The present application relates generally to open bottom precast concrete arch structures of the type to be buried in the ground to form an overfilled structure, and more specifically to such a precast arch structure having a unique configuration that facilitates high overfill depths.
Various configurations for precast concrete arch structure have been used. It would be desirous to provide a configuration that is both adapted to high overfill applications and is also cost effective.
In one aspect, an overfilled structure includes a footing and first and second precast concrete bridge elements that have upper ends connected by a crown joint. The precast concrete bridge elements form an open bottom arch structure that is supported on the footing. The footing extends the full span of the lower end of the arch structure and includes spaced apart upwardly facing recesses to receive the lower ends of the precast concrete bridge elements. The precast bridge elements are sized and shaped such that the resulting arch structure has an upper portion that is formed by a first half-ellipse shape and a lower portion formed by part of a second half-ellipse shape. The two half-ellipse shapes meet at an elevation along the rise of the arch structure, and such elevation defines the largest span of the arch structure. The resulting arch structure includes lower ends that come back inward toward each other, such that the span at the bottom of the arch structure is less than the largest span.
In another aspect, an arch system for use in forming an overfilled structure includes at least one footing and at least one precast concrete bridge element forming an open bottom arch structure that is supported on the at least one footing. The arch structure has an upper portion and a lower portion that meet at an elevation along the rise of the arch structure, and such elevation defines the largest span of the arch structure. The arch structure includes lower ends that come back inward toward each other, such that the span at the bottom of the arch structure is less than the largest span.
The details of one or more embodiments are set forth in the accompanying drawings and the description below. Other features, objects, and advantages will be apparent from the description and drawings, and from the claims.
Referring to
The lower ends 24 and 26 are located in spaced-apart, upwardly facing recessed portions 28 and 30 of the footing 12. The footing 12 spans the lower end of the arch structure 10 between the lower ends 24 and 26 of the precast concrete bridge elements 14 and 16 and includes two end portions 34 and 36 on either side of middle portion 38. The end portions 34 and 36 extend upwardly to the recessed portions 28 and 30 at an angle θ relative to the horizontal. The lower ends 24 and 26 are supported at an elevation above an upper surface 40 of the middle portion 38. The footing 12 may be precast or cast-in-place. Earthen material around the footing may be suitably compacted and configured to support the footing. The footing has a generally inverted polygonal approximation to an arch shape (but could be a true arch shape) and serves to carry water, or it can be filled up (with gravel etc.) and form the support of a carriageway.
Referring to
In some embodiments, the resulting arch structure 10 has a largest span S1 of between about 18 feet and 24 feet, a rise R of between about 25 feet and 30 feet, a clearance C of between about 27 feet and 31 feet and a bottom span S2 of between about 15 feet and 18 feet (e.g., a largest span S1 of around 21 to 22 feet, a rise R of around 26.5 to 27.5 feet and a bottom span S2 of around 16 to 17 feet). The wall thickness T of the precast concrete bridge elements 14 and 16 is between about 1.1 and 1.5 feet. The largest span S1 may be at an elevation of between about nine and 13 feet from the lower end of the arch structure 10.
In some embodiments, a ratio of the largest span S1 to the rise R is about 75 to 85 percent, a ratio of the rise R to the bottom span S2 is about 165 to 175 percent and a ratio of the largest span S1 to the bottom span S2 is about 130 to 140 percent. A ratio of the height H of the largest span S1 to the rise R is about 35 to 45 percent.
In a typical application the arch system may be overfilled with any suitable material, the depth of which may vary. The overfill material may be compacted as necessary. In one example the overfill depth from the top of the arch to ground level may be between about 90 and 130 feet (e.g., between 105 and 115 feet).
Referring to
As can be seen by
Referring to
Referring back to
As shown by
In an alternative embodiment, the upper part of the structure may be a half-ellipse shape and the lower legs of the structure may be in the shape of a series of arc segments with ends tangentially connected. In still another embodiment, the upper part of the structure may be formed by a shape in the form of a series of arc segments with ends tangentially connected, and the lower legs of the structure may be in the shape of a series of arc segments with ends tangentially connected. In either case, the largest span will be defined where the tangent line of the overall structure is vertical.
A number of detailed embodiments have been described. Nevertheless, it will be understood that various modifications may be made. For example, multiple units may be connected together end-to-end to form an elongated bridge/tunnel to be overfilled. Adjacent sections may include joint seals as appropriate. End walls may also be provided for the elongated bridge/tunnel. Size and location of rebar within the precast elements may be varied according to expected overfill height and/or other requirements for a given installation. Accordingly, other embodiments are within the scope of the claims.
This application claims priority to U.S. Provisional Application No. 60/896,055, entitled “Precast Arch-Shaped Overfilled Structure”, filed Mar. 21, 2007, the details of which are incorporated by reference as if fully set forth herein.
Number | Date | Country | |
---|---|---|---|
60896055 | Mar 2007 | US |