Pre-mRNA splicing regulation is critical for controlling macrophage activation

Information

  • Research Project
  • 10240558
  • ApplicationId
    10240558
  • Core Project Number
    R35GM133720
  • Full Project Number
    5R35GM133720-03
  • Serial Number
    133720
  • FOA Number
    PAR-17-190
  • Sub Project Id
  • Project Start Date
    9/1/2019 - 5 years ago
  • Project End Date
    8/31/2024 - 3 months ago
  • Program Officer Name
    ZHAO, XIAOLI
  • Budget Start Date
    9/1/2021 - 3 years ago
  • Budget End Date
    8/31/2022 - 2 years ago
  • Fiscal Year
    2021
  • Support Year
    03
  • Suffix
  • Award Notice Date
    8/23/2021 - 3 years ago
Organizations

Pre-mRNA splicing regulation is critical for controlling macrophage activation

PROJECT SUMMARY Despite the substantial impact pre-mRNA splicing has on gene expression outcomes, little is known about how the spliceosome itself is modified and regulated during cellular reprogramming. Innate immune cells like macrophages reprogram gene expression when they sense a ?danger signal,? such as a pathogen, organelle damage, or chemical signal, to combat the detected threat. While changes that occur transcriptionally during macrophage activation are well characterized, almost nothing is known about how pre- mRNA splicing is regulated following immune stimuli. The long-term goal of this project is to uncover how macrophage activation modifies the spliceosome and to connect these changes with innate immune gene expression outcomes. The spliceosome is a complex and dynamic macromolecular machine. Its ability to recognize introns and catalyze their removal relies on numerous RNA binding proteins that recognize specific sequences in exons and introns to ?read? the splicing code. The central hypothesis of this proposal is that during macrophage activation, post-translational modification of splicing factors directs assembly of a specialized spliceosome characterized by a distinct cohort of protein-protein interactions that promotes the innate immune gene expression program. In support of this model, phosphoproteomic experiments reveal that 30+ splicing factors, many with known regulatory roles, are phosphorylated or dephosphorylated at specific serine residues following lipopolysaccharide (LPS)-dependent activation of macrophages. Experiments interrogating one such factor, hnRNP M, show that LPS treatment triggers dephosphorylation concomitant with its redistribution in the nucleus. Loss of hnRNP M by shRNA-mediated knockdown in macrophages alters alternative splicing of a number of pre-mRNAs and leads to hyper-induction of important innate immune transcripts, including the potent inflammatory mediator IL-6 and the key viral restriction factor Mx1. This proposal expands upon these observations, looking globally at changes to the spliceosome following macrophage activation. It will combine high-throughput approaches, including affinity purification-mass spectrometry, phosphoproteomics, RNA-seq, and RNA CLIP-seq with targeted genetic and biochemical experiments to implicate specific splicing factors in driving innate immune gene expression changes. This research program will fill key gaps in our knowledge of how splicing is regulated following macrophage activation and further our understanding of how the spliceosome reads and interprets the splicing code not only during innate immune activation but also during other cellular reprogramming, including differentiation, stress, starvation, and carcinogenesis.

IC Name
NATIONAL INSTITUTE OF GENERAL MEDICAL SCIENCES
  • Activity
    R35
  • Administering IC
    GM
  • Application Type
    5
  • Direct Cost Amount
    250000
  • Indirect Cost Amount
    120738
  • Total Cost
    370738
  • Sub Project Total Cost
  • ARRA Funded
    False
  • CFDA Code
    859
  • Ed Inst. Type
    SCHOOLS OF MEDICINE
  • Funding ICs
    NIGMS:370738\
  • Funding Mechanism
    Non-SBIR/STTR RPGs
  • Study Section
    ZGM1
  • Study Section Name
    Special Emphasis Panel
  • Organization Name
    TEXAS A&M UNIVERSITY HEALTH SCIENCE CTR
  • Organization Department
    MICROBIOLOGY/IMMUN/VIROLOGY
  • Organization DUNS
    835607441
  • Organization City
    COLLEGE STATION
  • Organization State
    TX
  • Organization Country
    UNITED STATES
  • Organization Zip Code
    778454375
  • Organization District
    UNITED STATES