Some submersed fluid pumps have pumping action that is based on linear reciprocal motion. For example, diaphragm pumps may use a reciprocating hydraulic rod to displace fluid, which alternately inflates and deflates a diaphragm within the fixed volume of a pump casing. One-way inlet and discharge (outlet) valves take advantage of the changes in volume between the fixed casing and the expanding and contracting diaphragm to pump well fluid in desired flow paths. As the diaphragm deflates within the pumping chamber, an inlet check valve allows well fluid to enter the casing. Then, as the diaphragm inflates, the pressure is raised within the casing until the discharge check valve opens to allow the pumped well fluid out, for example, into an underground pipe conveying the well fluid to the surface. When compressible fluids (gases and gases-liquid mixtures) enter the pumping chamber, the reciprocating motion may be wasted compressing this kind of well fluid, and the compression obtained is not sufficient to open the discharge check valve and pump out the well fluid. This condition is referred to as “gas interference” or “gas lock.”
A reciprocating pump with chamber-charging mechanism is provided. In an implementation, an apparatus includes a pump for a well fluid, a reciprocating mover in the pump to alternately inflate and deflate a diaphragm within the pump, and an inlet valve to allow the well fluid to enter the pump when the diaphragm deflates. A discharge valve allows the well fluid to exit the pump when the diaphragm inflates, but is also utilized to charge a pumping chamber of the pump. An intermittent mechanical linkage between the reciprocating mover and the discharge valve enables pressure to backflow into the pump via the discharge valve at a point during the pump cycle. An example method establishes an intermittent mechanical linkage between a reciprocating mover of a pump and a discharge valve, and pressurizes a pump chamber by opening the discharge valve via the intermittent mechanical linkage. An example diaphragm pump includes a reciprocating mover, a pump chamber, and an inflatable diaphragm in the pump chamber in fluid communication with the reciprocating mover. An outlet check valve allows pumped fluid under pressure to open the outlet check valve and exit the pump chamber, but is also utilized to pre-charge the pump chamber. A valve stem on the outlet check valve opens the outlet check valve to pre-charge the chamber when the valve stem is mechanically moved by the reciprocating mover. This summary section is not intended to give a full description of a reciprocating pump with chamber-charging mechanism. A detailed description with example embodiments follows.
Overview
This disclosure describes reciprocating pumps that have chamber-charging mechanisms (“pre-chargers”). The charging mechanism may allow the use of diaphragm pumps in fluid that includes free gas or compressible fluid in the pumped well fluid medium. Horizontally drilled natural gas wells, for example, which have been hydraulically fractured and have many perforations, may require an artificial lift pump that can operate in near-horizontal orientation and pump gassy well fluid.
In order to prevent or to remedy gas lock, example reciprocating pumps described herein have an intermittent mechanical linkage established between a reciprocating member, such as the hydraulically powered rod that powers the pump (“reciprocating mover”), and a discharge valve that is conventionally opened only by pressure of the well fluid being pumped out. When the discharge valve is preemptively opened by the intermittent mechanical linkage, the compressible gas causing the gas lock is subjected to the full column-pressure (i.e., static fluid pressure) of the well fluid that has been previously pumped out of the discharge valve into a pipe leading to the surface, for example. This mechanically-induced valve opening thus allows a backflow of pressure (pressurized fluid from outside of the pump) back into the pump via the discharge valve. The backflow pressurizes the “trapped” compressible well fluid (gas) within the pump chamber with extra external pressure—i.e., the pressurized backflow charges the interior of the pump chamber to a higher pressure. Then, on the next pump cycle, the compressible well fluid inside the pump is at high enough pressure to open the discharge valve of its own accord and exit the pump under the additional pressure provided by the reciprocal mover on this next pump stroke.
In various implementations of example diaphragm pumps, the discharge valve can be timed to open by mechanical intervention at different points in the reciprocation cycle, depending on the style of pump and the action desired.
Features, systems, and methods associated with reciprocating pumps that have a chamber-charging mechanism represent possible implementations and are included for illustration purposes and should not be construed as limiting. Moreover, it will be understood that different implementations can include all or different subsets of aspects described below. Furthermore, the aspects described below may be included in any order, and numbers and/or letters placed before various aspects are done for ease of reading and in no way imply an order, or level of importance to their associated aspects.
Example Apparatus
The example reciprocating pump 100 has a discharge valve 114 that is also a pre-charger used for charging the pump chamber 108 with an increase in pressure. Contraction of the diaphragm 104 causes a “vacuum” in the pump chamber 108 that tends to suck the discharge valve 114 into a closed position during a filling phase of the pump chamber 108 when well fluid is being let in. Pressure on the external side of the discharge valve 114 also pushes the discharge valve 114 closed when well fluid is no longer being pushed out of the pump chamber 108.
When the diaphragm 104 expands, pressure in the pump chamber 108 increases, closing the inlet check valve 112. The same increasing pressure in the pump chamber 108 opens the discharge valve 114 and allows the well fluid being pumped to leave the pump 100 via a discharge port 116. When there is compressible fluid such as gas in the pump chamber 108, however, the expanding diaphragm 104 may perform work compressing the gas, but the compressed gas may not have enough pressure to open the discharge valve 114. This results in a gas lock scenario, in which the pump 100 moves little or no well fluid through its pump chamber 108.
In an implementation, the example diaphragm pump 100 has a discharge valve 114 that is axially in line with the reciprocating mover 102. The discharge valve 114 has a hemispherical valve disk that closes against a valve seat 118 when the valve stem moves away from the reciprocating mover 102. The end of the valve stem nearest the reciprocating mover 102 may be threaded to accommodate a tappet or other stop 120. A tube 122 or other mechanical linkage is constructed so that when the reciprocating mover 102 nears the end of its retraction stroke, the reciprocating mover 102 contacts and pulls a first end of the tube 122 causing other end of the tube 122 to pull the discharge valve 114 open.
The discharge valve 114 is thus mechanically actuated at the end of the filling cycle of the pump chamber 108. If the pump chamber 108 has just let in a compressible fluid mixture, or perhaps pure gas, the mechanical opening of the discharge valve 114 subjects the newly filled pump chamber 108 to the higher static fluid pressure of the fluid outside the discharge port 116. The fluid outside the discharge port 116 may be in a tube, discharge pipe 124, or annulus leading to the surface and under considerable pressure. Or, the fluid in the discharge pipe 124 or annulus outside the discharge port 116 may be directed elsewhere than the surface, but the fluid being pumped is under force of pressure (or else it would not need to be pumped). This external fluid pressure is higher than that of a compressible fluid newly let into the pump chamber 108. The pipe 124 is shown with a separation space between the pipe 124 and the pump 100 for illustrative purposes, but in an actual device the pump 100 and its discharge vessels all fit into a form factor suitable for the wellbore.
The open discharge valve 114 at this point in the pumping cycle allows a backflow of the outside pressure back into the pump chamber 108 through the discharge valve 114 charging whatever contents are in the pump chamber 108 with the same pressure as outside the discharge port 116, and pre-compressing the compressible fluid in the pump chamber 108 nearer to a pressure necessary to open the discharge valve 114 during the next pumping stroke. Thus, the pressure of the pump chamber 108 is equalized with the pressure of the fluid outside the discharge port 116. The reciprocating mover 102 then reverses motion and begins to extend, thereby discontinuing its pull on the tube 122 and allowing the discharge valve 114 to close. The reciprocating mover 102 proceeds to add pressure to the pump chamber 108 by forcing operating fluid into the diaphragm 104. Since the pump chamber 108 has just been charged to a pressure equal to the pressure outside the discharge port 116, the additional pressure now added by the reciprocating mover 102 exceeds the outside pressure thereby opening the discharge valve 114 and causing the compressible fluid to be pumped out of the pump 100.
In
When the diaphragm 104 expands, pressure in the pump chamber 108 increases, closing the inlet check valve 112. The same increasing pressure in the pump chamber 108 opens the discharge valve 402 when incompressible well fluid is present and allows the well fluid being pumped to leave the pump 400 via the discharge port 116. When there is compressible fluid such as gas in the pump chamber 108, however, the expanding diaphragm 104 may perform work compressing the gas, but the compressed gas may not have enough pressure to open the discharge valve 402. This results in a gas lock scenario, in which the pump 400 produces little or no well fluid.
In this implementation, the discharge valve 402 has a hemispherical disk on a traveling stem shaft and is situated so that the discharge valve 402 closes against a valve seat 118 when the valve stem moves toward the reciprocating mover 102. The discharge valve 402 opens when the valve stem travels away from the direction of the reciprocal mover 102. The end of the valve stem nearest the reciprocating mover 102 may be threaded to accommodate a tappet or other stop 120. When the reciprocating mover 102 nears its maximum extension, the reciprocating mover 102 itself contacts (indexes, pokes) the stem of the discharge valve 402 via the tappet or stop 120. This compresses the spring 404 and opens the discharge valve 402.
In this implementation, the discharge valve 402 is thus mechanically actuated to open at the end of the emptying cycle of the pump chamber 108, when the diaphragm 104 is at maximum inflation. However, if the pump chamber 108 contains appreciable compressible fluid mixture (e.g., gas) then the pumping action of the diaphragm 104 may have compressed the compressible fluid, but to a pressure insufficient to expel the compressible fluid from the pump chamber 108. The compressible fluid may still be in the pump chamber 108, although confined in a smaller volume since it is compressed.
The mechanical opening of the discharge valve 402 at this point in the pumping cycle subjects the “leftover” compressible fluid remaining in the pump chamber 108 to a higher static fluid pressure of the fluid outside the discharge port 116. Thus, opening the discharge valve 402 at this point in the pumping cycle allows a backflow of the outside pressure back into the pump chamber 108 charging whatever contents are in the pump chamber 108 with the same higher pressure as exists outside the discharge port 116, and adding to any compressive pressure in the pump chamber 108 imparted by the expanded diaphragm 104. Even though the reciprocating mover 102 retracts at this point, deflating the diaphragm 104, the compressible fluid in the pump chamber 108 has been charged with a higher pressure than it had before, and so the pressure to be imparted on the compressible fluid by the next compression stroke of the reciprocal mover 102 will be additive to the charging pressure accumulated when the discharge valve 402 was mechanically opened. The compressible fluid in the pump chamber 108 will have enough pressure to open the discharge valve 402 and exit the pump 400 on the next pumping cycle, since the act of mechanically opening the discharge valve 402 equalized the pressure inside the pump chamber 108 with the pressure on the discharge side of the discharge valve 402. The pressure from the next expansion of the diaphragm 104 during the next pump stroke is additive.
The example discharge valve 402 may also include at least one seal 406, which isolates the mechanical action of the discharge valve 402 from the well fluid. This is a beneficial feature because the well fluid may be adverse to free travel of the discharge valve 402 due to gas, corrosives, solvents, and/or particulates in the well fluid.
Example Method
At block 802, an intermittent mechanical linkage is established between a reciprocating member of a pump and a discharge valve of the pump.
At block 804, a pump chamber of the pump is pressurized by opening the discharge valve via the intermittent mechanical linkage. Opening the discharge valve to perform a backflow of pressure back into the pump chamber charges the pump chamber with a higher pressure for the next pump stroke. This can relieve gas lock and resolve difficulties inherent in pumping compressible fluids that include gases.
Conclusion
Although only a few example embodiments have been described in detail above, those skilled in the art will readily appreciate that many modifications are possible in the example embodiments without materially departing from the subject matter. Accordingly, all such modifications are intended to be included within the scope of this disclosure as defined in the following claims. In the claims, means-plus-function clauses are intended to cover the structures described herein as performing the recited function and not only structural equivalents, but also equivalent structures. It is the express intention of the applicant not to invoke 35 U.S.C. §112, paragraph 6 for any limitations of any of the claims herein, except for those in which the claim expressly uses the words ‘means for’ together with an associated function.
This patent application claims the benefit of priority to U.S. Provisional Patent No. 61/592,593 to Andersen et al., filed Jan. 31, 2012 and entitled, “Pre-charging A Pump Chamber By Preemptively Opening A Valve,” which is incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
2690134 | Ritche | Sep 1954 | A |
3254607 | Norton | Jun 1966 | A |
4907953 | Hebert et al. | Mar 1990 | A |
5261798 | Budde | Nov 1993 | A |
20060008364 | Traylor | Jan 2006 | A1 |
Entry |
---|
Examination report for the equivalent Australian patent application No. 2013200474 issued on Dec. 20, 2013. |
Number | Date | Country | |
---|---|---|---|
20130195683 A1 | Aug 2013 | US |
Number | Date | Country | |
---|---|---|---|
61592593 | Jan 2012 | US |