The invention relates to medical devices and methods of use thereof, for ablating tissue in an alimentary tract.
Two of the major functions of the human esophagus are the transport of food from intake to the stomach and the prevention of retrograde flow of gastrointestinal contents. The retrograde flow is, in part, prevented by two esophageal sphincters which normally remain closed and which are functional rather than distinct entities. In particular, a lower esophageal sphincter normally remains closed until parasympathetic activation causes its relaxation, allowing food to pass into the stomach from the esophagus. Various types of food and other activity may cause relaxation of the sphincter, such as fatty meals, smoking and beverages having xanthene content. Certain drugs or pharmaceuticals also may cause relaxation of this lower esophageal sphincter, as well as localized trauma or other problems such as neuromuscular disorders.
Regardless, patients having such difficulties may present with clinical indications including dysphagia, or difficulty in swallowing, as well as more classic symptoms of heartburn and other similar complaints. Recurrent problems of this nature often lead to a disorder known as reflux esophagitis, consisting of esophageal mucosa damage due to the interaction of the gastric or intestinal contents with portions of the esophagus having tissue not designed to experience such interaction. As suggested above, the causative agent for such problems may vary. Esophagitis can lead to a pre-cancerous condition, known as Barrett's Esophagus, which occurs when cells of the mucosal lining become damaged and are at risk of neoplasia.
As described for example in copending, commonly owned U.S. application Ser. No. 10/754,445, filed Jan. 9, 2004, a treatment catheter having an expandable electrode support can be used for treating a circumferential region of the esophagus in order to ablate an abnormal mucosal layer of the esophagus using radiofrequency (RF) energy. When successful, the treatment results in regeneration of a normal mucosal layer substantially free from metaplastic and other damage epithelial cells characteristic of Barrett's Esophagus.
In some instances, however, such radiofrequency ablation treatment may not be entirely successful and one or more regions of abnormal mucosa may remain. Alternatively, some patients initially present to the physician with small discrete regions of abnormal mucosa that are better suited to for selective ablation rather than circumferential ablation.
In general, in one aspect, the invention features a method of ablating tissue in an alimentary tract including advancing an ablation structure into the alimentary tract, supporting the ablation structure with an endoscope within the alimentary tract, moving at least part of the ablation structure with respect to the endoscope and toward a tissue surface, and activating the ablation structure to ablate the tissue surface.
Implementations of the inventions can include one or more of the following features. The ablation structure can include a plurality of electrodes and the activating step can include applying energy to the electrodes. The step of advancing the ablation structure into the alimentary tract can include advancing the endoscope into the alimentary tract and advancing the ablation structure over the endoscope. The step of supporting the ablation structure can include inserting the endoscope into the ablation structure. In one embodiment, the ablation structure is supported by a sheath, and the step of inserting the endoscope into the ablation structure can include inserting the endoscope into the sheath. In addition, the step of inserting the endoscope into the sheath can include creating an opening in the sheath.
The step of advancing the ablation structure into the alimentary tract can alternatively include advancing the ablation structure through a channel of the endoscope. The step of supporting the ablation structure can include supporting the ablation structure with a channel of the endoscope.
Implementations of the invention can include one or more of the following features. The method of ablating tissue in an alimentary tract can further include advancing a deflection member through a channel of the endoscope. Furthermore, the step of moving at least part of the ablation structure can include deflecting the ablation structure with the deflection member. In one embodiment, the moving step includes inflating an inflatable member within the alimentary tract. In another embodiment, the moving step includes expanding a deflection member. In a further embodiment, the moving step includes moving a deflection member. In another embodiment, the moving step includes pivoting the ablation structure with respect to the endoscope.
Implementations of the invention can additionally include one or more of the following features. The method of ablating tissue in an alimentary tract can further include expanding the ablation structure from a first configuration to a second radially expanded configuration. In one embodiment, the method of the invention can further include attaching the ablation structure to the endoscope with an elastomeric sheath. In another embodiment, the ablation structure is attached to a rolled sheath and the method further includes unrolling the sheath over an outside surface of the endoscope. In a related embodiment, the unrolling step further includes unrolling the sheath over part of the ablation structure.
Implementations of the invention can additionally include one or more of the following features. The ablation structure can be attached to a channel of the endoscope. The tissue surface to be ablated can include a first treatment area, the applying step including activating the ablation structure to ablate the first treatment area, the method further including moving the ablation structure to a second area without removing the ablation structure from the patient and activating the ablation structure to ablate the second tissue area.
In general, in one aspect, the invention features a method of ablating tissue in an alimentary tract including advancing an ablation structure into the alimentary tract, supporting the ablation structure with an endoscope within the alimentary tract, bending a distal end of the endoscope to move the ablation structure into contact with a tissue surface, and activating the ablation structure to ablate the tissue surface.
Implementations of the invention can additionally include one or more of the following features. The method can further include a step of moving the ablation structure with respect to the endoscope. The moving step can include pivoting the ablation structure with respect to the endoscope. In one embodiment the moving step includes moving the ablation structure radially outward from the endoscope. In a related embodiment, the tissue surface comprises a first treatment area, the activating step including activating the ablation structure to ablate the first treatment area, the method further including moving the ablation structure to a second area without removing the ablation structure from the patient and activating the ablation structure to ablate the second tissue area. In one embodiment, the ablation structure includes a plurality of electrodes and the activating step includes applying energy to the electrodes.
All publications and patent applications mentioned in this specification are herein incorporated by reference to the same extent as if each individual publication or patent application was specifically and individually indicated to be incorporated by reference.
The novel features of the invention are set forth with particularity in the appended claims. A better understanding of the features and advantages of the present invention will be obtained by reference to the following detailed description that sets forth illustrative embodiments, in which the principles of the invention are utilized, and the accompanying drawings of which:
A method of ablating tissue in an alimentary tract comprises the use of an ablation device including an ablation structure supported by conventional endoscopes 111, as illustrated in
In general, in one aspect a method of ablating tissue in an alimentary tract is provided. The method includes advancing an ablation structure into the alimentary tract while supporting the ablation structure with an endoscope. The method further includes moving at least part of the ablation structure with respect to the endoscope and toward a tissue surface; and activating the ablation structure to ablate the tissue surface. Moving at least part of the ablation structure with respect to the endoscope can include, but is not limited to movement toward, away from or along the endoscope. As shown in
The ablation structure 101, in one embodiment is an electrode structure configured and arranged to deliver energy comprising radiofrequency energy to the esophageal mucosa. It is envisioned that such an ablation structure 101 can include a plurality of electrodes. For example, two or more electrodes could be part of an ablation structure. The energy may be delivered at appropriate levels to accomplish ablation of mucosal or submucosal level tissue, or alternatively to cause injury to these tissues, while substantially preserving muscularis tissue. The term “ablation” as used herein means thermal damage to the tissue causing tissue or cell necrosis. Thermal damage can be achieved through heating tissue or cooling tissue (i.e. freezing). Typically, ablation in the present embodiments is designed to remove the entire mucosal lining in the treatment region, including the abnormal mucosa 7, for example, abnormal columnar growths, from the portions of the esophagus 5 so affected, and allow re-growth of a normal mucosal lining (see
Although radiofrequency energy is one advantageous form of energy for ablation, it is recognized that other advantageous energy forms including, for example, microwave energy, or photonic or radiant sources such as infrared or ultraviolet light, the latter possibly in combination with improved sensitizing agents. Photonic sources can include semiconductor emitters, lasers, and other such sources. It is also recognized that another embodiment of this invention may utilize heatable fluid or a cooling media such as liquid nitrogen, Freon®, non CFC refrigerants or CO2 as an ablation energy medium. For ablations using hot or cold fluids or gases, it is envisioned that the ablation system may require a means to circulate the heating/cool media from outside the patient to the heating/cooling balloon or other element and then back outside the patient again. Means for circulating media in cryosurgical probes are well known in the ablation arts. For example, and incorporated by reference herein, suitable circulating means are disclosed in U.S. Pat. No. 6,182,666 to Dobak, III; U.S. Pat. No. 6,193,644 to Dobak, III et al.; U.S. Pat. No. 6,237,355 to Li; and U.S. Pat. No. 6,572,610 to Kovalcheck et al.
In a particular embodiment, the energy delivered to the esophageal mucosa comprises radiofrequency energy that can be delivered from the energy delivery device 100. Radio frequency energy can be delivered in a number of ways. Usually, the radiofrequency energy will be delivered in a bipolar fashion from a bipolar array of electrodes positioned on the ablation structure 101, in some cases on an expandable structure, such as a balloon, frame, cage, or the like, which can expand and deploy the electrodes directly against or immediately adjacent to the mucosal tissue (e.g., through direct contact or through a dielectric membrane or other layer). Alternatively, the electrode structure may include a monopolar electrode structure which is energized by a radiofrequency power supply in combination with a return electrode typically positioned on the patient's skin, e.g., on the small of the back. In either case, the radiofrequency energy will typically be delivered at a high energy flux over a very short period of time in order to injure or ablate only the mucosal or submucosal levels of tissue without substantially heating or otherwise damaging the muscularis tissue. Wherein the ablation structure includes a plurality of electrodes, one or more of the electrodes can be bipolar or monopolar. Combinations of bipolar and monopolar electrodes are envisioned.
The ablation structure 101 can be arranged and configured in any of a number ways with regard to shape and size. Typically, the array has an area in the range from substantially 0.5 cm2 to 9.0 cm2. Typical shapes would include rectangular, circular or oval. In one embodiment, the ablation structure 101 has an area of 2.5 cm2. In another embodiment, the ablation structure 101 has an area of 4 cm2 and dimensions of 2 cm×2 cm.
The housing 107 is arranged and configured to support the ablation structure 101. The housing 107 can be made of any suitable material for withstanding the high energy flux produced by the ablation structure 101. As shown in
The electrical connections 109 of the ablation device connects the ablation structure 101 to a power source. The electrical connections 109 can include a single wire or plurality of wires as needed to provide controlled energy delivery through the ablation structure 101. In one embodiment, the electrical connections 109 include low electrical loss wires such as litz wire.
The inflation line 113 is arranged and configured to transport an expansion medium in the form of fluid or gas to and from the inflation member 105. In one embodiment, the inflation line is a flexible tube. The inflation line 113 can be made of polymer or co-polymers, for example polyimide, polyurethane, polyethylene terephthalate (PET), polyamides (nylon) or the like. Typically, the expansion medium is a suitable fluid or gas.
The inflation member 105 is designed to deflect the ablation device 100 in relation to a tissue surface 3. The inflation member 105 can be reversibly expanded to an increased profile. In one embodiment, the inflation member 105 additionally serves as an attachment means for support of the ablation device 100 by an endoscope 111. As shown in
The inflation member 105 can be designed to be compliant, non-compliant or semi-compliant. The inflation member 105 can be made of a thin, flexible, bladder made of a material such as polymer, for example polyimide, polyurethane, polyethylene terephthalate (PET), or the like. In one embodiment, the inflation member is a balloon. Inflation of the inflation member 105 can be achieved through the inflation line 113 using, for example, controlled delivery of fluid or gas expansion medium. The expansion medium can include a compressible fluid such as air. The expansion medium may alternatively comprise an incompressible fluid, such as water, saline solution or the like.
As shown in
One method of ablating tissue in an alimentary tract can include a first step of advancing an ablation structure 101, into the alimentary tract. In a second step, the ablation structure 101 is supported with an endoscope 111 within the alimentary tract. In a third step, the ablation structure 101 is deflected toward a tissue surface 3. In a forth step, energy can be applied to the ablation structure 101 to ablate the tissue surface 3.
In another method, the step of advancing an endoscope-supported ablation structure 101 can include advancing the endoscope 111 into the alimentary tract and advancing the ablation structure 101 over the endoscope 111. For example, the endoscope 111 can be positioned relative to an ablation target tissue surface 3 after which the ablation structure 101 can be advanced over the outside of the endoscope 111 for ablating the target tissue surface 3.
In a further method, the step of supporting the ablation structure 101 with an endoscope 111 includes inserting the endoscope 111 into the ablation structure 101 (see for example,
In a particular method, a distal portion of a sheath 103 having a smaller outer diameter than a proximal portion of the sheath 103, is adapted to be expanded when an endoscope 111 is inserted into it.
In another method, the step of advancing the ablation structure 101 into the alimentary tract includes advancing the ablation structure 101 through a channel of the endoscope 111 from either the endoscopes proximal or distal end (see as discussed below for
As illustrated in
As shown in
As shown in
As further illustrated in
In addition, when the deflection member 150 is advanced or moved proximally or distally within the endoscope internal working channel 211, the deflection member 150 is accordingly advanced through a channel of the endoscope 111. In another implementation, as shown in
As shown in
In another ablation method, an additional step includes moving the ablation structure 101 with respect to the endoscope 111 within the alimentary tract. As illustrated in
Referring to
As shown in
As shown in
Briefly, in each case moving the deflection 150 is used to change the deflection member 150 from a non-deployed to a deployed configuration. As shown in
As shown in
As shown in
As shown in
In another method, the step of attaching the ablation structure 101 to the endoscope 111 includes attaching the ablation structure 101 to an outside surface of the endoscope. Alternatively, the attaching step can include, for example, attaching to an inside surface, an outside or inside feature of the endoscope, or any combinations of the above. Lubricants such as water, IPA, jelly or oil could be use to aid attachment & removal of the ablation device from the endoscope.
As shown in
In another method, as shown in
In one method of ablating tissue in an alimentary tract, the tissue surface 3 can include a first treatment area and activation of the ablation structure 101 step can include activation of the ablation structure 101 to ablate the first treatment area, and further include moving the ablation structure 101 to a second area without removing the ablation structure 101 from the patient and activating the ablation structure 101 to ablate the second tissue area 3 (see
In general, in another aspect, an ablation device 100 is provided that includes an ablation structure 101 removably coupled to an endoscope distal end 110, and a deflection mechanism adapted and configured to move the ablation structure 101 toward a tissue surface 3 (see for example,
In a related embodiment, the ablation device 100 additionally includes an ablation structure movement mechanism adapted to move the ablation structure 101 with respect to the endoscope 111. As discussed below and shown in
In another embodiment, the ablation device 100 additionally includes a coupling mechanism designed to fit over an outside surface of an endoscope 111, to couple the ablation structure 101 with the endoscope 111. For example, as discussed above and shown in
As shown in
In another embodiment, as shown in
In another embodiment, as shown in
In yet another embodiment, the sheath 103 includes an optically transmissive portion 158 adapted and configured to cooperate with a visual channel 161 of an endoscope 111. For example, the sheath 103 could be made of clear, translucent or transparent polymeric tubing including PVC, acrylic and Pebax® (polyether block amide). As shown in
In another implementation, the transmissive portion 158 of the sheath 103 can be reinforced structurally with coil or braid elements incorporated therein to prevent ovalization and/or collapsing of the sheath 103, particularly while deflecting the ablation device 100
As shown in
In a further embodiment, the sheath 103 includes a slit 203 formed in a proximal portion of the sheath 103, the slit 203 being designed to open to admit an endoscope distal end 110 into the sheath 103. As shown in
As shown in
As shown in
In general, in another aspect, a method of ablating tissue in an alimentary tract includes advancing an ablation structure 101 into the alimentary tract while supporting the ablation structure 101 with an endoscope 111. The endoscope distal end 110 can be bent to move the ablation structure 101 into contact with a tissue surface followed by activation of the ablation structure 101 to ablate the tissue surface 3 (see e.g.,
In general, in another aspect the coupling mechanism is designed to fit over an outside surface of an endoscope 111, to couple the ablation structure 101 with the endoscope 111, rather than being for example, a sheath (as discussed above), is adapted and configured to provide a certain freedom of movement to the ablation structure 101, including but not limited to flexing and/or rotating and/or pivoting with respect to the endoscope 111 when coupled to the endoscope 111. It is contemplated that the freedom of movement is about one, two or three axis thereby providing one, two or three degrees of freedom. Examples of suitable coupling mechanisms include but are not limited to a flex joint, pin joint, u joint, ball joint or any combination thereof. The following described coupling mechanism embodiments advantageously provide for a substantially uniform apposition force between a supporting endoscope 111 and an ablation structure 101 when localized at a target tissue surface 3.
As shown in
As shown in
As shown in
As shown in
In another embodiment, the ablation device 100 additionally includes an alternative coupling mechanism between the ablation device 100 and an endoscope 111 that is arranged and configured to fit within a channel of an endoscope 111. The coupling mechanism can be an internal coupling mechanism 215 and can be configured and arranged to couple the ablation structure 101 within an internal working channel 211 of an endoscope 111 (see
As shown in
In each of the embodiments described above and shown in
In a related embodiment, again wherein the ablation device 100 additionally includes a coupling mechanism adapted and configured to fit within a channel of an endoscope 111, the coupling mechanism can include a shape memory member and the deflection mechanism can include a bent portion of the shape memory member. As shown in
In general, in one aspect, the ablation structure 101 of the ablation device 100 includes an optically transmissive portion 158 adapted and configured to cooperate with a visual channel of an endoscope 111. As shown in
In one embodiment, the ablation structure 101 of the ablation device 100 is further adapted and configured to move from a first configuration to a second radially expanded configuration. As shown in
The ablation device 100 shown in
As illustrated in
In a related alternative embodiment, the housing 107 and ablation structure 101 include an unconstrained shape that is radially expanded and includes one or more flex points to allow for collapsed or reduced radial expansion when positioned distally to the distal end 110 of an endoscope 111 and compressed by an elastomeric sheath 115 (not shown).
As shown in
In one embodiment, the deflection mechanism of the ablation device 100 includes an inflatable inflation member 105. As shown in
In another embodiment, the deflection mechanism includes an expandable member 156 (see
In another advantageous embodiment, the ablation device 100 further comprises a torque transmission member adapted and configured to transmit torque from a proximal end of the endoscope 111 to the ablation structure 101 to rotate the ablation structure 101 about a central axis of the endoscope 111. In a particular embodiment, the torque transmission member includes first and second interlocking members adapted to resist relative movement between the endoscope 111 and the ablation structure 101 about the central axis. As shown in
The sheath 103 can be, for example, an elastomeric sheath wherein the key 258 is attached to the outside of the sheath 103 substantially along a longitudinal axis of the sheath 103 (see
In use, this embodiment provides for a 1-to-1 torque transmission of the ablation device 100/endoscope 111 assembly when the endoscope proximal end 112 is manipulated, while also providing for positioning of the ablation structure 101 either proximal or distal to the endoscope distal end 110 in situ. Additionally, the sheath 103 can be pre-loaded into the catheter 254 or loaded separately
In general, in one aspect, an ablation device 100 is provided including an ablation structure 101, and a coupling mechanism adapted to removably couple the ablation structure 101 to a distal end 110 of an endoscope 111 and to permit the ablation structure 101 to rotate and/or pivot with respect to the endoscope when coupled to the endoscope (see generally
While preferred embodiments of the present invention have been shown and described herein, it will be obvious to those skilled in the art that such embodiments are provided by way of example only. Numerous variations, changes, and substitutions will now occur to those skilled in the art without departing from the invention. It should be understood that various alternatives to the embodiments of the invention described herein may be employed in practicing the invention. It is intended that the following claims define the scope of the invention and that methods and structures within the scope of these claims and their equivalents be covered thereby.
Number | Name | Date | Kind |
---|---|---|---|
552832 | Fort | Jan 1896 | A |
1798902 | Raney | Mar 1931 | A |
3517128 | Hines | Jun 1970 | A |
3901241 | Allen, Jr. | Aug 1975 | A |
3924628 | Droegemueller et al. | Dec 1975 | A |
4011872 | Komiya | Mar 1977 | A |
4196724 | Wirt et al. | Apr 1980 | A |
4304239 | Perlin | Dec 1981 | A |
4311154 | Sterzer et al. | Jan 1982 | A |
4407298 | Lentz et al. | Oct 1983 | A |
4411266 | Cosman | Oct 1983 | A |
4423812 | Sato | Jan 1984 | A |
4532924 | Auth et al. | Aug 1985 | A |
4565200 | Cosman | Jan 1986 | A |
4640298 | Pless et al. | Feb 1987 | A |
4658836 | Turner | Apr 1987 | A |
4662383 | Sogawa et al. | May 1987 | A |
4674481 | Boddie, Jr. et al. | Jun 1987 | A |
4676258 | Inokuchi et al. | Jun 1987 | A |
4705041 | Kim | Nov 1987 | A |
4709698 | Johnston et al. | Dec 1987 | A |
4740207 | Kreamer | Apr 1988 | A |
4765331 | Petruzzi et al. | Aug 1988 | A |
4776349 | Nashef et al. | Oct 1988 | A |
4823791 | D'Amelio et al. | Apr 1989 | A |
4860744 | Johnson et al. | Aug 1989 | A |
4887614 | Shirakami et al. | Dec 1989 | A |
4895138 | Yabe | Jan 1990 | A |
4901737 | Toone | Feb 1990 | A |
4906203 | Margrave et al. | Mar 1990 | A |
4907589 | Cosman | Mar 1990 | A |
4930521 | Metzger et al. | Jun 1990 | A |
4943290 | Rexroth et al. | Jul 1990 | A |
4947842 | Marchosky et al. | Aug 1990 | A |
4949147 | Bacuvier | Aug 1990 | A |
4955377 | Lennox et al. | Sep 1990 | A |
4960106 | Kubokawa et al. | Oct 1990 | A |
4966597 | Cosman | Oct 1990 | A |
4969890 | Sugita et al. | Nov 1990 | A |
4976711 | Parins et al. | Dec 1990 | A |
4979948 | Geddes et al. | Dec 1990 | A |
4998539 | Delsanti | Mar 1991 | A |
5006119 | Acker et al. | Apr 1991 | A |
5010895 | Maurer et al. | Apr 1991 | A |
5019075 | Spears et al. | May 1991 | A |
5035696 | Rydell | Jul 1991 | A |
5045056 | Behl | Sep 1991 | A |
5046512 | Murchie | Sep 1991 | A |
5047028 | Qian | Sep 1991 | A |
5056532 | Hull et al. | Oct 1991 | A |
5057107 | Parins et al. | Oct 1991 | A |
5078717 | Parins et al. | Jan 1992 | A |
5083565 | Parins | Jan 1992 | A |
5084044 | Quint | Jan 1992 | A |
5088979 | Filipi et al. | Feb 1992 | A |
5094233 | Brennan | Mar 1992 | A |
5100423 | Fearnot | Mar 1992 | A |
5106360 | Ishiwara et al. | Apr 1992 | A |
5117828 | Metzger et al. | Jun 1992 | A |
5122137 | Lennox | Jun 1992 | A |
5125928 | Parins et al. | Jun 1992 | A |
5151100 | Abele et al. | Sep 1992 | A |
5156151 | Imran | Oct 1992 | A |
5163938 | Kambara et al. | Nov 1992 | A |
5171299 | Heitzmann et al. | Dec 1992 | A |
5190541 | Abele et al. | Mar 1993 | A |
5192297 | Hull | Mar 1993 | A |
5197963 | Parins | Mar 1993 | A |
5197964 | Parins | Mar 1993 | A |
5205287 | Erbel et al. | Apr 1993 | A |
5215103 | Desai | Jun 1993 | A |
5232444 | Just et al. | Aug 1993 | A |
5236413 | Fiering | Aug 1993 | A |
5242441 | Avitall | Sep 1993 | A |
5254126 | Filipi et al. | Oct 1993 | A |
5255679 | Imran | Oct 1993 | A |
5256138 | Vurek et al. | Oct 1993 | A |
5257451 | Edwards et al. | Nov 1993 | A |
5263493 | Avitall | Nov 1993 | A |
5275162 | Edwards et al. | Jan 1994 | A |
5275169 | Afromowitz et al. | Jan 1994 | A |
5275608 | Forman et al. | Jan 1994 | A |
5275610 | Eberbach | Jan 1994 | A |
5277201 | Stern | Jan 1994 | A |
5281216 | Klicek | Jan 1994 | A |
5281217 | Edwards et al. | Jan 1994 | A |
5281218 | Imran | Jan 1994 | A |
5290286 | Parins | Mar 1994 | A |
5292321 | Lee | Mar 1994 | A |
5293869 | Edwards et al. | Mar 1994 | A |
5305696 | Mendenhall | Apr 1994 | A |
5309910 | Edwards et al. | May 1994 | A |
5313943 | Houser et al. | May 1994 | A |
5314438 | Shturman | May 1994 | A |
5314466 | Stern et al. | May 1994 | A |
5316020 | Truffer | May 1994 | A |
5324284 | Imran | Jun 1994 | A |
5328467 | Edwards et al. | Jul 1994 | A |
5334196 | Scott et al. | Aug 1994 | A |
5336222 | Durgin, Jr. et al. | Aug 1994 | A |
5345936 | Pomeranz et al. | Sep 1994 | A |
5348554 | Imran et al. | Sep 1994 | A |
5363861 | Edwards et al. | Nov 1994 | A |
5365926 | Desai | Nov 1994 | A |
5365945 | Halstrom | Nov 1994 | A |
5366490 | Edwards et al. | Nov 1994 | A |
5368557 | Nita et al. | Nov 1994 | A |
5368592 | Stern et al. | Nov 1994 | A |
5370675 | Edwards et al. | Dec 1994 | A |
5370678 | Edwards et al. | Dec 1994 | A |
5372138 | Crowley et al. | Dec 1994 | A |
5383874 | Jackson et al. | Jan 1995 | A |
5383876 | Nardella | Jan 1995 | A |
5383917 | Desai et al. | Jan 1995 | A |
5385544 | Edwards et al. | Jan 1995 | A |
5397339 | Desai | Mar 1995 | A |
5398683 | Edwards et al. | Mar 1995 | A |
5401272 | Perkins | Mar 1995 | A |
5403311 | Abele et al. | Apr 1995 | A |
5409453 | Lundquist et al. | Apr 1995 | A |
5409483 | Campbell et al. | Apr 1995 | A |
5411025 | Webster, Jr. | May 1995 | A |
5413573 | Koivukangas | May 1995 | A |
5415657 | Taymor-Luia | May 1995 | A |
5421819 | Edwards et al. | Jun 1995 | A |
5423808 | Edwards et al. | Jun 1995 | A |
5423812 | Ellman et al. | Jun 1995 | A |
5425704 | Sakurai et al. | Jun 1995 | A |
5428658 | Oettinger et al. | Jun 1995 | A |
5433739 | Sluijter et al. | Jul 1995 | A |
5435805 | Edwards | Jul 1995 | A |
5441499 | Fritzsch | Aug 1995 | A |
5443470 | Stern et al. | Aug 1995 | A |
5454782 | Perkins | Oct 1995 | A |
5454809 | Janssen | Oct 1995 | A |
5456662 | Edwards et al. | Oct 1995 | A |
5456682 | Edwards et al. | Oct 1995 | A |
5458571 | Lampropoulos et al. | Oct 1995 | A |
5458596 | Lax et al. | Oct 1995 | A |
5458597 | Edwards et al. | Oct 1995 | A |
5462545 | Wang et al. | Oct 1995 | A |
5465717 | Imran et al. | Nov 1995 | A |
5470308 | Edwards et al. | Nov 1995 | A |
5471982 | Edwards et al. | Dec 1995 | A |
5472441 | Edwards et al. | Dec 1995 | A |
5484400 | Edwards et al. | Jan 1996 | A |
5486161 | Lax et al. | Jan 1996 | A |
5490984 | Freed | Feb 1996 | A |
5496271 | Burton et al. | Mar 1996 | A |
5496311 | Abele et al. | Mar 1996 | A |
5500012 | Brucker et al. | Mar 1996 | A |
5505728 | Ellman et al. | Apr 1996 | A |
5505730 | Edwards | Apr 1996 | A |
5507743 | Edwards et al. | Apr 1996 | A |
5509419 | Edwards et al. | Apr 1996 | A |
5514130 | Baker | May 1996 | A |
5514131 | Edwards et al. | May 1996 | A |
5517989 | Frisbie et al. | May 1996 | A |
5520684 | Imran | May 1996 | A |
5522815 | Durgin, Jr. et al. | Jun 1996 | A |
5524622 | Wilson | Jun 1996 | A |
5531676 | Edwards et al. | Jul 1996 | A |
5531677 | Lundquist et al. | Jul 1996 | A |
5533958 | Wilk | Jul 1996 | A |
5536240 | Edwards et al. | Jul 1996 | A |
5536267 | Edwards et al. | Jul 1996 | A |
5540655 | Edwards et al. | Jul 1996 | A |
5542916 | Hirsch et al. | Aug 1996 | A |
5542928 | Evans et al. | Aug 1996 | A |
5549644 | Lundquist et al. | Aug 1996 | A |
5549661 | Kordis et al. | Aug 1996 | A |
RE35330 | Malone et al. | Sep 1996 | E |
5554110 | Edwards et al. | Sep 1996 | A |
5556377 | Rosen et al. | Sep 1996 | A |
5558672 | Edwards et al. | Sep 1996 | A |
5558673 | Edwards et al. | Sep 1996 | A |
5562720 | Stern et al. | Oct 1996 | A |
5566221 | Smith et al. | Oct 1996 | A |
5569241 | Edwards | Oct 1996 | A |
5571116 | Bolanos et al. | Nov 1996 | A |
5572578 | Lin et al. | Nov 1996 | A |
5578007 | Imran | Nov 1996 | A |
5588432 | Crowley | Dec 1996 | A |
5588960 | Edwards et al. | Dec 1996 | A |
5591195 | Taheri et al. | Jan 1997 | A |
5599345 | Edwards et al. | Feb 1997 | A |
5609151 | Mulier et al. | Mar 1997 | A |
5620480 | Rudie | Apr 1997 | A |
5621780 | Smith et al. | Apr 1997 | A |
5624439 | Edwards et al. | Apr 1997 | A |
5651780 | Jackson et al. | Jul 1997 | A |
5651788 | Fleischer et al. | Jul 1997 | A |
5658278 | Imran et al. | Aug 1997 | A |
5672153 | Lax et al. | Sep 1997 | A |
5676674 | Bolanos et al. | Oct 1997 | A |
5688266 | Edwards et al. | Nov 1997 | A |
5688490 | Tournier et al. | Nov 1997 | A |
5702438 | Avitall | Dec 1997 | A |
5709224 | Behl et al. | Jan 1998 | A |
5713942 | Stern et al. | Feb 1998 | A |
5716410 | Wang et al. | Feb 1998 | A |
5720293 | Quinn et al. | Feb 1998 | A |
5730128 | Pomeranz et al. | Mar 1998 | A |
5732698 | Swanson et al. | Mar 1998 | A |
5738096 | Ben-Haim | Apr 1998 | A |
5748699 | Smith | May 1998 | A |
5769846 | Edwards et al. | Jun 1998 | A |
5769880 | Truckai et al. | Jun 1998 | A |
5779698 | Clayman et al. | Jul 1998 | A |
5797835 | Green | Aug 1998 | A |
5797903 | Swanson et al. | Aug 1998 | A |
5800334 | Wilk | Sep 1998 | A |
5800429 | Edwards | Sep 1998 | A |
5807261 | Benaron et al. | Sep 1998 | A |
5820629 | Cox | Oct 1998 | A |
5823197 | Edwards | Oct 1998 | A |
5823955 | Kuck et al. | Oct 1998 | A |
5827273 | Edwards | Oct 1998 | A |
5830129 | Baer et al. | Nov 1998 | A |
5830213 | Panescu et al. | Nov 1998 | A |
5833688 | Sieben et al. | Nov 1998 | A |
5836874 | Swanson et al. | Nov 1998 | A |
5842984 | Avitall | Dec 1998 | A |
5846196 | Siekmeyer et al. | Dec 1998 | A |
5860974 | Abele | Jan 1999 | A |
5861036 | Godin | Jan 1999 | A |
5863291 | Schaer | Jan 1999 | A |
5868785 | Tal et al. | Feb 1999 | A |
5871483 | Jackson et al. | Feb 1999 | A |
5876340 | Tu et al. | Mar 1999 | A |
5888743 | Das | Mar 1999 | A |
5891134 | Goble et al. | Apr 1999 | A |
5895355 | Schaer | Apr 1999 | A |
5902263 | Patterson et al. | May 1999 | A |
5925044 | Hofmann et al. | Jul 1999 | A |
5938694 | Jaraczewski et al. | Aug 1999 | A |
5964755 | Edwards | Oct 1999 | A |
5976129 | Desai | Nov 1999 | A |
5984861 | Crowley | Nov 1999 | A |
5997534 | Tu et al. | Dec 1999 | A |
6004262 | Putz et al. | Dec 1999 | A |
6006755 | Edwards | Dec 1999 | A |
6010511 | Murphy | Jan 2000 | A |
6012457 | Lesh | Jan 2000 | A |
6016437 | Tu et al. | Jan 2000 | A |
6023638 | Swanson et al. | Feb 2000 | A |
6027499 | Johnston et al. | Feb 2000 | A |
6033397 | Laufer et al. | Mar 2000 | A |
6039701 | Sliwa et al. | Mar 2000 | A |
6041260 | Stern et al. | Mar 2000 | A |
6044846 | Edwards | Apr 2000 | A |
6053913 | Tu et al. | Apr 2000 | A |
6056744 | Edwards | May 2000 | A |
6059719 | Yamamoto et al. | May 2000 | A |
6068629 | Haissaguerre et al. | May 2000 | A |
6071277 | Farley et al. | Jun 2000 | A |
6073052 | Zelickson et al. | Jun 2000 | A |
6086558 | Bower et al. | Jul 2000 | A |
6086583 | Ouchi | Jul 2000 | A |
6091993 | Bouchier et al. | Jul 2000 | A |
6091995 | Ingle et al. | Jul 2000 | A |
6092528 | Edwards | Jul 2000 | A |
6095966 | Chomenky et al. | Aug 2000 | A |
6096054 | Wyzgala et al. | Aug 2000 | A |
6102908 | Tu et al. | Aug 2000 | A |
6112123 | Kelleher et al. | Aug 2000 | A |
6120434 | Kimura et al. | Sep 2000 | A |
6123703 | Tu et al. | Sep 2000 | A |
6123718 | Tu et al. | Sep 2000 | A |
6138046 | Dalton | Oct 2000 | A |
6142994 | Swanson et al. | Nov 2000 | A |
6146149 | Daoud | Nov 2000 | A |
6162237 | Chan | Dec 2000 | A |
6179836 | Eggers et al. | Jan 2001 | B1 |
6182666 | Dobak, III | Feb 2001 | B1 |
6183468 | Swanson et al. | Feb 2001 | B1 |
6197022 | Baker | Mar 2001 | B1 |
6237355 | Li | May 2001 | B1 |
6238392 | Long | May 2001 | B1 |
6245065 | Panescu et al. | Jun 2001 | B1 |
6254598 | Edwards et al. | Jul 2001 | B1 |
6258087 | Edwards et al. | Jul 2001 | B1 |
6258118 | Baum et al. | Jul 2001 | B1 |
6273886 | Edwards et al. | Aug 2001 | B1 |
6321121 | Zelickson et al. | Nov 2001 | B1 |
6325798 | Edwards et al. | Dec 2001 | B1 |
6325800 | Durgin et al. | Dec 2001 | B1 |
6338726 | Edwards et al. | Jan 2002 | B1 |
6355031 | Edwards et al. | Mar 2002 | B1 |
6355032 | Hovda et al. | Mar 2002 | B1 |
6358245 | Edwards et al. | Mar 2002 | B1 |
6363937 | Hovda et al. | Apr 2002 | B1 |
6383181 | Johnston et al. | May 2002 | B1 |
6394949 | Crowley et al. | May 2002 | B1 |
6402744 | Edwards et al. | Jun 2002 | B2 |
6405732 | Edwards et al. | Jun 2002 | B1 |
6409723 | Edwards | Jun 2002 | B1 |
H2037 | Yates et al. | Jul 2002 | H |
6415016 | Chomenky et al. | Jul 2002 | B1 |
6416511 | Lesh et al. | Jul 2002 | B1 |
6423058 | Edwards et al. | Jul 2002 | B1 |
6425877 | Edwards | Jul 2002 | B1 |
6428536 | Panescu et al. | Aug 2002 | B2 |
6432104 | Durgin et al. | Aug 2002 | B1 |
6440128 | Edwards et al. | Aug 2002 | B1 |
6448658 | Takata et al. | Sep 2002 | B2 |
6451014 | Wakikaido et al. | Sep 2002 | B1 |
6454790 | Neuberger et al. | Sep 2002 | B1 |
6464697 | Edwards et al. | Oct 2002 | B1 |
6468272 | Koblish et al. | Oct 2002 | B1 |
6514249 | Maguire et al. | Feb 2003 | B1 |
6535768 | Baker et al. | Mar 2003 | B1 |
6544226 | Gaiser et al. | Apr 2003 | B1 |
6547776 | Gaiser et al. | Apr 2003 | B1 |
6547787 | Altman et al. | Apr 2003 | B1 |
6551302 | Rosinko et al. | Apr 2003 | B1 |
6551310 | Ganz et al. | Apr 2003 | B1 |
6551315 | Kortenbach et al. | Apr 2003 | B2 |
6562034 | Edwards et al. | May 2003 | B2 |
6572578 | Blanchard | Jun 2003 | B1 |
6572610 | Kovalcheck et al. | Jun 2003 | B2 |
6572639 | Ingle et al. | Jun 2003 | B1 |
6589238 | Edwards et al. | Jul 2003 | B2 |
6613047 | Edwards | Sep 2003 | B2 |
6641581 | Muzzammel | Nov 2003 | B2 |
6663626 | Truckai et al. | Dec 2003 | B2 |
6673070 | Edwards et al. | Jan 2004 | B2 |
6682528 | Frazier et al. | Jan 2004 | B2 |
6689130 | Arail et al. | Feb 2004 | B2 |
6695764 | Silverman et al. | Feb 2004 | B2 |
6712074 | Edwards et al. | Mar 2004 | B2 |
6712814 | Edwards et al. | Mar 2004 | B2 |
6712815 | Sampson et al. | Mar 2004 | B2 |
6740082 | Shadduck | May 2004 | B2 |
6749607 | Edwards et al. | Jun 2004 | B2 |
6752806 | Durgin et al. | Jun 2004 | B2 |
6800083 | Hiblar et al. | Oct 2004 | B2 |
6837886 | Collins et al. | Jan 2005 | B2 |
6846312 | Edwards et al. | Jan 2005 | B2 |
6860878 | Brock | Mar 2005 | B2 |
6866663 | Edwards et al. | Mar 2005 | B2 |
6872206 | Edwards et al. | Mar 2005 | B2 |
6917834 | Koblish et al. | Jul 2005 | B2 |
6918906 | Long | Jul 2005 | B2 |
6923808 | Taimisto | Aug 2005 | B2 |
6929642 | Xiao et al. | Aug 2005 | B2 |
6953469 | Ryan | Oct 2005 | B2 |
6964661 | Rioux et al. | Nov 2005 | B2 |
6971395 | Edwards et al. | Dec 2005 | B2 |
6974456 | Edwards et al. | Dec 2005 | B2 |
6994704 | Qin et al. | Feb 2006 | B2 |
7056320 | Utley et al. | Jun 2006 | B2 |
7083620 | Jahns et al. | Aug 2006 | B2 |
7089063 | Lesh et al. | Aug 2006 | B2 |
7097644 | Long | Aug 2006 | B2 |
7122031 | Edwards et al. | Oct 2006 | B2 |
7125407 | Edwards et al. | Oct 2006 | B2 |
7160294 | Croft | Jan 2007 | B2 |
7165551 | Edwards | Jan 2007 | B2 |
7167758 | Baker et al. | Jan 2007 | B2 |
7179257 | West et al. | Feb 2007 | B2 |
7293563 | Utley et al. | Nov 2007 | B2 |
7326207 | Edwards | Feb 2008 | B2 |
7329254 | West et al. | Feb 2008 | B2 |
7347860 | Ouchi | Mar 2008 | B2 |
7425212 | Danek et al. | Sep 2008 | B1 |
20010041887 | Crowley | Nov 2001 | A1 |
20020177847 | Long | Nov 2002 | A1 |
20020183739 | Long | Dec 2002 | A1 |
20030093117 | Saadat | May 2003 | A1 |
20030109837 | Mcbride-Sakal | Jun 2003 | A1 |
20030153905 | Edwards et al. | Aug 2003 | A1 |
20030158550 | Ganz et al. | Aug 2003 | A1 |
20030181900 | Long | Sep 2003 | A1 |
20030181905 | Long | Sep 2003 | A1 |
20030191512 | Laufer et al. | Oct 2003 | A1 |
20030216727 | Long | Nov 2003 | A1 |
20040073204 | Ryan et al. | Apr 2004 | A1 |
20040087936 | Stern et al. | May 2004 | A1 |
20040122452 | Deem et al. | Jun 2004 | A1 |
20040147916 | Baker | Jul 2004 | A1 |
20040153120 | Seifert et al. | Aug 2004 | A1 |
20040172016 | Bek et al. | Sep 2004 | A1 |
20040204708 | Edwards et al. | Oct 2004 | A1 |
20040215180 | Starkebaum et al. | Oct 2004 | A1 |
20040215235 | Jackson et al. | Oct 2004 | A1 |
20040215296 | Ganz et al. | Oct 2004 | A1 |
20040236316 | Danitz et al. | Nov 2004 | A1 |
20050010162 | Utley et al. | Jan 2005 | A1 |
20050033271 | Qin et al. | Feb 2005 | A1 |
20050070978 | Bek et al. | Mar 2005 | A1 |
20050090817 | Phan | Apr 2005 | A1 |
20050096713 | Starkebaum et al. | May 2005 | A1 |
20050107829 | Edwards et al. | May 2005 | A1 |
20050143727 | Koblish et al. | Jun 2005 | A1 |
20050149013 | Lee | Jul 2005 | A1 |
20050154386 | West et al. | Jul 2005 | A1 |
20050159743 | Edwards et al. | Jul 2005 | A1 |
20050171524 | Stern et al. | Aug 2005 | A1 |
20050187546 | Bek et al. | Aug 2005 | A1 |
20050215983 | Brock | Sep 2005 | A1 |
20050228286 | Messerly et al. | Oct 2005 | A1 |
20050245926 | Edwards et al. | Nov 2005 | A1 |
20050288664 | Ford et al. | Dec 2005 | A1 |
20060009758 | Edwards et al. | Jan 2006 | A1 |
20060015162 | Edwards et al. | Jan 2006 | A1 |
20060041256 | Edwards et al. | Feb 2006 | A1 |
20060069303 | Couvillon | Mar 2006 | A1 |
20060086363 | Qin et al. | Apr 2006 | A1 |
20060247614 | Sampson et al. | Nov 2006 | A1 |
20060259028 | Utley et al. | Nov 2006 | A1 |
20060259029 | Utley et al. | Nov 2006 | A1 |
20060259030 | Utley et al. | Nov 2006 | A1 |
20060282071 | Utley et al. | Dec 2006 | A1 |
20070066973 | Stern et al. | Mar 2007 | A1 |
20070100333 | Jackson et al. | May 2007 | A1 |
20070118159 | Deem et al. | May 2007 | A1 |
20070167963 | Deem et al. | Jul 2007 | A1 |
20070219570 | Deem et al. | Sep 2007 | A1 |
20080097427 | Stern et al. | Apr 2008 | A1 |
20080319350 | Wallace et al. | Dec 2008 | A1 |
20090012512 | Utley et al. | Jan 2009 | A1 |
20090012513 | Utley et al. | Jan 2009 | A1 |
20090012518 | Utley et al. | Jan 2009 | A1 |
20100063495 | Utley et al. | Mar 2010 | A1 |
Number | Date | Country |
---|---|---|
3838840 | May 1990 | DE |
4303882 | Aug 1994 | DE |
0 105 677 | Apr 1984 | EP |
0 115 420 | Aug 1984 | EP |
0139607 | May 1985 | EP |
0 251 745 | Jan 1988 | EP |
0521595 | Jan 1993 | EP |
0608609 | Aug 1994 | EP |
1323382 | Jul 2003 | EP |
WO 9101773 | Feb 1991 | WO |
WO 9103207 | Mar 1991 | WO |
WO 9210142 | Jun 1992 | WO |
WO 9308755 | May 1993 | WO |
WO 9407446 | Apr 1994 | WO |
WO 9410925 | May 1994 | WO |
WO 9421165 | Sep 1994 | WO |
WO 9421178 | Sep 1994 | WO |
WO 9422366 | Oct 1994 | WO |
WO 9426178 | Nov 1994 | WO |
WO 9518575 | Jul 1995 | WO |
WO 9519142 | Jul 1995 | WO |
WO 9525472 | Sep 1995 | WO |
WO 9600042 | Jan 1996 | WO |
WO 9616606 | Jun 1996 | WO |
WO 9629946 | Oct 1996 | WO |
WO 9704702 | Feb 1997 | WO |
WO 9706857 | Feb 1997 | WO |
WO 9732532 | Sep 1997 | WO |
WO 9743971 | Nov 1997 | WO |
WO 9812999 | Apr 1998 | WO |
WO 9814238 | Apr 1998 | WO |
WO 9818393 | May 1998 | WO |
WO 9903413 | Jan 1999 | WO |
WO 9935987 | Jul 1999 | WO |
WO 9942046 | Aug 1999 | WO |
WO 9955245 | Nov 1999 | WO |
WO 0001313 | Jan 2000 | WO |
WO 0059393 | Oct 2000 | WO |
WO 0062699 | Oct 2000 | WO |
WO 0066017 | Nov 2000 | WO |
WO 0066021 | Nov 2000 | WO |
WO 0066052 | Nov 2000 | WO |
WO 00069376 | Nov 2000 | WO |
WO 0122897 | Apr 2001 | WO |
WO 0135846 | May 2001 | WO |
WO 0145550 | Jun 2001 | WO |
WO 0189440 | Nov 2001 | WO |
WO 02096327 | Dec 2002 | WO |
WO 03015651 | Feb 2003 | WO |
WO 03070091 | Aug 2003 | WO |
WO 2004043280 | May 2004 | WO |
WO 2007001981 | Jan 2007 | WO |
WO 2007061984 | May 2007 | WO |
Number | Date | Country | |
---|---|---|---|
20070118106 A1 | May 2007 | US |