Claims
- 1. In a process for preparing advanced resins by reacting one or more compounds having an average of more than one vicinal epoxide group per molecule with one or more compounds having an average of more than one, but not more than about two hydrogen atoms which are reactive with a vicinal epoxide group per molecule in the presence of a phosphonium or phosphine catalyst, with the proviso that (i) the composition can contain minor amounts of one or more compounds having an average or more than two hydrogen atoms which are reactive with a vicinal epoxide group per molecule which amounts are insufficient to cause gellation of the reaction mixture, and/or (ii) the composition can contain minor amounts of one or more compounds having an average of more than two vicinal epoxide groups per molecule which amounts are insufficient to cause gellation of the reaction mixture; wherein the improvement comprises employing as the phosphonium or phosphine catalyst, one having at least three C.sub.1 to C.sub.4 alkyl phenyl groups attached to the phosphorus atom per molecule.
- 2. The process of claim 1 wherein the catalyst is a phosphonium compound represented by the following general formulas II or III ##STR3## wherein each R is independently a C.sub.1 to C.sub.4 alkyl phenyl group; each R' is independently hydrogen, a monovalent hydrocarbyl group, a halogen, nitro or cyano or hydroxyl or alkyl or alkoxy or halogen substituted hydrocarbyl group having from 1 to about 20 carbon atoms, or an R group; Z is any suitable anion; and x has a value from 1 to about 20.
- 3. The process of claim 2 wherein the catalyst is ethyltri-o-tolylphosphonium iodide, ethyltri-p-tolylphosphonium bromide, ethyltri-o-tolylphosphonium acetate.acetic acid complex, ethyltri-p-tolylphosphonium acetate.acetic acid complex, 4-methoxybenzyltri-p-tolylphosphonium acetate.acetic acid complex, 4-methylbenzyltri-p-tolylphosphonium acetate.acetic acid complex, 4-methylbenzyltri-p-tolylphosphonium chloride, 4-methoxybenzyltri-p-tolylphosphonium chloride, or any combination thereof; the vicinal epoxide-containing compound is a glycidyl ether of a dihydric phenol or a diglycidyl ester of a dicarboxylic acid, or any combination thereof; and the compound containing hydrogen atoms reactive with an epoxide group is a dihydric phenol or a dicarboxylic acid, or any combination thereof and the like.
- 4. The process of claim 1 wherein the catalyst is a phosphine represented by the following general formula I ##STR4## wherein each R is independently a C.sub.1 to C.sub.4 alkyl phenyl group.
- 5. The process of claim 4 wherein the catalyst is tri-o-tolylphosphine, tri-p-tolylphosphine, tri-m-tolylphosphine, or any combination thereof; the vicinal epoxide-containing compound is a glycidyl ether of a dihydric phenol or a diglycidyl ester of a dicarboxylic acid, or any combination thereof; and the compound containing hydrogen atoms reactive with an epoxide group is a dihydric phenol or a dicarboxylic acid, or any combination thereof.
- 6. In a curable composition comprising (A) at least one vicinal epoxide-containing compound; (B) at least one phosphonium or phosphine compound; and (C) a suitable curing agent for said epoxy-containing compound, which curing agent contains (1) a plurality of hydrogen atoms reactive with a vicinal epoxide group or (2) one or more acid anhydride groups or (3) a combination of hydrogen atoms reactive with a vicinal epoxide group and acid anhydride groups; wherein the improvement comprises in employing as the phosphonium or phosphine catalyst, one having at least three C.sub.1 to C.sub.4 alkyl phenyl groups attached to the phosphorus atom per molecule.
- 7. The curable composition of claim 6 wherein the catalyst is a phosphonium compound represented by the following general formulas II or III ##STR5## wherein each R is independently a C.sub.1 to C.sub.4 alkyl phenyl group; each R' is independently hydrogen, a monovalent hydrocarbyl group, a halogen, nitro or cyano or hydroxyl or alkyl or alkoxy or halogen substituted hydrocarbyl group having from 1 to about 20 carbon atoms, or an R group; Z is any suitable anion; and x has a value from 1 to about 20.
- 8. The curable composition of claim 7 wherein the catalyst is ethyltri-o-tolylphosphonium iodide, ethyltri-p-tolylphosphonium bromide, ethyltri-o-tolylphosphonium acetate.acetic acid complex, ethyltri-p-tolylphosphonium acetate.acetic acid complex, 4-methoxybenzyltri-p-tolylphosphonium acetate.acetic acid complex, 4-methylbenzyltri-p-tolylphosphonium acetate.acetic acid complex, 4-methylbenzyltri-p-tolylphosphonium chloride, 4-methoxybenzyltri-p-tolylphosphonium chloride, or any combination thereof; the vicinal epoxide-containing compound is a glycidyl ether of a dihydric phenol or a diglycidyl ester of a dicarboxylic acid, or any combination thereof; and the curing agent is a bisphenol, a phenol or substituted phenol/aldehyde novolac resin, a dicarboxylic acid anhydride, or any combination thereof.
- 9. The curable composition of claim 6 wherein the catalyst is a phosphine represented by the following general formula I ##STR6## wherein each R is independently a C.sub.1 to C.sub.4 alkyl phenyl group.
- 10. The curable composition of claim 9 wherein the catalyst is tri-o-tolylphosphine, tri-p-tolylphosphine, tri-m-tolylphosphine, or any combination thereof; the vicinal epoxide-containing compound is a glycidyl ether of a dihydric phenol or a diglycidyl ester of a dicarboxylic acid, or any combination thereof; and the curing agent is a bisphenol, a phenol or substituted phenol/aldehyde novolac resin, a dicarboxylic acid anhydride, or any combination thereof.
CROSS-REFERENCE TO RELATED APPLICATION
This is a divisional of application Ser. No. 07/825,466, filed Jan. 24, 1992, now U.S. Pat. No. 5,202,407.
US Referenced Citations (33)
Foreign Referenced Citations (2)
Number |
Date |
Country |
1203943 |
Apr 1984 |
CAX |
0019852 |
Oct 1982 |
EPX |
Divisions (1)
|
Number |
Date |
Country |
Parent |
825466 |
Jan 1992 |
|