The present invention relates to devices, systems, and methods for delivering an intraocular lens into an eye. More particularly, the invention relates to devices, systems, and methods in which the intraocular lens is loaded into the front end of the device.
It is estimated that 73% of Americans between the ages of 65 to 74 get cataracts. A cataract is a clouding of the eye's lens that impairs a person's vision and, if left untreated, causes blindness. As a result, each year approximately 1.4 million people in the United States alone undergo cataract surgery, whereby the clouded natural crystalline lens is removed and replaced with an intraocular lens (IOL) implant.
Surgeons implant IOLs not only as a replacement for the natural crystalline lens but also to alter the optical properties of (provide vision correction to) an eye in which the natural lens remains. IOLs often include an optically clear disk-like optic of about 6 mm in diameter, and preferably at least one flexible fixation member or haptic which extends radially outward from the optic and becomes affixed in the eye to secure the lens in position.
The optics may be constructed of rigid biocompatible materials such as polymethyl methacrylate (PMMA) or deformable materials such as silicone polymeric materials, acrylic polymeric materials, hydrogel polymeric materials, and the like. The deformable materials allow the IOL to be rolled or folded for insertion through an injector or insertion cartridge and an incision into the eye. Once within the chamber of the eye, the IOL is expulsed from the injector and returns to its original shape.
Injectors or inserters for delivering IOLs into the eye typically employ a handpiece and a removable cartridge that receives the IOL and has a hollow insertion tube or cannula through which the folded IOL is passed using a push rod. Some inserters do without the cartridge. The inserter may be wholly or partly reusable, in which case the inserter or handpiece is usually made of some type of metal alloy that can be sterilized. Alternatively, disposable inserters made of less expensive materials, such as plastics, remain in a sterile package until ready for use. In all cases, the IOL is stored separately and transferred to a load chamber in the inserter or cartridge just prior to delivery. One particularly useful arrangement wherein the cartridge folds over an IOL is disclosed in U.S. Pat. No. 4,681,102 to Bartell. A cartridge opens to receive an IOL in a load chamber, and then folds closed and fits into an injector. A syringe-like plunger in the injector pushes the IOL from the load chamber through a tapered tube into the eye. The IOL unfolds as it emerges from the tip of the tapered tube. Another such insertion system is disclosed in Makker et al., U.S. Pat. No. 5,942,277.
One problem encountered with existing inserters is difficulty in loading the IOL into the inserter or cartridge. The IOL is typically manually moved from a sterile environment to an inserter or associated cartridge using forceps or tweezers. Manual transfer of the IOL presents difficulties in maintaining both sterility of the IOL and the correct orientation of the IOL, especially the haptics, within the cartridge or inserter. A wide variety of performance and outcomes results even with highly skilled personnel, and those having less training are more likely to perform poorly. Improper orientation of the IOL can result in inadequate surgeon control and even damage to the IOL during delivery into the eye.
These problems may be mitigated by preloading the IOL at the manufacturer into a cartridge or container that is designed to be included directly in the inserter. The cartridge or container may be attached to the inserter either at the manufacturer or by the user just prior to surgery. The IOL is stored directly in the inserter in an unstressed state in a sterile package in order to prevent deformation of the optic element. A transfer process is not generally necessary for loading the IOL into the inserter. One example of storing an IOL in an inserter component is seen in U.S. Pat. No. 7,156,854, filed May 28, 2003. In the '854 patent, a nozzle portion 12 along with a removable stop 26 retains the IOL therein during storage and has internal ramps that assist in folding the IOL optic during an implant procedure. Also, U.S. Patent Publication No. 2008-0058830, filed Jul. 17, 2007, discloses a number of configurations for pre-loading IOLs for transfer to an insertion apparatus, and is expressly incorporated herein.
Despite some advances in this area, there remains a need for devices, systems, and methods that facilitate the placement of IOLs into an inserter or cartridge to reduce the problems associated with manual IOL manipulation.
The present invention relates to devices, systems, and methods for delivering an intraocular lens into the eye of a subject or patient that addresses at least some of the problems discussed above.
In accordance with one aspect of the invention, a system for delivering an intraocular lens (IOL) into the eye of a subject comprises an IOL having an optic, a leading haptic, and a trailing haptic. An IOL insertion system has a handpiece defining therein a holding station for receiving the IOL, the holding station including internal features that contact the leading and trailing haptics. An actuator displaces the IOL from the holding station in a distal direction along an axis, wherein one of the internal features of the holding station folds the leading haptic across the optic as the IOL is displaced in the distal direction. Also, a delivery tube has a proximal end open to the holding station along the axis to receive the IOL displaced by the actuator. The delivery tube defines a load chamber into which the IOL first enters, and the load chamber has dimensions that prevent unfolding of haptics.
Preferably, the holding station further includes an opening to the exterior thereof and passing over the trailing haptic of the IOL. The holding station may have a base and a cover that are hingedly connected and which may be unfolded for receiving an IOL therein. Also, the hinged base and cover may define a cavity that is sized to receive and retain the delivery tube such that the open proximal end thereof registers with an open distal end of the holding station, wherein the delivery tube and IOL are captured upon closure of the hinged base and cover. In a preferred embodiment, the actuator comprises a rod that translates linearly through the holding station and a substantial portion of the delivery tube. Furthermore, one of the internal features that contacts the trailing haptic may be a deflector rail that projects into the load chamber of the delivery tube.
The present invention also defines a method of packaging and delivering an IOL having an optic and leading and trailing haptics to a patient's eye. The method includes pre-loading an IOL in an insertion system, in that the IOL is packaged with the insertion system. The insertion system has a handpiece defining therein an IOL holding station for receiving the IOL, and an actuator adapted to displace the IOL from the holding station in a distal direction. The insertion system further includes a delivery tube adjacent the IOL holding station having an open proximal end for receiving the IOL displaced by the actuator. The method involves inserting a tool through an opening in the IOL holding station and manually repositioning a trailing haptic of the IOL over the IOL optic. The actuator displaces the IOL in the distal direction, and the IOL holding station has internal features that reposition the leading haptic of the IOL over the IOL optic and maintain the trailing haptic positioned over the IOL optic as the IOL is displaced. Finally, the delivery tube has an internal load chamber shaped to receive the IOL from the holding station and maintain the leading and trailing haptics positioned over the IOL optic. In the aforementioned method, the opening is desirably sized to receive a cannula of a viscoelastic applicator. A retaining pin may extend from the holding station into contact with the IOL to prevent movement of the IOL during repositioning of the trailing haptic of the IOL over the IOL optic. The internal feature that maintains the trailing haptic positioned over the IOL optic may be a deflector rail that projects into the load chamber of the delivery tube. The actuator preferably includes a detent feature that signifies to a user when the actuator has displaced the IOL into the load chamber, and the method includes displacing the IOL into the load chamber until the detent signifies its position, pausing, and then displacing the IOL farther through the delivery tube into a patient's eye.
Another aspect of the invention is an IOL insertion system, comprising a handpiece, a delivery tube, and an actuator. The handpiece defines a holding station which comprises a base for receiving an IOL and a cover that fits over the base and structure for contacting the IOL. The cover is hinged to the base to enable the cover to be open for introduction of the IOL to the base, and folded closed to capture the IOL and/or the delivery tube. The holding station further includes an open distal end. The delivery tube has an open proximal end and a distal tapered end. An exterior of the delivery tube is sized and shaped to fit within a cavity defined by the hinged holding station cover and base such that closing the cover over the base also captures the delivery tube with the open proximal end thereof in registration with the open distal end of the holding station. The actuator is adapted to displace the IOL from the holding station in a distal direction into the open proximal end of the delivery tube. In one embodiment, the system consists at most of five separate parts: the delivery tube, the handpiece in one or two parts, the actuator; and an O-ring that fits in the handpiece and damps movement of the actuator. The holding station may include an internal deflector member that contact and folds the leading haptic across the optic as the IOL is displaced in the distal direction. Desirably, the delivery tube has a load chamber into which the IOL first enters, the load chamber having dimensions that prevent unfolding of leading haptic. Preferably, the holding station includes an internal deflector rail and an opening to the exterior thereof and passing over the trailing haptic of the IOL, wherein a tool may be inserted in the opening to fold the trailing haptic over the IOL optic into contact with the deflector rail. In one embodiment the deflector rail extends into the open proximal end of the delivery tube and maintains the trailing haptic folded over the IOL optic as the IOL is displaced in the distal direction into the delivery tube.
The present invention also provides a method of assembling an IOL insertion system, comprising providing a handpiece defining therein a holding station for receiving the IOL. The holding station has a base for receiving an IOL and a cover that fits over the base and including structure for contacting the IOL. The cover is hinged to the base to enable it to be folded open for introduction of the IOL to the base, and the holding station further includes an open distal end. A delivery tube is provided having an open proximal end and a distal tapered end. An exterior of the delivery tube is sized and shaped to fit within a cavity defined by the hinged holding station cover and base. The holding station cover is folded open, an IOL is placed in the holding station base, and the delivery tube is positioned in the cavity defined by the holding station. The holding station cover is then folded closed over the base to capture the IOL and the delivery tube between the cover and base with the open proximal end thereof in registration with the open distal end of the holding station.
The method may further include inserting a tool through an opening in the IOL holding station and manually repositioning a trailing haptic of the IOL over the IOL optic, wherein the opening is sized to receive a cannula of a viscoelastic applicator. The IOL may be displaced with a handpiece actuator through the holding station and delivery tube, the IOL holding station further including internal features that reposition the leading haptic of the IOL over the IOL optic as the IOL is displaced in the distal direction and maintain the trailing haptic positioned over the IOL optic. The method of assembly may be accomplished manually, or with the assistance of robotic or otherwise automated assembly equipment.
Embodiments of the present invention will be better understood from the following detailed description when read in conjunction with the accompanying drawings. Such embodiments, which are for illustrative purposes only, depict the novel and non-obvious aspects of the invention. The drawings include the following figures, with like numerals generally indicating like parts:
The present invention facilitates the process of delivering an intraocular lens (IOL) into a patient's eye using an inserter. The IOL is typically implanted using an injector that rolls, folds, or otherwise configures the lens for delivery through a small incision in the eye in a way that reduces trauma and expedites post-surgery healing. The IOL is stored and transferred to a funnel-shaped delivery tube just prior to delivery. The injector or injector/cartridge is generally used in a manner like a hypodermic needle, with the IOL being injected into the eye through a delivery tube. The injector, cartridge and/or delivery tube may be first partially filled with a liquid or gel lubricating agent, for example a viscoelastic material. These are commonly used techniques for delivering an IOL into a patient's eye, and the present invention will be described in the same context. However, it should be understood that certain principles of the present invention can apply to modified systems, such as those that do not use a syringe-style injector or a funnel-like delivery tube.
Moreover, the present invention provides a system in which an IOL is pre-loaded within an inserter component to eliminate the need to manually transfer the IOL from a separate package to an inserter or cartridge. The term pre-loaded means that the IOL is packaged with the insertion system, and not separately, which would require transfer of the IOL to the insertion system at the time of a surgical procedure. However, the present system may also be used with an IOL is package separately and combined with the inserter system after shipment and/or at the time of implant. Likewise, although various components may be molded together, these components can also be remotely separately and assembled. Also, the insertion systems described herein are especially suited for manipulating leading and trailing haptics of an IOL without the need for skill or training, but certain aspects of the present invention may be applicable to IOLs having haptics that do not require such manipulation. In general, the present invention should not be considered limited to particular IOL insertion configurations except as defined accordingly in the claims.
The IOL is shown in
With reference to
The lower half of the holding station 30 comprises a base 50 that, in a preferred embodiment, fowls a distal extension of a base portion 52 of the handpiece 22. The upper half of the holding station 30 comprises a cover 54 that abuts a top portion 56 of the inserter handpiece 22. In the illustrated embodiment, as seen in
The handpiece further includes a pair of proximal finger tabs 60a, 60b, one on the base portion 52 and one on the top portion 56. When an operator desires to depress the plunger 24, he or she places the thumb of one hand on the thumb cap 40, and index and middle fingers on respective finger tabs 60a, 60b. Squeezing the hand closed depresses the thumb cap 40. The flattened orientation of the inserter handpiece 22 may be ergonomically designed to lessen the profile between the index and middle fingers and thus enhance comfort. The flattened nature of the handpiece 22 also provides torque leverage so that the operator can more easily rotate the handpiece about its longitudinal axis.
The exploded view of
The system 20 is packaged with the plunger 24 retracted and the distal groove 76a in registry with the O-ring 74. A technician or other user can prepare the system for an IOL insertion operation by applying the appropriate amount of a viscoelastic, manipulating the trailing haptic 36 as described below, and advancing the plunger 24 such that the proximal groove 76b registers with the O-ring 74. This positive position indicator notifies the user that the system 20 is ready for the surgeon. The plunger 24 remains out of contact, or just touches, the IOL.
The preferred mold configuration is seen in
As mentioned above, the present insertion system 20 advantageously enables pre-loading of an IOL so that manual handling is eliminated. As can be seen from the figures, assembly of the system may include placing an IOL in a shaped cavity in the holding station base 50 with the cover 54 folded open as shown in
The IOL holding station 30 defines internal features that contact the leading and trailing haptics 34, 36 of the IOL to manipulate them during an implant procedure so that they are expelled from the delivery tube 26 in a controlled fashion. A wide of internal features are contemplated for contacting and controlling placement of the haptics 34, 36, and the following description of one embodiment should be considered exemplary only.
The underside of the holding station cover 54 further includes internal features that contact and deform the leading and trailing haptics; namely, a leading haptic deflector member 110 and a trailing haptic deflector rail 112. The deflector member 110 and deflector rail 112 act on the leading and trailing haptics 34, 36 as the IOL translates through the holding station 30. The cover 54 further includes a central rib 114 that helps guide the distal tip 46 of the plunger 24 through the holding station 30.
Prior to movement of the IOL, however, the trailing haptic 36 may be folded over the top of the IOL optic 32, either manually or using an automated device. To accomplish that, the holding station cover 54 is provided with an opening, such as the slot 120 as seen in
Now with reference to
Now with reference to
In the configuration shown in
Subsequently, the plunger 24 (
The system 20 is thus designed to transfer the pre-loaded IOL directly from the holding station 30 into the delivery tube 26, and in the process fold the haptics 34, 36 over the optic 32 and maintain each of them in that desirable position. The deflector member 110 folds the leading haptic 34 over the optic 32, and when the leading haptic passes the deflector member it is already substantially within the load chamber 130. Because of the relatively slow elastic rebound property of the IOL materials, the leading haptic 34 does not spring forward again immediately, and the IOL continues a short distance further until the optic 32 begins curling, at which point the leading haptic 34 cannot spring forward. In a similar way, the deflector rail 112 extends beyond the distal end of the main body of the holding station cover 54 and into the load chamber 130. The trailing haptic 36 remains constrained by the deflector rail 112 until the optic 32 is substantially within the load chamber 130. The deflector rail 112 therefore maintains the trailing haptic 36 folded over the optic 32 until such time as the optic begins curling, after which the trailing haptic cannot spring back.
The above presents a description of the best mode contemplated of carrying out the present invention, and of the manner and process of making and using it, in such full, clear, concise, and exact terms as to enable any person skilled in the art to which it pertains to make and use this invention. This invention is, however, susceptible to modifications and alternate constructions from that described above which are fully equivalent. Consequently, it is not the intention to limit this invention to the particular embodiments disclosed. On the contrary, the intention is to cover modifications and alternate constructions coming within the spirit and scope of the invention as generally expressed by the following claims, which particularly point out and distinctly claim the subject matter of the invention.
This application is a divisional application of and claims priority to U.S. application Ser. No. 12/144,512 filed on Jun. 23, 2008, which is hereby incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
4681102 | Bartell | Jul 1987 | A |
4702244 | Mazzocco | Oct 1987 | A |
5066297 | Cumming | Nov 1991 | A |
5275604 | Rheinish et al. | Jan 1994 | A |
5304182 | Rheinish et al. | Apr 1994 | A |
5494484 | Feingold | Feb 1996 | A |
5496328 | Nakajima et al. | Mar 1996 | A |
5499987 | Feingold | Mar 1996 | A |
5578042 | Cumming | Nov 1996 | A |
5616148 | Eagles et al. | Apr 1997 | A |
5620450 | Eagles et al. | Apr 1997 | A |
5728102 | Feingold et al. | Mar 1998 | A |
5766181 | Chambers et al. | Jun 1998 | A |
5772666 | Feingold et al. | Jun 1998 | A |
5800442 | Wolf et al. | Sep 1998 | A |
5807400 | Chambers et al. | Sep 1998 | A |
5860984 | Chambers et al. | Jan 1999 | A |
5868751 | Feingold | Feb 1999 | A |
5873879 | Figueroa et al. | Feb 1999 | A |
5876406 | Wolf et al. | Mar 1999 | A |
5876440 | Feingold | Mar 1999 | A |
5891152 | Feingold | Apr 1999 | A |
5902307 | Feingold et al. | May 1999 | A |
5928245 | Wolf et al. | Jul 1999 | A |
5941886 | Feingold | Aug 1999 | A |
5947975 | Kikuchi et al. | Sep 1999 | A |
5947976 | Van Noy et al. | Sep 1999 | A |
6001107 | Feingold | Dec 1999 | A |
6010510 | Brown et al. | Jan 2000 | A |
6022358 | Wolf et al. | Feb 2000 | A |
6048347 | Erdman | Apr 2000 | A |
6048348 | Chambers et al. | Apr 2000 | A |
6056757 | Feingold et al. | May 2000 | A |
6059791 | Chambers | May 2000 | A |
6129733 | Brady et al. | Oct 2000 | A |
6143001 | Brown et al. | Nov 2000 | A |
6203549 | Waldock | Mar 2001 | B1 |
6228094 | Erdman | May 2001 | B1 |
6283976 | Portney | Sep 2001 | B1 |
6312433 | Butts et al. | Nov 2001 | B1 |
6336932 | Figueroa et al. | Jan 2002 | B1 |
6371960 | Heyman et al. | Apr 2002 | B2 |
6387101 | Butts et al. | May 2002 | B1 |
6406481 | Feingold et al. | Jun 2002 | B2 |
6468282 | Kikuchi et al. | Oct 2002 | B2 |
6491697 | Clark et al. | Dec 2002 | B1 |
6506195 | Chambers et al. | Jan 2003 | B2 |
6537283 | Van Noy | Mar 2003 | B2 |
6558395 | Hjertman et al. | May 2003 | B2 |
6666871 | Kikuchi et al. | Dec 2003 | B2 |
6723104 | Ott | Apr 2004 | B2 |
6733507 | McNicholas et al. | May 2004 | B2 |
6786911 | Mitomo et al. | Sep 2004 | B2 |
6858033 | Kobayashi | Feb 2005 | B2 |
6921405 | Feingold et al. | Jul 2005 | B2 |
7014641 | Kobayashi et al. | Mar 2006 | B2 |
7025782 | Kobayashi et al. | Apr 2006 | B2 |
7037312 | Kikuchi et al. | May 2006 | B2 |
7131976 | Kobayashi et al. | Nov 2006 | B2 |
7156854 | Brown et al. | Jan 2007 | B2 |
7276071 | Lin et al. | Oct 2007 | B2 |
7303582 | Brady | Dec 2007 | B2 |
7422604 | Vaquero et al. | Sep 2008 | B2 |
7429263 | Vaquero et al. | Sep 2008 | B2 |
20010007942 | Kikuchi et al. | Jul 2001 | A1 |
20020156486 | Nadel | Oct 2002 | A1 |
20020193805 | Ott et al. | Dec 2002 | A1 |
20030045930 | Nguyen | Mar 2003 | A1 |
20030187455 | Kobayashi et al. | Oct 2003 | A1 |
20030212407 | Kikuchi et al. | Nov 2003 | A1 |
20050125000 | Tourrette et al. | Jun 2005 | A1 |
20060184181 | Cole et al. | Aug 2006 | A1 |
20080058830 | Cole et al. | Mar 2008 | A1 |
20080097459 | Kammerlander et al. | Apr 2008 | A1 |
20080114313 | Gomez et al. | May 2008 | A1 |
20100217273 | Someya et al. | Aug 2010 | A1 |
Number | Date | Country |
---|---|---|
1016692 | Apr 2007 | BE |
722292 | Jul 2003 | EP |
743840 | Jul 2003 | EP |
1338254 | Aug 2003 | EP |
1502559 | Feb 2005 | EP |
1360944 | Sep 2007 | EP |
2161005 | Mar 2010 | EP |
1737393 | Jun 2010 | EP |
2123239 | Mar 2012 | EP |
4707016 | Jun 2011 | JP |
9524863 | Sep 1995 | WO |
9615743 | May 1996 | WO |
9937247 | Jul 1999 | WO |
0187187 | Nov 2001 | WO |
03024356 | Mar 2003 | WO |
2004105648 | Dec 2004 | WO |
2004105649 | Dec 2004 | WO |
2005020853 | Mar 2005 | WO |
2005030097 | Apr 2005 | WO |
2005070341 | Aug 2005 | WO |
2008014260 | Jan 2008 | WO |
2008060869 | May 2008 | WO |
Number | Date | Country | |
---|---|---|---|
20130018460 A1 | Jan 2013 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12144512 | Jun 2008 | US |
Child | 13623953 | US |