 2004 | A1 |
20040265413 | Russell et al. | Dec 2004 | A1 |
20050003189 | Bredt et al. | Jan 2005 | A1 |
20050017386 | Harrysson | Jan 2005 | A1 |
20050017394 | Hochsmann et al. | Jan 2005 | A1 |
20050074511 | Oriakhi et al. | Apr 2005 | A1 |
20050079086 | Farr et al. | Apr 2005 | A1 |
20050093194 | Oriakhi et al. | May 2005 | A1 |
20050167872 | Tsubaki et al. | Aug 2005 | A1 |
20050174407 | Johnson et al. | Aug 2005 | A1 |
20050179167 | Hachikian | Aug 2005 | A1 |
20050212163 | Bausinger et al. | Sep 2005 | A1 |
20050218549 | Farr et al. | Oct 2005 | A1 |
20050276976 | Pfeifer et al. | Dec 2005 | A1 |
20050280185 | Russell | Dec 2005 | A1 |
20060012058 | Hasei | Jan 2006 | A1 |
20060103054 | Pfeifer et al. | May 2006 | A1 |
20060105102 | Hochsmann et al. | May 2006 | A1 |
20060159896 | Pfeifer et al. | Jul 2006 | A1 |
20060175346 | Ederer et al. | Aug 2006 | A1 |
20060208388 | Bredt et al. | Sep 2006 | A1 |
20060237159 | Hochsmann | Oct 2006 | A1 |
20060251535 | Pfeifer et al. | Nov 2006 | A1 |
20060254467 | Farr et al. | Nov 2006 | A1 |
20060257579 | Farr et al. | Nov 2006 | A1 |
20070045891 | Martinoni | Mar 2007 | A1 |
20070057412 | Weuskopf et al. | Mar 2007 | A1 |
20070126157 | Bredt | Jun 2007 | A1 |
20070238056 | Baumann et al. | Oct 2007 | A1 |
20070241482 | Giller et al. | Oct 2007 | A1 |
20080001331 | Ederer | Jan 2008 | A1 |
20080003390 | Hayashi | Jan 2008 | A1 |
20080018018 | Nielsen et al. | Jan 2008 | A1 |
20080047628 | Davidson et al. | Feb 2008 | A1 |
20080138515 | Williams | Jun 2008 | A1 |
20080187711 | Alam et al. | Aug 2008 | A1 |
20080233302 | Elsner et al. | Sep 2008 | A1 |
20080241404 | Allaman et al. | Oct 2008 | A1 |
20080260945 | Ederer et al. | Oct 2008 | A1 |
20080299321 | Ishihara | Dec 2008 | A1 |
20090068376 | Philippi et al. | Mar 2009 | A1 |
20100007048 | Schweininger | Jan 2010 | A1 |
20100007062 | Larsson et al. | Jan 2010 | A1 |
20100207288 | Dini | Aug 2010 | A1 |
20100212584 | Ederer et al. | Aug 2010 | A1 |
20100244301 | Ederer et al. | Sep 2010 | A1 |
20100247742 | Shi et al. | Sep 2010 | A1 |
20100272519 | Ederer et al. | Oct 2010 | A1 |
20100279007 | Briselden et al. | Nov 2010 | A1 |
20100291314 | Kahani-Shirazi | Nov 2010 | A1 |
20100323301 | Tang et al. | Dec 2010 | A1 |
20110049739 | Uckelmann et al. | Mar 2011 | A1 |
20110059247 | Kuzusako et al. | Mar 2011 | A1 |
20110177188 | Bredt et al. | Jul 2011 | A1 |
20110223437 | Ederer et al. | Sep 2011 | A1 |
20120046779 | Pax et al. | Feb 2012 | A1 |
20120097258 | Harmann et al. | Apr 2012 | A1 |
20120113439 | Ederer et al. | May 2012 | A1 |
20120126457 | Abe et al. | May 2012 | A1 |
20120291701 | Grasegger et al. | Nov 2012 | A1 |
20130000549 | Hartmann et al. | Jan 2013 | A1 |
20130004610 | Hartmann et al. | Jan 2013 | A1 |
20130026680 | Ederer et al. | Jan 2013 | A1 |
20130029001 | Gunther et al. | Jan 2013 | A1 |
20130199444 | Hartmann | Aug 2013 | A1 |
20130234355 | Hartmann et al. | Sep 2013 | A1 |
20130302575 | Mogele et al. | Nov 2013 | A1 |
20140048980 | Crump et al. | Feb 2014 | A1 |
20140065194 | Yoo | Mar 2014 | A1 |
20140212677 | Gnuchtel et al. | Jul 2014 | A1 |
20140227123 | Gunster | Aug 2014 | A1 |
20140271961 | Khoshnevis | Sep 2014 | A1 |
20140306379 | Hartmann et al. | Oct 2014 | A1 |
20150042018 | Gunther et al. | Feb 2015 | A1 |
20150110910 | Hartmann et al. | Apr 2015 | A1 |
20150224718 | Ederer et al. | Aug 2015 | A1 |
20150266238 | Ederer et al. | Sep 2015 | A1 |
20150273572 | Ederer et al. | Oct 2015 | A1 |
20150290881 | Ederer et al. | Oct 2015 | A1 |
20150375419 | Gunther et al. | Dec 2015 | A1 |
20160318251 | Ederer et al. | Mar 2016 | A1 |
20160263828 | Ederer et al. | Sep 2016 | A1 |
20160303762 | Gunther | Oct 2016 | A1 |
20160311167 | Gunther et al. | Oct 2016 | A1 |
20160311210 | Gunther et al. | Oct 2016 | A1 |
20170050378 | Ederer | Feb 2017 | A1 |
20170106595 | Gunther et al. | Apr 2017 | A1 |
20170151727 | Ederer et al. | Jun 2017 | A1 |
20170157852 | Ederer et al. | Jun 2017 | A1 |
20170182711 | Gunther et al. | Jun 2017 | A1 |
20170210037 | Ederer et al. | Jul 2017 | A1 |
20170297263 | Ederer et al. | Oct 2017 | A1 |
20170305139 | Hartmann | Oct 2017 | A1 |
20170355137 | Ederer et al. | Dec 2017 | A1 |
20180079133 | Ederer et al. | Mar 2018 | A1 |
20180141271 | Gunter et al. | May 2018 | A1 |
20180326662 | Gunther et al. | Nov 2018 | A1 |
20180369910 | Gunther et al. | Dec 2018 | A1 |
20190047218 | Ederer et al. | Feb 2019 | A1 |
20190084229 | Gunther | Mar 2019 | A1 |
Number | Date | Country |
---|---|---|
720255 | May 2000 | AU |
101146666 | Mar 2008 | CN |
3221357 | Dec 1983 | DE |
3930750 | Mar 1991 | DE |
4102260 | Jul 1992 | DE |
4305201 | Apr 1994 | DE |
4300478 | Aug 1994 | DE |
4 325 573 | Feb 1995 | DE |
29506204 | Jun 1995 | DE |
4400523 | Jul 1995 | DE |
4440397 | Sep 1995 | DE |
19511772 | Oct 1996 | DE |
19530295 | Jan 1997 | DE |
19528215 | Feb 1997 | DE |
29701279 | May 1997 | DE |
19545167 | Jun 1997 | DE |
69031808 | Apr 1998 | DE |
19723892 | Sep 1998 | DE |
19846478 | Apr 2000 | DE |
19853834 | May 2000 | DE |
10047614 | Apr 2002 | DE |
69634921 | Dec 2005 | DE |
201 22 639 | Nov 2006 | DE |
102006040305 | Mar 2007 | DE |
102006029298 | Dec 2007 | DE |
102007040755 | Mar 2009 | DE |
102007047326 | Apr 2009 | DE |
102011053205 | Mar 2013 | DE |
0361847 | Apr 1990 | EP |
0431924 | Jun 1991 | EP |
0688262 | Dec 1995 | EP |
0711213 | May 1996 | EP |
0734842 | Oct 1996 | EP |
0739666 | Oct 1996 | EP |
0968776 | Jan 2000 | EP |
1163999 | Dec 2001 | EP |
1415792 | May 2004 | EP |
1442870 | Aug 2004 | EP |
1457590 | Sep 2004 | EP |
2790418 | Sep 2000 | FR |
2297516 | Aug 1996 | GB |
2382798 | Jun 2003 | GB |
S62275734 | Nov 1987 | JP |
2003136605 | May 2003 | JP |
2004082206 | Mar 2004 | JP |
2009202451 | Sep 2009 | JP |
9003893 | Apr 1990 | WO |
9518715 | Jul 1995 | WO |
9605038 | Feb 1996 | WO |
0021736 | Apr 2000 | WO |
0051809 | Sep 2000 | WO |
0126885 | Apr 2001 | WO |
0172502 | Apr 2001 | WO |
0134371 | May 2001 | WO |
0140866 | Jun 2001 | WO |
0226419 | Apr 2002 | WO |
0226420 | Apr 2002 | WO |
0226478 | Apr 2002 | WO |
02064353 | Aug 2002 | WO |
02064354 | Aug 2002 | WO |
03016030 | Feb 2003 | WO |
03016067 | Feb 2003 | WO |
03103932 | Dec 2003 | WO |
2004010907 | Feb 2004 | WO |
2004014637 | Feb 2004 | WO |
2004110719 | Dec 2004 | WO |
2004112988 | Dec 2004 | WO |
2005113219 | Dec 2005 | WO |
2006100166 | Sep 2006 | WO |
2008049384 | May 2008 | WO |
2008061520 | May 2008 | WO |
2011063786 | Jun 2011 | WO |
2013075696 | May 2013 | WO |
2014090207 | Jun 2014 | WO |
2014166469 | Oct 2014 | WO |
2016019942 | Feb 2016 | WO |
2017008777 | Jan 2017 | WO |
Entry |
---|
US 4,937,420 A, 06/1990, Deckard (withdrawn) |
Cima et al., “Computer-derived Microstructures by 3D Printing: Bio- and Structural Materials,” SFF Symposium, Austin, TX, 1994. |
EOS Operating Manual for Laser Sintering Machine with Brief Summary. |
Sachs et al., “Three-Dimensional Printing: Rapid Tooling and Prototypes Directly from a CAD Model”, Massachusetts Institute of Technology, pp. 131-136. |
Sachs et al., “Three-Dimensional Printing: Rapid Tooling and Prototypes Directly from a CAD Model”, Massachusetts Institute of Technology, pp. 143-151. |
Jacobs et al., 2005 SME Technical Paper, title “Are QuickCast Patterns Suitable for Limited Production?”. |
Feature Article—Rapid Tooling—Cast Resin and Sprayed Metal Tooling by Joel Segal. |
Williams, “Feasibility Study of Investment Casting Pattern Design by Means of Three Dimensional Printing”, Department of Machanical Enginerring, pp. 2-15. |
Copending National Phase Application, WO 02/26419, Apr. 4, 2002. |
Copending National Phase Application, WO 02/26420, Apr. 4, 2002. |
Copending Patent Application, U.S. Appl. No. 11/320,050 (corresponds with PCT WO 02/26420), (U.S. Pat. No. 7,137,431), Dec. 28, 2005. |
Copending National Phase Application, WO 03/103932, Dec. 18, 2003. |
Copending National Phase Application, WO 04/112988, Dec. 8, 2005. |
Copending National Phase Application, WO 05/113219, Dec. 1, 2005. |
Copending U.S. Appl. No. 10/866,205, (Published as 2005/0017394), Jun. 11, 2004. |
Copending U.S. Appl. No. 12/669,063, Jan. 14, 2010. |
International Search Report, WO 04/110719, dated Jan. 11, 2005. |
International Search Report, WO 2005-113219, dated Dec. 1, 2005. |
Gephart, Rapid Prototyping, pp. 118-119. |
Marcus et al., Solid Freedom Fabrication Proceedings, Nov. 1993. |
Opposition of Patent No. DE10047614, Jun. 25, 2003. |
Opposition to European Patent No. 1322458 B1, Jan. 19, 2005. |
International Search Report, PCT/DE00/03324, (Published as WO2002/026419), dated Jun. 5, 2001. |
International Search Report, PCT/DE01/03661, (Published as WO2002/026420), dated Feb. 28, 2002. |
International Search Report, PCT/DE01/03662, (Published as WO2002/026478), dated Mar. 1, 2002. |
Marcus, et al., Solid Freeform Fabrication Proceedings, Sep., 1995, p. 130-33. |
Armin Scharf, “Erster 3D-Endlosdrucker”, zwomp.de, http://www.zwomp.de/2012/11/06/voxeljet-endlosdrucker/ dated Nov. 6, 2012. |
Screen shots of URL: http://www.youtube.com/watch?v=hgIrNXZjIxU taken in approximately 5 second intervals on Nov. 12, 2015. |
Number | Date | Country | |
---|---|---|---|
20170326693 A1 | Nov 2017 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14633756 | Feb 2015 | US |
Child | 15662567 | US | |
Parent | 12681957 | US | |
Child | 14633756 | US |