The present invention relates to a thin material sheet winding mechanism, and in particular to a pre-wound sheet cut-off mechanism of a thin material sheet winding device and a method thereof.
A conventional paper core used in a thin material sheet winding mechanism is conveyed to a location beside a first roller by a conveyor and is then forced into a curved guiding passage by a push plate. The paper core, after reaching a winding nip through the curved guiding passage, receives a thin material sheet wound thereon to form a roll, such as a toilet paper roll and a kitchen towel roll. When it is about to complete to roll, a rotary bar is controlled to have a relative speed thereof with respect to the first winding roller become faster or slower to induce a speed difference, which may break or tear the thin material sheet. Or alternatively, a cutting device is employed to directly cut off the thin material sheet.
However, using a rotary bar or a cutting device to cut off the thin material sheet require complicated mechanisms. In addition, often, the core that is used to pre-wind a thin material sheet is held by a non-continuous clamping force so as to receive a non-uniform force acting thereon. This makes a torn portion of the thin material sheet irregular and unsmooth.
Thus, an objective of the present invention is to provide a pre-wound sheet cut-off mechanism for a thin material sheet winding device and a method thereof wherein a thin material sheet, after pre-adhered to and pre-wound around a core, receives a uniformly distributed clamping force acting thereon in a continuous long span.
Another objective of the present invention is to provide a pre-wound sheet cut-off mechanism for a thin material sheet winding device and a method thereof, which cuts off a thin material sheet between a core to which the thin material sheet is to be wound and a roll of already-wound thin material sheet in a regular and smooth fashion.
A further objective of the present invention is to provide a simplified pre-wound sheet cut-off mechanism for a thin material sheet winding device for simplifying the overall structure thereof and enhancing the effectiveness of cutting of the pre-wound thin material sheet.
The solution adopted in the present invention to overcome the technical problems of the known device is a pre-wound sheet cut-off mechanism for a thin material sheet winding device, which comprises a first winding roller, which is supported by a shaft to be rotatable in a predetermined direction, a plurality of curved guide plates, which is arranged at a predetermined distance below the first winding roller to formed a curved-guide-plate channel provided between the curved guide plates and the first winding roller, a plurality of pre-winding plates, which are individually coupled between adjacent curved guide plates, a second winding roller, which is arranged at a location close to a core unloading end of the curved-guide-plate channel, and a rider roller, which is arranged above the core unloading end of the curved-guide-plate channel.
The pre-wound sheet cut-off method is performed in the thin material sheet winding device in such a way that during a winding operation, a core that carries an initial glue is conveyed into the curved-guide-plate channel through a core loading end of the curved-guide-plate channel and a thin material sheet that is conveyed to the first winding roller is pre-wound on the core. The core, with the thin material sheet adhered thereto, is further transported through the curved-guide-plate channel to a winding nip to carry out the winding operation for forming a roll of the thin material sheet. The winding speed of the roll is reduced for preparing a next core that is adhered with the thin material sheet to reach the pre-winding plates, so as to the thin material sheet between the next core and the roll becomes to be slacked. On the other hand, the next core is driven by the rotation of the first winding roller to pre-wind the thin material sheet. Continuously pre-winding the thin material sheet on the core to result that the thin material sheet between the next core and the roll is not slacked, and the tension occurred on the thin material sheet is getting increase until the thin material sheet is torn apart, and the completed roll of the thin material sheet is separated.
The technical solution adopted in the present invention allows for a control operation that, before a core entering the winding nip, simply controls the rotational speed of a roll in the winding nip to reduce the rotational speed of the roll for forming local slack. On the other hand, the thin material sheet is adhered to the core that carries the initial glue and winds around a circumferential surface of the core by means of a torque imparted by the first winding roller rotating the core so as to complete the pre-winding of the thin material sheet.
Further, the core, when pre-winding the thin material sheet to a given extent, is subjected to a clamping force induced in a continuous long-span active zone between pre-winding plates and curved guide plates, stretching the thin material sheet and inducing a tension to tear the thin material sheet. Since the clamping force induced in the continuous long-span active zone provides a continuous long-span physical engagement, which gives a uniform application of force, the thin material sheet can be smoothly torn apart and the torn portion of the thin material sheet can maintain flat and regular.
Further, the present invention uses reduction of the winding speed of the roll and a clamping force induced between the first winding roller and the pre-winding plates to realize the desired effect, structurally, the conventionally used rotary bar or cutting device is omitted. This reduces the complication of the overall structure and saves unnecessary expense of parts replacement, ensuring better result of pre-winding and cut-off of the thin material sheet.
The present invention will be apparent to those skilled in the art by reading the following description of the best mode for carrying out the present invention, with reference to the attached drawings, in which:
With reference to the drawings and in particular to
The first winding roller 5 is supported by a shaft 51 to be rotatable in a predetermined rotation direction I. A plurality of curved guide plates 25 are arranged at a predetermined distance below the first winding roller 5 to form a curved-guide-plate channel 171 between the curved guide plates and the first winding roller 5. The curved-guide-plate channel 171 has a core loading end 171a and a core unloading end 171b. The curved guide plates 25 are distributed and spaced from each other by a fixed distance along an axial direction of the shaft 51. Between adjacent curved guide plates 25, a pre-winding plate 28 is coupled (also see
Also referring to
In the preferred embodiment of the present invention, the gluing mechanism 14 is employed to apply the initial glue 42 to the core 13. However, in other practical applications, a second gluing mechanism 4 can be additionally provided downstream the perforation device 3 for applying a tail glue 41 to the thin material sheet 1 after the thin material sheet 1 passes through the perforation device 3. The application of the tail glue can be alternatively performed by any suitable means at a next work station after a thin material sheet roll 19 is completely rolled up. Further, the initial glue 42 provided by the gluing mechanism 14 can be alternatively formed through the rotation of a pushing member 4a that constitutes in part the second gluing mechanism 4, which may provide only the initial glue to the thin material sheet 1 or provide both the initial glue and the tail glue to the thin material sheet 1, and thus replaces the gluing mechanism 14.
Referring to both
Referring to
Referring to
Although the present invention has been described with reference to the best mode for carrying out the present invention, as well the preferred embodiments of the present invention, it is apparent to those skilled in the art that a variety of modifications and changes may be made without departing from the scope of the present invention which is intended to be defined by the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
97146164 A | Nov 2008 | TW | national |
Number | Name | Date | Kind |
---|---|---|---|
7350739 | Maddaleni et al. | Apr 2008 | B2 |
7469856 | Tsai | Dec 2008 | B1 |
7494086 | Tsai | Feb 2009 | B2 |
20050258298 | Maddaleni et al. | Nov 2005 | A1 |
20070023562 | Perini | Feb 2007 | A1 |
20070246595 | Tsai | Oct 2007 | A1 |
Number | Date | Country | |
---|---|---|---|
20100133312 A1 | Jun 2010 | US |