All publications and patent applications mentioned in this specification are herein incorporated by reference in their entirety to the same extent as if each individual publication or patent application was specifically and individually indicated to be incorporated by reference.
The present invention relates to suturing techniques, devices and methods, including pre-tied knots for surgical use and methods of forming these knots as well as sutures, suture passers, and other devices including such pre-tied knots. More particularly, described herein are pre-tied suturing knots and methods of using them minimally invasively (e.g., endoscopically). Also described herein are suture methods that use a pre-tied knot (or other fastener) attached to the suture to aid in passing the suture, as well as suture passers adapted for use with suture that has a knot, fastener or other enlarged-diameter region so that the enlarged region (e.g., knot) may be passed through tissue.
Suturing of tissue during surgical procedures is time consuming and can be particularly challenging in difficult to access body regions and regions that have limited clearance, such as regions partially surrounded or covered by bone. For many surgical procedures, it is necessary to make a large opening in the human body to expose the area requiring surgical repair. However, in many cases, accessing the tissue in this manner is undesirable, increasing recovery time, and exposing the patient to greater risk of infection.
Suturing instruments (“suture passers” or “suturing devices”) have been developed to assist in accessing and treating internal body regions, and to generally assist a physician in repairing tissue. Although many such devices are available for endoscopic and/or percutaneous use, these devices suffer from a variety of problems, including limited ability to navigate and be operated within the tight confines of the body, risk of injury to adjacent structures, problems controlling the position and/or condition of the tissue before, during, and after passing the suture, as well as problems with the reliable functioning of the suture passer.
For example, some surgical instruments used in endoscopic procedures are limited by the manner in which they access the areas of the human body in need of repair. In particular, the instruments may not be able to access tissue or organs located deep within the body or that are in some way obstructed. In addition, many of the instruments are limited by the way they grasp tissue, apply a suture, or recapture the needle and suture. Furthermore, many of the instruments are complicated and expensive to use due to the numerous parts and/or subassemblies required to make them function properly. Suturing remains a delicate and time-consuming aspect of most surgeries, including those performed endoscopically.
During or after performance of a surgical procedure, tissues must be stitched or sutured to allow or encourage healing. Suturing, that is, the tying a tissue with a suture (e.g., thread), is well-known in the art. Moreover, pre-tied sutures and methods of suturing for external surgical use likewise are known, such as is described in U.S. Pat. No. 3,580,256 to Wilkinson et al. The Wilkinson patent describes a pre-tied suture that is encased in a see-through material, taking the form of a thin, flat wafer. In use, the surgeon stitches the tissue together and then directs the needle through the loops in the wafer and draws it tight in order to make the knot. Clearly, such a convention could not be used for endoscopic and other internal surgical techniques.
In contrast, minimally invasive surgery, such as endoscopic surgery, is performed within the interior of a body, including a body cavity or hollow organ, with the help of an endoscope or similar device to visualize the interior portions of the body where the surgery is to be performed. Small, low-profile or compact devices, such as suture passers, may be used to pass a suture through the tissue, and subsequently tie off the suture. The surgeon may observe the surgical procedure through a visual device whose output is displayed on a video monitor.
In order to perform the suturing within patient's body, a suture passer with a tissue penetrator (e.g., needle) element may pass through the tissue one or more times (including through a tissue and a non-tissue material, such as an implant, graft, etc.). The tissue penetrator may pass a suture directly, or it may pass an element that can later pull a suture through the tissue. A problem may arise in manipulating the tissue penetrator (e.g., needle) for easily tying a knot for closing the surgical incision in situ. It is challenging to tie off or otherwise secure the free end or ends of a suture, particularly minimally invasively. Thus, it is to be appreciated that a pre-tied suture, employable with a suture passer or grasping instrument, could greatly facilitate minimally invasive and other surgical procedures (even including open procedures). The present invention is directed to such methods and systems for knotting suture that allow a pre-tied knot to be present, pre-attached or pre-tied onto the suture before performing the surgical procedure.
It is also desirable to suture tissue using a suture passer that can reliably transfer a suture through the tissue without dropping the suture. Described herein are suture passers and methods of passing sutures that enhance reliability by passing a suture that is pre-knotted or otherwise includes an enlarged region on the suture (e.g., near the end region of a suture) to reliably pass the suture (including the knot) through the tissue.
The present invention relates to pre-tied knots. In particular, described herein are pre-tied knots that maybe used percutaneously with a suture passer. The pre-tied knots may include a knot body and a leader snare. The suture with a pre-tied knot may (prior to being knotted to the other end or a different suture) be passed through the tissue. Thus, the pre-tied knots described herein are particularly helpful for use with suture passers that may be used minimally invasively (e.g. percutaneously). Also described are methods of knotting a suture using the pre-tied knots described herein, including in particular, methods of percutaneously repairing a torn meniscus using these pre-tied knots.
In general, described herein are sutures including pre-tied knots. The pre-tied knot may include a knot body that is secured to, and may be formed of, the suture. The pre-tied knot may also include a leader snare that is tied to the suture by the knot body. The leader snare typically includes a first end with a loop region (e.g., a bight) that can be threaded to hold an end of the suture, and a second end which is a tail or pull tail that can be pulled on to pull the leader snare out of the knot body. When an end of the suture is threaded into the loop/bight region, pulling the tail of the leader snare results in closing the loop of suture at the knot body. The loop can then be cinched and/or the knot body tightened to securely knot the loop.
For example a suture may have a pre-tied knot including: an elongate flexible length of suture (formed of suture material) having a first end and a second end; a knot body formed from the suture material at a region near the first end of the suture, the knot body having one or more loops of the suture material, wherein each loop has at least one crossing point; and a leader snare formed of a length of linear and flexible material that is distinct from the suture material forming the knot body, the leader snare passing through the one or more loops of the knot body, wherein the leader snare comprises a loop or bight extending from a first end of the knot body and a pull end extending from a second end of the knot body, wherein the knot body and leader snare are sufficiently flexible and narrow of profile to be pulled through a tissue behind a tissue penetrator. The tissue penetrator may be any of the tissue penetrators incorporated by reference above as part of a suture passer, or it may be a simple needle (including curved needles).
The knot body may have one, two, three, four, five or more loops of suture material. In some variations, the knot body includes three or more loops of suture material.
The leader snare may be formed of a second piece of suture material. The loop or bight of the leader snare may extend towards the second end of the suture and the pull end of the leader snare may extend towards the first end of the suture. In some variations, the material forming the leader snare has a larger diameter than the suture.
In some variations, the knot body is configured to slide along the length of the suture. In other variations the knot body is relatively fixed along the length of the suture.
Although the examples provided above include knot bodies formed of the suture (e.g., of the length of suture), in some variations the knot body is a separate length of material (e.g., suture material) that is tied to the length of suture. Alternatively, the knot body may be formed of a some other material (non-suture material) including polymeric materials, metals, alloys, ceramics, etc.
The pre-tied knot may be positioned at any position along the length of the elongate suture. In some variations the pre-tied knot body is located at the proximal or distal ends. In some variations the pre-tied knot is locate near the middle region of the suture. In some variations, the pre-tied knot is located proximal to the distal end of the device. As mentioned above, in some variations, the pre-tied knot body may be formed of a region of the elongate length of suture.
Any of the sutures having pre-tied knots described herein may be used to suture tissue, and in particular to knot a loop of suture through and/or around tissue. For example, described herein are methods of percutaneously tying a loop of suture around tissue using a pre-tied knot, wherein the suture has a proximal end, a distal end, and a pre-tied knot formed between the proximal and distal ends, wherein the pre-tied knot is tied around a leader snare so that a loop of the leader snare extends from the pre-tied knot in a first direction and a tail of the leader snare extends from the pre-tied knot in a second direction, the method comprising: percutaneously passing the distal end of the suture through the tissue; percutaneously passing the leader snare through the tissue; passing the distal end of the suture through the loop of the leader snare; forming a loop of suture by pulling the tail of the leader snare to draw the suture through the pre-tied knot while removing the leader snare from the pre-tied knot; and cinching the loop of suture around the tissue.
As mentioned, in some variation the methods may be used to knot a loop of suture using a suture passer. For example, percutaneously passing the distal end of the suture comprises using a suture passer to pass the distal end of the suture. Percutaneously passing the leader snare may comprise using the suture passer to pass the leader snare. Percutaneously passing the leader snare may comprise percutaneously passing the loop of the leader snare through the tissue.
Any of these methods may also be used to form a loop of suture around a torn meniscus. For example, percutaneously passing the distal end of the suture may comprise percutaneously passing the distal end of the suture from the inferior to the superior side of a meniscus.
Cinching may comprise pulling the distal end of the suture, which may reduce the size of the loop. Cinching may also or alternatively comprise tightening the pre-tied knot over the suture. For example, the knot body may be tightened by pulling an end of the length of material forming the knot body to reduce the size (e.g., diameter) of any loops forming the knot body. As mentioned, in some variations, the knot body of the pre-tied knot is formed from the suture; in some variations the knot body is formed of a separate length of suture or other material.
In one variation, a method of percutaneously forming a loop of suture around a tear in a meniscus using a pre-tied knot, wherein the suture has a proximal end, a distal end, and a pre-tied knot formed between the proximal and distal ends, and wherein the pre-tied knot is tied around a leader snare so that a loop of the leader snare extends from the pre-tied knot in a first direction and a tail of the leader snare extends from the pre-tied knot in a second direction, may include the steps of: percutaneously passing the distal end of the suture from an inferior surface to a superior surface of the meniscus; percutaneously passing the leader snare from the inferior surface to the superior surface of the meniscus; passing the distal end of the suture through the loop of the leader snare; forming a loop of suture by pulling the tail of the leader snare to draw the distal end of the suture from the superior surface to the inferior surface and through the pre-tied knot while removing the leader snare from the pre-tied knot; and cinching the loop of suture around the meniscus.
In some variations, a method of percutaneously forming a loop of suture around a tear in a meniscus using a pre-tied knot, wherein the suture has a proximal end, a distal end, and a pre-tied knot formed between the proximal and distal ends, wherein the pre-tied knot is tied around a leader snare so that a loop of the leader snare extends from the pre-tied knot in a first direction and a tail of the leader snare extends from the pre-tied knot in a second direction, includes: percutaneously passing the distal end of the suture from a superior surface to an inferior surface of the meniscus; percutaneously passing the leader snare from the superior surface to the inferior surface of the meniscus; passing the distal end of the suture through the loop of the leader snare; forming a loop of suture by pulling the tail of the leader snare to draw the distal end of the suture from the inferior surface to the superior surface and through the pre-tied knot while removing the leader snare from the pre-tied knot; and cinching the loop of suture around the meniscus.
Also described herein are methods of using a suture having a pre-tied suture knot. For example, described herein are methods of suturing tissue using a length of suture with a pre-tied knot, these methods including the steps of: passing a suture through a tissue, wherein the suture comprises a knot body at a region of a first end of the suture, the knot body having one or more loops of the suture around a leader snare, wherein each loop has at least one crossing point, and further wherein the leader snare comprises a loop or bight formed of a length of linear and flexible material extending from a first end of the knot body and a pull end extending from a second end of the knot body; passing a second end of the suture through the loop or bight of the leader snare; pulling the pull end of the leader snare to draw the second end of the suture through the knot body and removing the leader snare from the knot body; and tightening the knot body around the second end of the suture and knotting the suture.
The step of passing the suture through the tissue may further comprises passing the knot body through the tissue. As mentioned, the pre-tied knot may be sufficiently flexible and narrow diameter to pass through the tissue behind a tissue penetrator.
In some variations, the method also includes the step of sliding the knot body along the suture.
In some variations, the knot body may be tightened by pulling the first and second ends of the suture. Once the knot is tightened, the free ends of the suture may be cut and removed.
The step of passing the suture through the tissue may include passing the suture endoscopically using a suture passer. As mentioned above, in particular, the methods described herein may be used to repair a torn meniscus of the knee. Thus, the method may include passing the suture through the meniscus tissue. In some variations, passing the suture comprises passing the second end of the suture through a first region of the tissue and passing the first end of the suture and the knot body through a second region of the tissue.
In some variations, described herein are method of passing a suture through tissue using a tissue passers in which the portion of the suture passed by the tissue passer includes a knot (or other enlarged region) that is driven through the tissue. Although it is counterintuitive to pass a knotted portion of a suture through the tissue during repair of the tissue, the inventors have found this method to be surprisingly effective. Also described herein are suture passers that may be used in even the most constricted anatomical regions for minimally invasively (e.g., arthroscopically) passing a suture including a knotted region through the tissue. In some variations the devices and methods may be adapted to pass multiple lengths of suture (having multiple knots or enlarged regions on the suture) through the tissue using the same device without having to remove the device from the tissue to reload between passes.
Described herein are sutures with pre-tied suture knots that are compatible for use in minimally invasive surgical techniques using a suture passer. The structure of different types of pre-tied knots are described herein, including variations that may result in different knots, variations formed of the suture material themselves, and variations formed of different material(s) that may be connected to the suture. In addition, methods of forming, placing and tying pre-tied knots are also described. Finally, examples of the use of a pre-tied knot to repair, anchor and otherwise fix tissue or tissue and implants (e.g., explants, implantable medical devices, and the like) are also provided herein.
As used herein in the specification and claims, including as used in the examples and unless otherwise expressly specified, all numbers may be read as if prefaced by the word “about” or “approximately,” even if the term does not expressly appear. The phrase “about” or “approximately” may be used when describing magnitude and/or position to indicate that the value and/or position described is within a reasonable expected range of values and/or positions. For example, a numeric value may have a value that is +/−0.1% of the stated value (or range of values), +/−1% of the stated value (or range of values), +/−2% of the stated value (or range of values), +/−5% of the stated value (or range of values), +/−10% of the stated value (or range of values), etc. Any numerical range recited herein is intended to include all sub-ranges subsumed therein.
The pre-tied knots described herein may be used with any appropriate type of suture material, including any appropriate size, length and/or diameter of suture material. Examples of suture materials may include: surgical-grade sutures such as catgut (plain, chromic), silk, polyglycolic acid, polylactic acid, polydioxanone, nylon, polypropylene, etc.
A pre-tied knot may refer to one or more knots formed in a length of suture, and may generally include both the knot body as well as a leader snare that is knotted to the length of suture by the knot body. The pre-tied knot may be formed exclusively of suture material, or it may include one or more additional materials, and/or it may modify the suture material, or it may be formed of non-suture materials (such as metals, alloys, etc.). The pre-tied knot (e.g., the knot body of the pre-tied knot) may be loose or taut, and may be movable along a portion of the length of a suture or it may be fixed relative to a position on the length of suture. The knot body of the pre-tied knot may be formed of the same material as the suture on which the pre-tied knot is located, or it may be formed of a different material. The knot body may be fixed or moveable along the length of the suture from where it is positioned. The knot-body may also be tightenable. In some variations the knot body is formed at the end of the length of suture from the end of the suture material.
Structure of a Pre-Tied Knot
In general, a pre-tied suture knot as described herein may include a knot body region and a leader snare that passes through the knot body. The knot body ties the leader snare to the length of suture. In some variations the pre-tied knot is configured to tie together a first length of suture to second length of suture. The first and second lengths of suture may be on the same suture (e.g., forming a loop of suture) or they may be from different sutures.
As mentioned, any appropriate suture may be used with the pre-tied knots described herein. Thus a length of suture may be formed of any appropriate material, and particularly linear materials compatible for surgical use. A suture may be referred to as a suture or a suture thread, suture length, suture wire, suture braid, or the like. The suture may be made from appropriate materials, including biological materials, such as catgut suture and silk and synthetic materials, including the polyglycolic acid, polylactic acid, and polydioxanone, nylon and polypropylene. Sutures may be coated (e.g., with antimicrobial substances, growth-promoting substances, or the like), and may come in any appropriate sizes or ranges of sized. For example a suture of diameter from less than 0.01 mm diameter to greater than 0.8 mm may be used to form the suture. The suture may be monofilament or multifilament (e.g., braided).
In some variations, the knot-body of the pre-tied suture typically may include one or more loops through which the leader snare, and ultimately one or more ends of the suture, is positioned. The loop or loops may be cinched, tighten, and/or closed around the leader snare and/or suture, as described in more detail below. The loop(s) of the knot body typically extends along a region of the length of the suture.
In some variations, the knot body may be configured as a suture trap that allows one-way movement of a length of suture through the suture trap.
In some variations the knot body is formed and/or positioned near one end, e.g., a first end, of the suture. Although generally the knot body may be formed from a portion of the length of the suture, in some variations the knot body is instead formed of a separate material that is not part of the suture length. In some variations the knot body is formed of a different length of suture material. In other variations the knot body is not formed of suture material, for example, the knot body may be formed as a trap, clasp, or the like that can be cinched down onto the suture and/or that allows the suture to be pulled through in only one direction, while preventing withdrawal (and loosening) of the suture from the knot body.
As mentioned, the knot body may be slideable along the length of the suture, or it may be relatively fixed along the length of the suture.
A leader snare typically includes a flexible elongate (e.g., linear) body that extend through the knot body. One end of the leader snare may include a snare region, which may be a loop, hook, clasp, or the like, for holding an end of the suture, and a pull end which may be used to draw the leader snare through the knot body after a portion (e.g., the end) of the suture is coupled to the leader snare. This end of the leader snare may be referred to as a loop region or bight region. Drawing the leader snare through the knot body by pulling on the pull end of the leader snare may result in pulling the end of the suture through the knot body, removing the leader snare, and allowing the knot body to form a knot with the knot body to knot the suture. Both ends of the suture may then be drawn to shorten the suture and knot it in the tissue, as illustrated below.
The leader snare may be formed of a separate material from the suture and/or knot body. However, in principle, the leader snare could be formed of one end (e.g., the first end of the suture. In use, the leader snare is configured to be pulled through the knot body after one end of the leader snare is coupled with a length (e.g., the second end region) of the suture. Thus, the leader snare may be held within one or more loops of the knot body. The leader snare may be loosely held, e.g., without tightening the loop(s) of the knot body to tightly over the leader snare. In some variations the leader snare comprises a material that reduces the friction between the leader snare and the suture material. For example, the leader snare may be coated with a “slippery” material (e.g., wax, polymeric coatings, etc.). In some variation the leader snare may have a tapered width so that it can be readily drawn out in one direction (e.g., towards the first end of the suture) by pulling on the pull end. For example the length of the leader snare body held within the loop(s) of the knot body may have a larger diameter at the proximal end (closest to the pull end) that tapers towards the opposite end (the coupling end of the leader snare, e.g., the loop end. In some variations the diameter of the leader snare may be greater than the diameter of the suture. For example, the leader snare may be formed of a suture material that has a larger (e.g., 1.5×, 2×, 3×, etc.) diameter than the diameter of the suture and/or the knot body. This may allow the end of the suture that is pulled through the knot body by the leader snare to be readily slid through the knot body to tighten the suture before knotting it.
As mentioned, the leader snare may be formed of any appropriate material. In some variations, the leader snare is formed of a flexible material. The leader snare may be completely or partially flexible. For example, the leader snare may be formed of a suture material that is identical or similar to the material forming the suture and/or knot body. In some variations, the leader snare is relatively incompressible. For example, at least a portion of the leader snare may be formed of a relatively non-compressible material, including plastics (e.g., polymeric materials). Preventing compression of the body region of the leader snare may help keep the knot body open even when pulling on the ends of the suture to pull the suture through the tissue (e.g., pulling on the first end of the suture proximal to the knot body).
In some variations, the pre-tied knot may include a second pull-string that is passed through the knot body, completely or in part. Removing this pull-string (which may be a string, wire, rod, etc.) may loosen the knot body around the leader snare, and allow it to be more readily drawn through the knot body, and may also allow the end of the suture pulled through the knot body to be more easily slid through the knot body (allowing it to be more easily tightened over the tissue).
The leader snare includes a suture coupling end which may secure a portion (e.g., the second or distal end) of the suture so that it can be pulled through the knot body. As illustrated herein, in some variations the leader snare includes a bight or loop region through which the suture can be placed. Any appropriate coupling means may be used, including non-loop configurations, such as hooks, graspers (e.g., clamps), adhesives, or the like. A bight may refer to any curved section and/or loop in a linear material (e.g., string, wire, rope, fiber, braid, suture, etc.).
Another variation of a pre-tied knot is shown in
In some variations, the pull-string described above may be passed through the same loop as the leader snare, or it may be passed through a separate region of the knot body (such as the loop(s) formed between the first and second crossings 131, 132.
In
Methods of Forming, Positioning and Tying Pre-Tied Knot
As mentioned, a pre-tied knot may be formed at any region of a suture, and it may be slideable or fixed relative to the suture. The pre-tied knot is typically formed before inserting the device into the patient. The pre-tied knot may be made manually or automatically. The loops of the knot body may be formed over the leader snare by sequentially looping a length of suture over the leader snare and twisting the loop to form one or more crossings. In some variations a loop is formed by twisting a bight of suture from a length of suture and passing the leader snare through the loops; the knot body may be tightened slightly over the leader snare to hold it within the knot body.
In use, a suture having a pre-tied knot positioned at one end of the suture may be passed through tissue and an end of the suture may be pulled through the pre-tied knot by passing the end of the suture through the leader snare and pulling the tail or pull end of the leader snare to pull the entire leader snare though the knot body. The knot may be tightened. In some variations, the knot is tightened after pulling the end of the suture through the knot body by pulling one or both ends of the suture to tighten the loop. The knot body may also or alternatively be tightened down on the length of suture to complete the knot. Any loose ends of the suture can then be cut. This entire procedure may be performed minimally invasively (e.g., through a cannula and/or using an endoscope).
For example,
In
As discussed briefly above, the pre-tied knots described herein in some variations are sufficiently flexible and low-profile that they may be passed through the tissue without substantially damaging the tissue. In
The distal end of the suture 455 may then be passed through the loop of the bight region 458, as shown in
Another example of a pre-tied suture is shown in
In some variations, the pre-tied knot is used with an anchor, as shown in
The examples shown above include pre-tied knots formed by looping a portion of a length of suture around itself one or more times to form the knot body which can be tightened over a leader snare and then used to secure a second region or length of suture through the knot body by cinching the knot body. In some variations the knot body forming a pre-tied knot is not formed (or not just formed) of a loop of suture length, but includes a suture trap region which permits only one-way movement of a length of suture through the knot body (e.g., suture trap).
A one-way channel for a length of suture may be formed by including angled fibers, filaments, barbs, etc. within the channel that engage a suture to prevent its motion only when the suture is passing in a second direction; as the suture passes in a first direction the suture. For example, the suture trap may include internal barbs, cleats, rubber, braid, or other interference fit modifications that engage with a suture in a first direction, so that when suture is within, it cannot easily come out.
As illustrated above, a suture trap does not necessarily have to be a one-way channel for a suture length, but may be a constrictable channel that prevents withdrawal of a suture within the channel when under tension, but not when relaxed, similar to a woven finger-trap or finger-puzzle design. For example, a suture trap may be a modified section of a suture that acts as a ‘finger trap’ that constricts over a length of suture when under tension. The example shown above in
As mentioned above a leader snare may be formed of a fine nitinol wire with a loop on the end or any string material.
In
As mentioned above, in some variations the suture trap variation of a knot body is configured to permit only sliding of the suture in a single direction (e.g., the direction of the arrow in
For example, in
In any of the variations described herein, a knot pusher may be used to assist in tying or knotting the suture. In general, the knot pusher may be used to push a pre-tied knot body down the leg or length of suture (while holding the leg or length taut); once pushed to the tissue near where it is to be secured, the second length or leg of suture may be pulled to tighten the knot.
A pre-tied knot may be any appropriate length. For example, a knot body of a pre-tied knot may be short (e.g., a few loops of suture, as described above), or it may be long.
Any of the pre-tied knots described above may be pre-packaged within a suture anchor, or loadable into a suture anchor, for use in, as a non-limiting example, rotator cuff repair or labral repair in the shoulder, hip or any soft tissue that needs to be anchored to bone.
Although the description above is broken into parts and includes specific examples of variations of pre-tied knots, any of the features or elements described in any particular example or section may be incorporated into any of the other embodiments.
Pre-tied knots may also be used to suture tissue in another manner as described below. In particular, pre-tied knots may be used by the suture passer to help coordinate passage of the pre-tied knot and suture through the tissue.
The suture passer of
A distal control 3913 is also configured as a lever or trigger, and may be squeezed or otherwise actuated to extend and/or retract the lower jaw to form a distal-facing mouth with the upper jaw, as shown in
In
In practice, a suture passer having a distally-extending tissue penetrator (including a pre-tied knot) may be used to repair a tissue such as the meniscus of the knee.
The devices and methods described herein may be used to pass a loop of suture and specifically, may be used to form a vertical or horizontal stitch to repair tissue. When repairing the meniscus, a vertical stitch typically provides the strongest repair with the least amount of displacement relative to horizontal stitches or other “all-inside” approaches. The devices and methods described herein may also be referred to as “all-inside” devices and meniscal repair techniques allow the meniscus to be sutured directly. The suture passers described herein may place a fully-circumferential, vertical stitch around meniscal tears. This stitch may provide uniform compression along the entire height of the meniscus and maintain coaptation of the tear at both the inferior and superior meniscal surfaces. Further, because of the jaw and needle configuration, the distal extending tissue penetrator does not penetrate the capsule wall, reducing or eliminating risk to posterior neurovascular structures. These features may allow a greater healing response due to complete tissue coaptation along the entire substance of the tear, improved clinical outcomes due to the greater healing response and to the anatomic reduction and fixation of the meniscus tear, may avoid scalloping or puckering of the meniscus, and may result in less extrusion or peripheralization of the meniscus caused by over-tensioning of suture or hybrid tensioners to the capsule. These devices can also be used to treat radial, horizontal, flap, and other complex tears in addition to longitudinal tears.
In some variations, the suture passer devices described herein can be fired blindly where arthroscopy camera access is poor, as knee structures are protected from the needle path.
Returning now to
In
The tissue penetrator can then be brought back into the lower jaw, the lower jaw retracted, and the device may be withdrawn from the knee, leaving a suture loop surrounding the tear, as shown in
As shown in
The tissue penetrator can then be extended back across the tissue from the second position on the opposite side of the meniscal tear, as shown in
Alternatively, in some variations a knot of suture may be passed through tissue using a suture passer as describe above in which a pre-tide knot is used to help secure the length of suture being passed to the device. For example, in some variations an end region of one or both (in variations in which two lengths of suture are being passed) lengths of suture are knotted, and this pre-tied knot may be passed through the tissue by the tissue penetrator. The pre-tied knot may or may not include a leader snare as described above. For example, in some variations two lengths of suture (from the same elongate suture) may be passed through a tissue; both lengths may be pre-knotted, however only one of the pre-tied knots may include a leader snare and be configured to allow another length of suture to be pulled through.
For example, in
As mentioned above, in this example, the suture may be held within the tissue penetrator (e.g., in the body of the device) to protect it as it is being used. For example in
The device may be similar to the device described above, but may be adapted to hold one or (as shown in this example) more (e.g., 2) knots at the ends of the suture length.
The device may be placed over the tissue as described above (e.g., by adjusting the angle of the upper jaw, and extending/retracting the lower jaw as necessary to surround the tissue to be sutured in the distal-facing opening, as shown in
After passing the knot to the upper jaw, the knot may be retained by a strip mechanism in the upper jaw (not visible, but see, e.g.,
The tissue penetrator may be extended again across the tissue to pass the second end of the suture. The second end of the suture may be automatically reloaded into the tissue penetrator. For example, the second end and knot may be held in a holding region of the lower jaw; once the tissue penetrator returns to the lower jaw and the suture retainer in the tissue penetrator is empty, the second suture length (the second end) behind the knot may enter the suture retainer.
In
In some variations the ends of the suture (knots) are cut from the suture passer. In some variation, a release mechanism may release the knots from the mechanism (e.g., strip mechanism) in the upper jaw holding them. For example, a release on the handle may remove tension from the strip mechanism, allowing the knots to be released from the upper jaw. In some variations at least one of the knots may be a pre-tied knot as described above, or an additional pre-tied knot may be located proximally to one of the end knots. Thus, a pre-tied knot may be used to tie the two ends together to secure the loop within the tissue.
In general, a device that passes a knot through the tissue may be referred to as a knot capture device, since it is configured to capture and pass knots that are tied to a length of suture (particular near the end or ends of the suture length).
Although the description above is broken into parts and includes specific examples of variations of suture passers, any of the features or elements described in any particular example or section may be incorporated into any of the other embodiments. Although the foregoing invention has been described in some detail by way of illustration and example for purposes of clarity of understanding, it is readily apparent to those of ordinary skill in the art in light of the teachings of this invention that certain changes and modifications may be made thereto without departing from the spirit or scope of the appended claims.
This patent application claims priority to U.S. Provisional Patent Application No. 61/698,528, filed on Sep. 7, 2012 and titled “PRE-TIED SURGICAL KNOTS FOR USE WITH SUTURE PASSERS,” herein incorporated by reference in its entirety. The pre-tied knots described herein may be used, in particular, with, or as part of any of the suture passer devices and systems described in the following patent applications, each of which is herein incorporated by reference in its entirety. Specifically: U.S. patent application Ser. No. 11/773,388, filed on Jul. 3, 2007, titled “METHODS AND DEVICES FOR CONTINUOUS SUTURE PASSING,” now Publication No. US-2009-0012538-A1; U.S. patent application Ser. No. 12/972,222, filed on Dec. 17, 2010, titled “METHODS AND DEVICES FOR CONTINUOUS SUTURE PASSING,” now Publication No. US-2011-0087246-A1; U.S. patent application Ser. No. 13/462,760, filed on May 2, 2012, titled “METHODS OF MENISCUS REPAIR,” now Publication No. US-2012-0239062-A1; U.S. patent application Ser. No. 13/006,966, filed on Jan. 14, 2011, titled “METHODS FOR CONTINUOUS SUTURE PASSING,” now Publication No. US-2011-0130773-A1; U.S. patent application Ser. No. 13/090,089, filed on Apr. 19, 2011, titled “METHODS OF MENISCUS REPAIR,” now Publication No. US-2011-0218557-A1; U.S. patent application Ser. No. 12/291,159, filed on Nov. 5, 2008, titled “SUTURE PASSING INSTRUMENT AND METHOD,” now Publication No. US-2010-0331863-A2; U.S. patent application Ser. No. 12/972,168, filed on Dec. 17, 2010, titled “SUTURE PASSING INSTRUMENT AND METHOD,” now Publication No. US-2011-0152892-A1; U.S. patent application Ser. No. 13/062,664, filed on Apr. 19, 2011, titled “KNOTLESS SUTURE ANCHORS,” now Publication No. US-2011-0190815-A1; U.S. patent application Ser. No. 12/620,029, filed on Nov. 17, 2009, titled “METHODS OF SUTURING AND REPAIRING TISSUE USING A CONTINUOUS SUTURE PASSER DEVICE,” now Publication No. US-2010-0130990-A1; U.S. patent application Ser. No. 12/942,803, filed on Nov. 9, 2010, titled “DEVICES, SYSTEMS AND METHODS FOR MENISCUS REPAIR,” now Publication No. US-2011-0112556-A1; U.S. patent application Ser. No. 13/462,728, filed on May 2, 2012, titled “DEVICES, SYSTEMS AND METHODS FOR MENISCUS REPAIR,” now Publication No. US-2012-0265221-A1; U.S. patent application Ser. No. 13/114,983, filed on May 24, 2011, titled “SUTURING AND REPAIRING TISSUE USING IN VIVO SUTURE LOADING,” now Publication No. US-2011-0270280-A1; U.S. patent application Ser. No. 13/347,184, filed on Jan. 10, 2012, titled “IMPLANT AND METHOD FOR REPAIR OF THE ANTERIOR CRUCIATE LIGAMENT,” now Publication No. US-2012-0179254-A1; U.S. patent application Ser. No. 13/247,892, filed on Sep. 28, 2011, titled “MENISCUS REPAIR,” now Publication No. US-2012-0283750-A1; U.S. patent application Ser. No. 13/323,391, filed on Dec. 12, 2011, titled “SUTURE PASSER DEVICES AND METHODS,” now Publication No. US-2012-0283753-A1; and U.S. patent application Ser. No. 13/462,773, filed on May 2, 2012, titled “SUTURE PASSER DEVICES AND METHODS,” now Publication No. US-2012-0283754-A1, each of which is incorporated by reference in its entirety. Many of the pre-tied knot variations described herein were developed for use with one or more of these suture passer devices, and thus may be particularly well adapted for use with these systems. However, the pre-tied knot methods and systems described herein may also be used with other suture passers, or even without suture passers, in order to secure one or more sutures.
Number | Name | Date | Kind |
---|---|---|---|
1037864 | Carlson et al. | Sep 1912 | A |
2738790 | Todt, Sr. et al. | Mar 1956 | A |
2748773 | Vacheresse, Jr. | Jun 1956 | A |
3470875 | Johnson | Oct 1969 | A |
3580256 | Wilkinson et al. | May 1971 | A |
3807407 | Schweizer | Apr 1974 | A |
3842840 | Schweizer | Oct 1974 | A |
3901244 | Schweizer | Aug 1975 | A |
4021896 | Stierlein | May 1977 | A |
4109658 | Hughes | Aug 1978 | A |
4164225 | Johnson et al. | Aug 1979 | A |
4236470 | Stenson | Dec 1980 | A |
4345601 | Fukuda | Aug 1982 | A |
4440171 | Nomoto et al. | Apr 1984 | A |
4553543 | Amarasinghe | Nov 1985 | A |
4605002 | Rebuffat | Aug 1986 | A |
4706666 | Sheets | Nov 1987 | A |
4836205 | Barrett | Jun 1989 | A |
4957498 | Caspari et al. | Sep 1990 | A |
4981149 | Yoon et al. | Jan 1991 | A |
5002561 | Fisher | Mar 1991 | A |
5011491 | Boenko et al. | Apr 1991 | A |
5037433 | Wilk et al. | Aug 1991 | A |
5059201 | Asnis | Oct 1991 | A |
5112344 | Petros | May 1992 | A |
5129912 | Noda et al. | Jul 1992 | A |
5156608 | Troidl et al. | Oct 1992 | A |
5193473 | Asao et al. | Mar 1993 | A |
5219358 | Bendel et al. | Jun 1993 | A |
5222962 | Burkhart | Jun 1993 | A |
5250053 | Snyder | Oct 1993 | A |
5250055 | Moore et al. | Oct 1993 | A |
5281237 | Gimpelson | Jan 1994 | A |
5312422 | Trott | May 1994 | A |
5330488 | Goldrath | Jul 1994 | A |
5336229 | Noda | Aug 1994 | A |
5342389 | Haber et al. | Aug 1994 | A |
5364410 | Failla et al. | Nov 1994 | A |
5368601 | Sauer et al. | Nov 1994 | A |
5389103 | Melzer et al. | Feb 1995 | A |
5391174 | Weston | Feb 1995 | A |
5397325 | Della Badia et al. | Mar 1995 | A |
5403328 | Shallman | Apr 1995 | A |
5405352 | Weston | Apr 1995 | A |
5405532 | Loew et al. | Apr 1995 | A |
5431666 | Sauer et al. | Jul 1995 | A |
5437681 | Meade et al. | Aug 1995 | A |
5454823 | Richardson et al. | Oct 1995 | A |
5454834 | Boebel et al. | Oct 1995 | A |
5468251 | Buelna | Nov 1995 | A |
5474057 | Makower et al. | Dec 1995 | A |
5478344 | Stone et al. | Dec 1995 | A |
5478345 | Stone et al. | Dec 1995 | A |
5480406 | Nolan et al. | Jan 1996 | A |
5496335 | Thomason et al. | Mar 1996 | A |
5499991 | Garman et al. | Mar 1996 | A |
5507757 | Sauer et al. | Apr 1996 | A |
5520702 | Sauer et al. | May 1996 | A |
5540704 | Gordon et al. | Jul 1996 | A |
5540705 | Meade et al. | Jul 1996 | A |
5562686 | Sauer et al. | Oct 1996 | A |
5569301 | Granger et al. | Oct 1996 | A |
5571090 | Sherts | Nov 1996 | A |
5571119 | Atala | Nov 1996 | A |
5575800 | Gordon | Nov 1996 | A |
5578044 | Gordon et al. | Nov 1996 | A |
5601576 | Garrison | Feb 1997 | A |
5607435 | Sachdeva et al. | Mar 1997 | A |
5616131 | Sauer et al. | Apr 1997 | A |
5618290 | Toy et al. | Apr 1997 | A |
5626588 | Sauer et al. | May 1997 | A |
5632751 | Piraka | May 1997 | A |
5643289 | Sauer et al. | Jul 1997 | A |
5645552 | Sherts | Jul 1997 | A |
5653716 | Malo et al. | Aug 1997 | A |
5665096 | Yoon | Sep 1997 | A |
5669917 | Sauer et al. | Sep 1997 | A |
5674229 | Tovey et al. | Oct 1997 | A |
5674230 | Tovey et al. | Oct 1997 | A |
5681331 | de la Torre et al. | Oct 1997 | A |
5690652 | Wurster et al. | Nov 1997 | A |
5713910 | Gordon et al. | Feb 1998 | A |
5728107 | Zlock et al. | Mar 1998 | A |
5728113 | Sherts | Mar 1998 | A |
5730747 | Ek et al. | Mar 1998 | A |
5741278 | Stevens | Apr 1998 | A |
5749879 | Middleman et al. | May 1998 | A |
5755728 | Maki | May 1998 | A |
5759188 | Yoon | Jun 1998 | A |
5766183 | Sauer | Jun 1998 | A |
5792153 | Swain et al. | Aug 1998 | A |
5800445 | Ratcliff et al. | Sep 1998 | A |
5814054 | Kortenbach et al. | Sep 1998 | A |
5824009 | Fukuda et al. | Oct 1998 | A |
5827300 | Fleega | Oct 1998 | A |
5843126 | Jameel | Dec 1998 | A |
5865836 | Miller | Feb 1999 | A |
5871490 | Schulze et al. | Feb 1999 | A |
5876411 | Kontos | Mar 1999 | A |
5876412 | Piraka | Mar 1999 | A |
5895393 | Pagedas | Apr 1999 | A |
5895395 | Yeung | Apr 1999 | A |
5897563 | Yoon et al. | Apr 1999 | A |
5899911 | Carter | May 1999 | A |
5906630 | Anderhub et al. | May 1999 | A |
5908428 | Scirica et al. | Jun 1999 | A |
5910148 | Reimels et al. | Jun 1999 | A |
5935138 | McJames, II et al. | Aug 1999 | A |
5938668 | Scirica et al. | Aug 1999 | A |
5944739 | Zlock et al. | Aug 1999 | A |
5947982 | Duran | Sep 1999 | A |
5980538 | Fuchs et al. | Nov 1999 | A |
5993466 | Yoon | Nov 1999 | A |
6042601 | Smith | Mar 2000 | A |
6048351 | Gordon et al. | Apr 2000 | A |
6051006 | Shluzas et al. | Apr 2000 | A |
6053933 | Balazs et al. | Apr 2000 | A |
6056771 | Proto | May 2000 | A |
6071289 | Stefanchik et al. | Jun 2000 | A |
6077276 | Kontos | Jun 2000 | A |
6099550 | Yoon | Aug 2000 | A |
6113610 | Poncet | Sep 2000 | A |
6126666 | Trapp et al. | Oct 2000 | A |
6129741 | Wurster et al. | Oct 2000 | A |
6139556 | Kontos | Oct 2000 | A |
6152934 | Harper et al. | Nov 2000 | A |
6159224 | Yoon | Dec 2000 | A |
6190396 | Whitin et al. | Feb 2001 | B1 |
6221085 | Djurovic | Apr 2001 | B1 |
6238414 | Griffiths | May 2001 | B1 |
6264694 | Weiler | Jul 2001 | B1 |
6277132 | Brhel | Aug 2001 | B1 |
6322570 | Matsutani et al. | Nov 2001 | B1 |
6325808 | Bernard et al. | Dec 2001 | B1 |
6355050 | Andreas et al. | Mar 2002 | B1 |
6368334 | Sauer | Apr 2002 | B1 |
6443963 | Baldwin et al. | Sep 2002 | B1 |
6511487 | Oren et al. | Jan 2003 | B1 |
6533795 | Tran et al. | Mar 2003 | B1 |
6533796 | Sauer et al. | Mar 2003 | B1 |
6551330 | Bain et al. | Apr 2003 | B1 |
6585744 | Griffith | Jul 2003 | B1 |
6626917 | Craig | Sep 2003 | B1 |
6626929 | Bannerman | Sep 2003 | B1 |
6638283 | Thal | Oct 2003 | B2 |
6638286 | Burbank et al. | Oct 2003 | B1 |
6641592 | Sauer et al. | Nov 2003 | B1 |
6719765 | Bonutti | Apr 2004 | B2 |
6723107 | Skiba et al. | Apr 2004 | B1 |
6770084 | Bain et al. | Aug 2004 | B1 |
6896686 | Weber | May 2005 | B2 |
6921408 | Sauer | Jul 2005 | B2 |
6923806 | Hooven et al. | Aug 2005 | B2 |
6923819 | Meade et al. | Aug 2005 | B2 |
6936054 | Chu | Aug 2005 | B2 |
6984237 | Hatch et al. | Jan 2006 | B2 |
6991635 | Takamoto et al. | Jan 2006 | B2 |
6997931 | Sauer et al. | Feb 2006 | B2 |
6997932 | Dreyfuss et al. | Feb 2006 | B2 |
7004951 | Gibbens, III | Feb 2006 | B2 |
7029480 | Klein et al. | Apr 2006 | B2 |
7029481 | Burdulis, Jr. et al. | Apr 2006 | B1 |
7041111 | Chu | May 2006 | B2 |
7063710 | Takamoto et al. | Jun 2006 | B2 |
7087060 | Clark | Aug 2006 | B2 |
7112208 | Morris et al. | Sep 2006 | B2 |
7118583 | O'Quinn et al. | Oct 2006 | B2 |
7131978 | Sancoff et al. | Nov 2006 | B2 |
7166116 | Lizardi et al. | Jan 2007 | B2 |
7175636 | Yamamoto et al. | Feb 2007 | B2 |
7211093 | Sauer et al. | May 2007 | B2 |
7232448 | Battles et al. | Jun 2007 | B2 |
7235086 | Sauer et al. | Jun 2007 | B2 |
7311715 | Sauer et al. | Dec 2007 | B2 |
7344545 | Takemoto et al. | Mar 2008 | B2 |
7390328 | Modesitt | Jun 2008 | B2 |
7481817 | Sauer | Jan 2009 | B2 |
7491212 | Sikora et al. | Feb 2009 | B2 |
7588583 | Hamilton et al. | Sep 2009 | B2 |
7594922 | Goble et al. | Sep 2009 | B1 |
7632284 | Martinek et al. | Dec 2009 | B2 |
7674276 | Stone et al. | Mar 2010 | B2 |
7722630 | Stone et al. | May 2010 | B1 |
7731727 | Sauer | Jun 2010 | B2 |
7736372 | Reydel et al. | Jun 2010 | B2 |
7749236 | Oberlaender et al. | Jul 2010 | B2 |
7842050 | Diduch et al. | Nov 2010 | B2 |
7879046 | Weinert et al. | Feb 2011 | B2 |
7883519 | Oren et al. | Feb 2011 | B2 |
7951147 | Privitera et al. | May 2011 | B2 |
7951159 | Stokes et al. | May 2011 | B2 |
7959650 | Kaiser et al. | Jun 2011 | B2 |
7972344 | Murray et al. | Jul 2011 | B2 |
8394112 | Nason | Mar 2013 | B2 |
8398673 | Hinchliffe et al. | Mar 2013 | B2 |
8449533 | Saliman et al. | May 2013 | B2 |
20030023250 | Watschke et al. | Jan 2003 | A1 |
20030065336 | Xiao | Apr 2003 | A1 |
20030065337 | Topper et al. | Apr 2003 | A1 |
20030078599 | O'Quinn et al. | Apr 2003 | A1 |
20030181926 | Dana et al. | Sep 2003 | A1 |
20030204194 | Bittar | Oct 2003 | A1 |
20030216755 | Shikhman et al. | Nov 2003 | A1 |
20030233106 | Dreyfuss | Dec 2003 | A1 |
20040249392 | Mikkaichi et al. | Dec 2004 | A1 |
20040249394 | Morris et al. | Dec 2004 | A1 |
20040267304 | Zannis et al. | Dec 2004 | A1 |
20050033319 | Gambale et al. | Feb 2005 | A1 |
20050033365 | Courage | Feb 2005 | A1 |
20050080434 | Chung et al. | Apr 2005 | A1 |
20050090837 | Sixto, Jr. et al. | Apr 2005 | A1 |
20050090840 | Gerbino et al. | Apr 2005 | A1 |
20050154403 | Sauer et al. | Jul 2005 | A1 |
20050228406 | Bose | Oct 2005 | A1 |
20050288690 | Bourque et al. | Dec 2005 | A1 |
20060020272 | Gildenberg | Jan 2006 | A1 |
20060047289 | Fogel | Mar 2006 | A1 |
20060084974 | Privitera et al. | Apr 2006 | A1 |
20060282098 | Shelton et al. | Dec 2006 | A1 |
20070032799 | Pantages et al. | Feb 2007 | A1 |
20070219571 | Balbierz et al. | Sep 2007 | A1 |
20070250118 | Masini | Oct 2007 | A1 |
20070260260 | Hahn et al. | Nov 2007 | A1 |
20070260278 | Wheeler et al. | Nov 2007 | A1 |
20080086147 | Knapp | Apr 2008 | A1 |
20080091219 | Marshall et al. | Apr 2008 | A1 |
20080097489 | Goldfarb et al. | Apr 2008 | A1 |
20080140091 | DeDeyne et al. | Jun 2008 | A1 |
20080228204 | Hamilton et al. | Sep 2008 | A1 |
20080234725 | Griffiths et al. | Sep 2008 | A1 |
20080243147 | Hamilton et al. | Oct 2008 | A1 |
20080269783 | Griffith | Oct 2008 | A1 |
20080294256 | Hagan et al. | Nov 2008 | A1 |
20090012538 | Saliman | Jan 2009 | A1 |
20090018554 | Thorne et al. | Jan 2009 | A1 |
20090062816 | Weber | Mar 2009 | A1 |
20090062819 | Burkhart et al. | Mar 2009 | A1 |
20090105751 | Zentgraf | Apr 2009 | A1 |
20090131956 | Dewey et al. | May 2009 | A1 |
20090209998 | Widmann | Aug 2009 | A1 |
20090216268 | Panter | Aug 2009 | A1 |
20090228041 | Domingo | Sep 2009 | A1 |
20090259233 | Bogart et al. | Oct 2009 | A1 |
20090281619 | Le et al. | Nov 2009 | A1 |
20090306684 | Stone et al. | Dec 2009 | A1 |
20090306776 | Murray | Dec 2009 | A1 |
20100057109 | Clerc et al. | Mar 2010 | A1 |
20100106169 | Niese et al. | Apr 2010 | A1 |
20100114137 | Vidal et al. | May 2010 | A1 |
20100121352 | Murray et al. | May 2010 | A1 |
20100130990 | Saliman | May 2010 | A1 |
20100145364 | Keren et al. | Jun 2010 | A1 |
20100185232 | Hughett et al. | Jul 2010 | A1 |
20100198235 | Pierce et al. | Aug 2010 | A1 |
20100217286 | Gerber et al. | Aug 2010 | A1 |
20100228271 | Marshall et al. | Sep 2010 | A1 |
20100241142 | Akyuz et al. | Sep 2010 | A1 |
20100249809 | Singhatat et al. | Sep 2010 | A1 |
20100280530 | Hashiba | Nov 2010 | A1 |
20100305581 | Hart | Dec 2010 | A1 |
20100305583 | Baird et al. | Dec 2010 | A1 |
20100331863 | Saliman | Dec 2010 | A2 |
20110022063 | McClurg et al. | Jan 2011 | A1 |
20110028998 | Adams et al. | Feb 2011 | A1 |
20110060350 | Powers et al. | Mar 2011 | A1 |
20110087246 | Saliman et al. | Apr 2011 | A1 |
20110100173 | Stone et al. | May 2011 | A1 |
20110112555 | Overes et al. | May 2011 | A1 |
20110112556 | Saliman | May 2011 | A1 |
20110118760 | Gregoire et al. | May 2011 | A1 |
20110130773 | Saliman et al. | Jun 2011 | A1 |
20110152892 | Saliman et al. | Jun 2011 | A1 |
20110190815 | Saliman | Aug 2011 | A1 |
20110218557 | Saliman | Sep 2011 | A1 |
20110251626 | Wyman et al. | Oct 2011 | A1 |
20110270280 | Saliman | Nov 2011 | A1 |
20120179254 | Saliman | Jul 2012 | A1 |
20120239062 | Saliman et al. | Sep 2012 | A1 |
20120283750 | Saliman et al. | Nov 2012 | A1 |
20120283753 | Saliman et al. | Nov 2012 | A1 |
20120283754 | Murillo et al. | Nov 2012 | A1 |
20120303046 | Stone et al. | Nov 2012 | A1 |
20130072948 | States, III et al. | Mar 2013 | A1 |
20130238040 | Saliman et al. | Sep 2013 | A1 |
20130253647 | Saliman et al. | Sep 2013 | A1 |
20140188136 | Cournoyer et al. | Jul 2014 | A1 |
20150142022 | George et al. | May 2015 | A1 |
20150297215 | Hendricksen et al. | Oct 2015 | A1 |
Number | Date | Country |
---|---|---|
201263696 | Jul 2009 | CN |
101961256 | Feb 2011 | CN |
0647431 | Apr 1995 | EP |
3032847 | Mar 1991 | JP |
2009138029 | Jun 2009 | JP |
2009538190 | Nov 2009 | JP |
376089 | Apr 1973 | SU |
7288848 | Apr 1980 | SU |
1725847 | Apr 1992 | SU |
WO 9205828 | Apr 1992 | WO |
WO 9513021 | May 1995 | WO |
WO 9831288 | Jul 1998 | WO |
WO 9934744 | Jul 1999 | WO |
WO 9942036 | Aug 1999 | WO |
WO 9947050 | Sep 1999 | WO |
WO0156478 | Aug 2001 | WO |
WO 0207607 | Jan 2002 | WO |
WO 02096296 | Dec 2002 | WO |
WO 03077771 | Sep 2003 | WO |
WO 2006001040 | Jan 2006 | WO |
WO 2006040562 | Apr 2006 | WO |
WO 2010141695 | Dec 2010 | WO |
WO 2011057245 | May 2011 | WO |
Entry |
---|
Saliman; U.S. Appl. No. 14/292,695 entitled “Suture methods for forming locking loops stitches,” filed May 30, 2014. |
Nord et al.; Posterior lateral meniscal root tears and meniscal repair; Orthopedics Today; 5 pgs; Nov. 2010; retrieved from the internet on Aug. 21, 2014 (http://www.healio.com/orthopedics/arthroscopy/news/print/orthopedics-today/%7B1b52a700-e986-4524-ac7d-6043c9799e15%7D/posterior-lateral-meniscal-root-tears-and-meniscal-repair). |
Duerig, T. et al., “An overview of nitinol medical applications” Materials Science and Engineering A273-275, May 1999. |
Murillo et al.; U.S. Appl. No. 13/893,154 entitled “Suture passer devices and methods,” filed May 13, 2013. |
Saliman et al.; U.S. Appl. No. 14/451,293 entitled “Transosteal anchoring methods for tissue repair,” filed Aug. 4, 2014. |
George et al.; U.S. Appl. No. 14/494,561 entitled “Arthroscopic knot pusher and suture cutter,” filed Sep. 23, 2014. |
Murillo et al.; U.S. Appl. No. 14/572,485 entitled “Automatically reloading suture passer devices and methods,” filed Dec. 16, 2014. |
Saliman et al.; U.S. Appl. No. 14/546,942 entitled “Suture passer and method for hip labrum repair,” filed Nov. 18, 2014. |
Asik et al.; Strength of different meniscus suturing techniques; Knee Sur, Sports Traumotol, Arthroscopy; vol. 5; No. 2; pp. 80-83; (year of publication is sufficiently earlier than the effective U.S. filing date and any foreign priority date) 1997. |
Asik et al; Failure strength of repair devices versus meniscus suturing techniques; Knee Surg, Sports Traumatol, Arthrosc; vol. 10; No. 1; pp. 25-29; Jan. 2002. |
Arthrex®, Arthrex, Inc., “The Next Generation in Shoulder Repair Technology,” Product Brochure from Arthrex, Inc; Naples, Florida, (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 2007, 22 pages. |
ArthroCare® Sportsmedicine, Sunnyvale, CA, SmartStitch® Suture Passing System with the PerfectPasserTM, Product brochure, (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 2006, 4 pages. |
BiPass(TM) Suture Punch, Biomet® Sports Medicine, Inc., accessed Feb. 29, 2008 at <http://www.arthrotek.com/prodpage.cfm?c=0A05&p=090706> 2 pages. |
Boenisch et al.; Pull-out strength and stiffness of meniscal repair using absorbable arrows or Ti-Cron vertical and horizontal loop sutures; Amer. J. of Sports Med.; vol. 27; No. 5 pp. 626-631; Sep.-Oct. 1999. |
Cayenne Medical; CrossFix® II System (product webpage); 4 pgs.; downloaded Nov. 21, 2011 (www.cayennemedical.com/products/crossfix/). |
Covidien Surgical; Endo Stitch 10 mm Suturing Device; accessed Dec. 4, 2012 at <http://www.autosuture.com/autosuture/pagebuilder.aspx?topicID=7407&breadcrumbs=0:63659,30691:0,309:0> 2pages. |
Depuy Mitek, Inc; Raynham, MA, “Versalok Surgical Technique for Rotator Cuff Repair: The next generation in rotator cuff repair,” Product brochure, (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 2007, 18 pages. |
Linvatec Conmed Company, Largo, Florida, Product descriptions B17-19, B21; Tissue Repair Systems, Tissue Repair Accessories, and Master Arthroscopy Shoulder Instrument Set, (printed on or before Aug. 2007), 4 pages. |
Ma et al; “Biomechanical Evaluation of Arthroscopic Rotator Cuff Stitches,” J Bone Joint Surg Am, Jun. 2004; vol. 86(6):1211-1216. |
Medsfera; Suturing devices; accessed Dec. 4, 2012 at <http://www.medsfera.ru/shiv.html> 13 pages. |
Nho et al; “Biomechanical fixation in Arthroscopic Rotator Cuff Repair,” Arthroscopy: J of Arthroscop and Related Surg; vol. 23. No. 1, Jan. 2007: pp. 94-102. |
Rimmer et al.; Failure Strength of Different Meniscal Suturing Techniques; Arthroscopy: The Journal of Arthroscopic and Related Surgery; vol. 11; No. 2; pp. 146-150; Apr. 1995. |
Schneeberger, et al; “Mechanical Strength of Arthroscopic Rotator Cuff Repair Techniques: An in Vitro Study,” J Bone Joint Surg Am., Dec. 2002; 84:2152-2160. |
Smith&Nephew; Fast-Fix Meniscal Repair System (product webpage); 4 pgs.; downloaded Nov. 21, 2011 (http://endo.smith-nephew.com/fr/node.asp?NodeId=3562). |
Strobel; Manual of Arthroscopic Surgery (1st Edition); Springer Verlag, Hiedelberg © 2002; pp. 127-129; Dec. 15, 2001. |
USS SportsMedicine ArthoSewTM Single Use Automated Suturing Device with 8.6 mm ArthroPort Cannula Set, Instructions for Use, <http:www.uss-sportsmed.com/imageServer.aspx?contentID=5020&contenttype=application/pdf> accessed Apr. 25, 2007, 2 pages. |
USS SportsMedicine ArthroSewTM Suturing Device, <http://www.uss-sportsmed.com/SportsMedicine/pageBuilder.aspx?webPageID=0&topicID=7141&xsl=xsl/productPagePrint.xsl>, product description, accessed Apr. 25, 2007, 3 pages. |
McCutcheon et al.; U.S. Appl. No. 13/759,000 entitled “Methods And Devices For Preventing Tissue Bridging While Suturing,” filed Feb. 4, 2013. |
Saliman, J.; U.S. Appl. No. 13/759,006 entitled “Suture Passers,” filed Feb. 4, 2013. |
Hendricksen et al.; U.S. Appl. No. 13/844,252 entitled “Suture passers and methods of passing suture,” filed Mar. 15, 2013. |
Hendricksen et al.; U.S. Appl. No. 14/265,848 entitled “Suture passer with radiused upper jaw,” filed Apr. 30, 2014. |
Hendricksen et al.; U.S. Appl. No. 14/659,471 entitled “Suture passer with radiused upper jaw,” filed Mar. 16, 2015. |
Hendricksen et al.; U.S. Appl. No. 14/697,494 entitled “Suture passers adapted for use in constrained regions,” filed Apr. 27, 2015. |
Number | Date | Country | |
---|---|---|---|
20140074157 A1 | Mar 2014 | US |
Number | Date | Country | |
---|---|---|---|
61698528 | Sep 2012 | US |