This invention relates to precise and reliable control of oxygen to carbon ratio in a catalytic partial oxidizer reformer (CPO) or an autothermal reformer (ATR), determining air and fuel flow rates in close proximity to the reformer, compensating for non-linear fuel or air flow versus fuel or air valve position and non-linear air flow versus air blower speed, and preventing water condensation corruption of flow measurements.
It is well known that catalytic partial oxidation reformers (CPOs) and autothermal reformers (ATRs) typically utilized to produce hydrogen-rich gas, referred to as “reformate”, require precise control of oxygen to carbon ratio in the fuel gas, and must have the level of sulfur therein reduced to below about 25 parts per billion by volume (ppbv) in order to avoid sulfur poisoning of the catalysts in subsequent fuel processing reactors to provide low COX gas called “syngas”.
As is known, the ratio of oxygen to carbon in a CPO should be about 0.62. Ratios higher than about 0.65 lead to higher temperature and resulting catalyst damage and causes reduced hydrogen concentration; ratios of less than 0.50 lead to reduced hydrogen production as well as elevated levels of methane.
Maintaining this ratio is extremely difficult during transients, that is, when there are increases or decreases in the fuel flow command. As an example, an increased fuel flow ahead of a hydrogen desulfurizer (HDS) will not show up downstream of the HDS immediately, since much of the initial increase in flow is absorbed in pressurizing the HDS due to its large volume. Therefore, a flow transmitter ahead of the HDS will be indicating to the air flow channel a higher flow of fuel than is actually reaching the CPO. This will cause a higher O2/C ratio in the CPO and thus reduced production of hydrogen in the CPO and possibly damage the CPO catalyst; conversely in a down transient of fuel flow.
Another hindrance to maintaining a proper O2/C ratio is the susceptibility of flow transducers to water condensation. Turbine type flow transducers have a tendency to drag causing false low flow indications, particularly in the presence of moisture, and they tend to “free-wheel” during down transients, due to inertia, causing false high flow indications. In an air flow path, moisture is always present and tends to condense on the air flow transducer. The air flow control responds to this false decrease in air flow indication by increasing the blower speed, resulting in excessive O2, CPO catalyst overheating, and possible catalyst damage.
Moisture also confounds thermal dispersion type flow meters; vortex-shedding type meters are not stable during fast transients. In short, no measurement technology has demonstrated the ability to accurately measure fuel and air flows during fast transients in the presence of moisture.
Objects of the invention include: more precise and reliable control of oxygen to carbon ratio in a hydrocarbon fuel reforming system employing an HDS; more precise and reliable control over the flow of fuel and air in a hydrocarbon fuel reformer; longer CPO and ATR catalyst life as a consequence of improved O2/C control; reduction of excessive oxygen as a consequence of fuel transients; improved tracking of air flow as a function of fuel flow in a reformer; more precise and reliable measurement of air flow and fuel flow in a reformer; ensuring that the fuel/air mix is fuel-rich during increasing fuel or decreasing fuel transients and improved control of hydrogen and carbon monoxide concentrations in the reformate produced by a hydrocarbon fuel reformer.
This invention is predicated in part on the realization that the 10 flow of fuel provided to a hydrocarbon fuel reformer such as a CPO or an ATR, and the commensurate amount of air flow, should be measured in as close proximity to the entrance of the reformer as possible. The invention is predicated in part on the realizations that the flow of fuel or air through a fuel or air valve is not a linear function of the positioning of the valve and that the flow of air produced by a blower is not a linear function of the speed of the blower. This invention is also predicated in part on the realization that water condensation from humidified air corrupts conventional air flow measurements.
According to the present invention, in a hydrocarbon fuel reformer system employing a reformer, such as a CPO or an ATR, the flow of fuel, used to determine the commensurate flow of air, is measured by a differential pressure sensor responsive to fuel flow changes at the inlet of the reformer. In accordance with the invention in one form, the flow is determined by a differential pressure transducer connected across a small orifice or laminar restriction for better resolution of flow in fuel flow transients. In another form, the invention measures fuel flow as a function of pressure drop across the HDS.
In accordance with the invention, the flow of air to the hydrocarbon fuel reforming system employing a CPO or ATR is determined by a differential pressure transducer responsive to air flow changes in close proximity to the reformer. In accordance with the invention in one form, the flow is determined by a differential pressure transducer connected across a small orifice or laminar flow restriction in the air flow between the air blower and the reformer. In another form, the invention measures air flow by a differential pressure transducer across a small orifice or laminar flow restriction that is fabricated as an integral part of the reformer air inlet. In this form, the orifice or laminar restriction will become heated by conduction of heat from the reformer vessel and will thereby resist water condensation from humidified air.
According to another aspect of the invention, the fuel flow command is adjusted to accommodate the non-linearity between the amount of fuel flow through a valve as a function of the position of the valve; this is applicable also to air flow when a valve is used to control air. In further accord with this aspect of the invention, an air blower command is compensated to accommodate the lack of linearity in the volume of air which a blower will provide as a function of the speed of the blower.
According further to the invention, differential pressure is measured across a flow restraint disposed integrally with the inlet of a hydrocarbon fuel reformer, in close thermal communication therewith.
Other objects, features and advantages of the present invention will become more apparent in the light of the following detailed description of exemplary embodiments thereof, as illustrated in the accompanying drawing.
In a first generation of the invention shown in
The reformate may be further processed, such as in a water-gas shift reactor and a preferential CO oxidizer to make syngas suitable for use, for instance, in a fuel cell. To make the hydrogen desulfurization process go forward, additional hydrogen is required in the HDS, which may be provided by the syngas resulting from the aforementioned downstream processing, such as in a line 23, as illustrated in copending U.S. patent application Ser. No. 10/731,291, filed Dec. 9, 2003. This forms no part of the invention and is not described further.
The flow transducer 13, which may comprise a turbine or other type of transducer, provides a signal on a line 24 as feedback to a summing junction 25, the positive input of which is a fuel flow command on a line 26. The error signal on a line 28 is provided to a proportional/integral gain 29, the output of which on a line 30 controls the positioning of the valve 12. So long as the flow indicated by the flow transducer 13 is the same as the flow dictated by the fuel flow command on the line 26, the valve will not be moved. Any variation in the fuel flow from the commanded amount will cause a commensurate adjustment in the position of the valve 12.
To ensure that conservative amounts of oxygen are always commanded as described hereinbefore, a minimum selecting function 31 selects the least of the fuel flow command on line 26 and the actual fuel flow on line 24 to apply over a line 32 to a fuel/air schedule 33 which is a fixed indication of the amount of air required for the amount of fuel flowing in order to provide the correct oxygen-to-carbon ratio. Thus, during an up-transient in the fuel flow command, the air fuel schedule will respond to the actual fuel flow, which will be lower than the command. During a down-transient, the schedule 33 will respond to the command, which will be lower than the actual flow. The output of the schedule 33 on a line 39 is applied to a summer 40, the negative input of which is on a line 41 from an air flow transducer 42, which may also be of the turbine or other type. The air flow error signal on a line 46 is provided to a proportional/integral gain 47, the output of which on a line 48 controls the speed of an air blower 49, which receives humidified air over a conduit 50. The output of the flow transducer 42 passes to the mixer 18 of the CPO 19 in an air flow path, such as a conduit 53.
Referring to
Another aspect of the present invention is illustrated in
If desired, the schedule 33 may be made responsive to some selected function 31a, other than the minimum selecting function 31 depending on the application of the invention. Or, it could be just the fuel flow command on line 26 if desired, while utilizing other aspects of the invention; this results in faster air response because the air controller does not wait for measured changes in the fuel flow. This approach requires that the integral and proportional gains of PI 29 and PI 47 are tuned to give about the same setpoint tracking (servo) response, which can provide very tight control of oxygen to carbon ratios on both up transients and down transients.
According to the invention, the non-linear relationship of air flow as function of air blower speed is illustrated in
In
As illustrated in
In
The most notable benefit of the invention is illustrated in
In another aspect of the invention, the air flow is measured by measuring pressure drop across an orifice or laminar flow restriction that is integrated with the CPO air inlet. This will heat the orifice or laminar flow restriction and prevent water condensation and associated corruption of air flow measurements. In
The aforementioned patent application is incorporated herein by reference.
Thus, although the invention has been shown and described with respect to exemplary embodiments thereof, it should be understood by those skilled in the art that the foregoing and various other changes, omissions and additions may be made therein and thereto, without departing from the spirit and scope of the invention.