This invention relates to a manual emergency release mechanism for transit vehicle doors. It is essential that transit vehicle doors be locked during normal operation while the vehicle is moving so that a passenger leaning against or falling against the door does not push open the doors and fall out of the vehicle. However, in an emergency, there must be a provision for unlocking the door. Certain Transit Authority operational procedures require the train to have reached full stop prior to allowing the doors to be unlocked, even in an emergency situation.
In the case of emergency, a passenger actuates a release handle. The handle (rotating or linear motion) pulls on a release cable. The release cable is connected to the door lock actuator mechanism to unlock the door.
The manual release mechanism described herein enables a passenger to attempt to manually open the transit door but delays opening until the vehicle is no longer moving.
A door lock may be associated with any number of the elements from the door operator to the door post and door panel.
Usually, a manual release cable is coupled directly to the lock actuator mechanism and the door panels become unlocked when the cable is pulled. Unfortunately, if the train is still moving, stopped between stations, or the door is on the wrong side of the vehicle while adjacent a station platform, if the door is manually unlocked, the passenger could get injured.
In the past, to prevent a passenger from leaving the car when unsafe to do so after the release handle has been actuated, the motor driving the doors was energized to attempt to keep the doors closed. However, the passenger with extra force can still force the doors open as the motors can only apply a limit amount of resistance force. Driving the doors in the closed position can cause the motors to overheat to their detriment. Also, the passenger can damage the door control mechanism when forcing the doors.
Also, in the past, a mechanism was provided to prevent the release handle from being moved so long as it is unsafe and, thus, the release cable from being pulled. However, this can frustrate the passenger and result in the handle being broken by the application of too much force. Also, when safe to do so, the passenger must again actuate the release handle. He must know when it is safe to do so.
Briefly, according to this invention, there is provided an emergency manual door lock release mechanism for releasing a door lock actuator mechanism on a transit vehicle door comprising: a motion transfer device, an electromechanical device for fixing the position of the motion transfer device when energized and releasing the motion transfer device when de-energized, a mechanical energy storage device, connections for energizing the mechanical energy storage device to bias the motion transfer device to move to an unlocking position upon closing of the transit door, a detent mechanism normally capturing the motion transfer device and releasing the motion transfer device when the detent mechanism is activated such that the door lock actuator mechanism will only be manually released when the detent mechanism is activated and the electromechanical device is de-energized to release the motion transfer device.
The motion transfer device may, for example, be a slide connected to a cable or lever connected to the door lock. The mechanical energy storage device may, for example, be a coil spring. The electromechanical device may, for example, be an electromagnet or solenoid. The manual release device may, for example, be a handle, cable, lever, or combination thereof.
Briefly, according to a specific embodiment of this invention, an emergency manual door lock release mechanism for releasing a door lock on a transit vehicle door comprises: a base plate for being secured to the transit vehicle, and a sliding plate abutting and moveable relative to the base plate. The sliding plate has at least one elongate slot. At least one pin fixed to the base plate extends into the at least one elongate slot constraining the relative movement between the base plate and sliding plate in a lateral direction.
A first end bracket is secured to the base plate at or near one lateral end of the base plate. An electromagnet is secured thereto. The first end bracket has an aperture therein for receiving a manual release Bowden cable. A second end bracket is secured to the base plate at or near the lateral end opposite from the first end bracket.
A bracket fixed to the sliding plate supports a magnetizable steel plate in a position to be captured by the electromagnet. A coil spring that stores energy upon closing of the door is biased to move the sliding plate away from the electromagnet. The coil spring is connectable to a device associated with the door for storing energy in the coil spring upon closing of the door. The coil spring is anchored directly or indirectly at one end to the second end bracket and is connected at the other end directly or indirectly to the bracket supporting the magnetizable plate. A detent mechanism fixed to the base plate normally captures the sliding plate and releases the sliding plate when the manual release cable is pulled. A motion transfer device is connected to the sliding plate such that when the sliding plate moves away from the electromagnet, the door lock will be released only when the manual release cable is pulled to release the detent mechanism and the electromagnet is de-energized to release the magnetizable steel plate.
The electromagnet electrical power is typically under the control of an ON/OFF signal issued by a combination of the train berthing system and the zero-speed system. When the train is properly berthed and at zero speed, the electromagnet is de-energized. It is energized whenever these conditions are not met.
Also, typically, there is a separate pull cable on the door lock actuating mechanism (not shown) allowing the door to be unlocked in normal service independently of the emergency release.
Further features and other objects and advantages of the invention will become apparent from the following detailed description made with reference to the drawings.
Referring now to the drawings, an emergency manual door lock release mechanism for releasing a door lock comprises: a base plate 12 for being secured to the transit vehicle, and a sliding plate 16 abutting and moveable relative to the base plate 12. The sliding plate 16 has at least one elongate slot 20. At least one pin 22, 24 fixed to the base plate extends into the at least one elongate slot constraining the relative movement between the base plate and sliding plate in a lateral direction indicated by the double head arrow.
A first end bracket 26 is secured to the base plate at or near one lateral end of the base plate. An electromagnet 28 is secured thereto. The first end bracket has an aperture therein for receiving a manual release Bowden cable 30. A second end bracket 32 is secured to the base plate at or near the lateral end opposite from the first end bracket 26.
A bracket 34 fixed to the sliding plate supports a magnetizable steel plate 36 in a position to be captured by the electromagnet 28. A coil spring 40 that stores energy when compressed upon closing of the door is biased to move the sliding plate 16 away from the electromagnet 28. The coil spring is anchored directly or indirectly at one end to the second end bracket 32 and is connected at the other end directly or indirectly to the magnetizable plate bracket 34.
A detent mechanism 38 fixed to the base plate 12 normally captures the sliding plate 16 and releases the sliding plate when the manual release cable 42 is pulled. The sliding plate 16 is directly or indirectly connectable to the door lock such that when the sliding plate moves away from the electromagnet 28 the door lock will be released. The door lock will only be released when the manual release cable 30 is pulled to release the detent mechanism 38 and the electromagnet 28 is de-energized to release the magnetizable steel plate 34.
Referring to
Referring to
Referring to
Having thus defined our invention with the detail and particularity required by the Patent Laws, what is desired protected by Letters Patent is set forth in the following claims.
This application claims the benefit to U.S. Provisional Application No. 62/258,673 filed Nov. 23, 2015, the disclosure of which is hereby incorporated in its entirety by reference.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2016/059666 | 10/31/2016 | WO | 00 |
Number | Date | Country | |
---|---|---|---|
62258673 | Nov 2015 | US |