The present invention relates generally to a counter-swirl combustor and more specifically to a precision counter-swirl combustor.
In a gas turbine, engine air is mixed with fuel in a combustor. The combustor includes a combustion chamber in which the mixture of air and fuel is burned. Combustors are typically either cylindrical “can” combustors or are annular in shape. In an annular combustor, fuel is metered and injected into the combustor by multiple nozzles along with combustion air. The combustion air is swirled with the fuel via swirlers to create a relatively uniform mixture of air and fuel.
Uniformity is important in that if thorough mixing is not achieved, a non-uniform temperature variation of combustion products exiting the combustor will result. This, in turn, could potentially subject downstream turbine components to localized overheating. Such overheating could affect the durability of downstream turbine parts and could potentially decrease overall turbine efficiency and longevity. As will be readily appreciated, the more thorough the mixture of fuel and air, the lower the likelihood of localized overheating.
With the forgoing issues in mind, it is the general object of the present invention to provide a precision counter-swirl combustor that provides a level of temperature uniformity presently unknown in the art. In particular, it is the general object of the present invention to provide a precision forward-mounted counter-swirl combustor that employs air jets equipped with chutes, which allow for a degree of temperature uniformity presently unknown in the art.
It is an object of the present invention to provide an annular precision counter-swirl combustor.
It is another object of the present invention to provide an annular precision counter-swirl combustor that has an improved combustor exit temperature uniformity.
It is yet another object of the present invention to provide an annular precision counter-swirl combustor that has an improved combustor exit temperature uniformity through the use of air jets equipped with chutes.
It is an addition object of the present invention to provide an annular precision counter-swirl combustor that is forward mounted and that employs air jets equipped with chutes to impart an improved combustor exit temperature uniformity.
It is a further object of the present invention to provide a forward mounted annular precision counter-swirl combustor which addresses the effect of disturbances in the flow-field due to an upstream repeating feature such as a mounting strut.
These and other objects of the present invention will be better understood in view of the Figures and preferred embodiment described.
According to an embodiment of the present invention, an annular precision counter-swirl combustor includes a combustor having a forward end, an opposite aft end, and an interior. The combustor further including a fuel nozzle operatively connected to the forward end and a swirler for mixing fuel and air operatively connected to the forward end. The combustor also features at least one air inlet on said combustor, the air inlet including a chute for directing a passage of air through the inlet into the interior of the combustor. The combustor is secured to a fixed structure proximate the forward end of the combustor.
Referring now to
While air swirlers 10 are generally quite effective, the swirling motion can centrifuge hotter, less dense gasses toward a centerline of a fuel nozzle, creating a temperature “bulls-eye” at the exit of the combustor. To mitigate this effect, air swirlers 10 are typically followed by at least two rows of air inlets per injector side 40. As depicted, the inlets include primary or combustion inlets 30 and dilution inlets 35. The inlets 30, 35 let streams of cool air, referred to herein as combustion and dilution streams 50, 52, respectively, into the combustor to create a more thorough mixture, and therefore, a more uniform temperature distribution.
In particular, the air inlets 30, 35 attempt to direct air streams 50, 55 into the combustor to create a “picket fence” where hot gases in the combustor must pass through the focused air streams, i.e., “pickets” 50, 55 to maximize mixing. The air swirler 10 that is used in connection with such streams, however, reduces the efficacy of this approach as shown in
Referring now to
One potential solution is to provide inlets 30, 35 with rounded edges 65 as shown in
In view of the above, the present invention provides a combustor 90 that includes air inlets 70 equipped with chutes 80 as illustrated in
The chutes 80 effectively reduce the gap between the flow area and the physical area of the inlet 70 (
The chutes provide direction to the streams 50 at its initial entry into the combustor 90. Moreover, the chutes physically buttress the stream 50 and increase its penetration into and across the combustor interior. As such, by raising the Cd of the inlet 70 the chutes 80 reduce potential error and uncertainty in the location of the streams 50 present in combustors having sharp-edged inlets.
While the use of chutes 80 increases the certainty in the location of the streams 50 into the combustor to an extent, the present invention provides an even greater degree of certainty by combining the use of chutes with a forward mounted combustor 90. As stated previously, many combustors are rear or aft mounted and are secured within the engine assembly at the aft or downstream end of the combustor proximate the engine turbines. Notably, the aft end is opposite the end of the combustor that receives the fuel nozzles and the air swirlers, which is referred to as the forward end.
As will be appreciated, when the point of attachment is at the aft end, the forward end of the combustor is capable of movement, which is undesirable. In many cases, the bulkhead at the forward combustor end can shift relative to the air inlets. This movement causes the position of the fuel nozzles and air swirlers to also shift relative to the inlets. As such, the relative movement creates uncertainty in the location of the fuel nozzle and makes consistently locating combustor air inlets, and air flows, relative to the fuel nozzles difficult. In view of the above, the present invention combines air inlets with chutes with a forward combustor mount to create an annular combustor that provides a level of certainty with respect to the location of fuel nozzles and inlet air flows, and resulting uniformity in temperature profile, presently unknown in the art.
Referring to
The strut 125 increases the efficacy of the inventive air inlets 70 equipped with chutes 80. As stated above, the chutes have a Cd of 0.8 or greater and can direct and guide air flows precisely. In order to capitalize on this enhanced precision, the strut 125 decreases variability and uncertainty in the location of the fuel nozzle and swirler relative to the chutes. Therefore, the chutes can add a degree of precision not known in the art and can create a mixture of fuel and air with an enhanced uniformity. The enhanced uniformity in the fuel/air mixture leads to a greater uniformity in temperature of exiting combustion products, which increases the efficiency and longevity of downstream turbines.
The inventive combustor also compensates for the general effects of a forward mounted strut, or any other repeating upstream feature, on the air flow field over the combustor liners and through the inlets. As will be apparent, if the total number of struts is less than the total number of fuel nozzles and air inlets, only some air inlets, and air flows, will be affected be the presence of a strut. This could lead to a temperature increase for certain nozzles. To combat this, the air flow to the hotter nozzles could be increased by changing the area and location of, for example, an air inlet in the outside liner. That is, if every other nozzle has a strut, the inlets working in operation with the strutted nozzle can have an area or location different from the inlets without struts. As such, a pattern of inlets of multiple, different areas and/or locations could be employed to compensate for a specific strut pattern.
In sum, the present invention provides a precision annular combustor that combines air inlets with chutes and a forward combustor mounting position to increase uniformity in the mixture of air and fuel thereby creating a uniform temperature profile of combustion products exiting the combustor. Moreover, the present invention provides a method of alleviating any potential effects of a strut on air flowing into the combustor through the inlets by varying the circumference of specific inlets based on the presence or absence of a strut or other upstream repeating feature.
While many advantages of the present invention can be clearly seen from the embodiments described, it will be understood that the present invention is not limited to such embodiments. Those skilled in the art will appreciate that many alterations and variations are possible within the scope of the present invention.
The U.S. government may have certain rights in this invention, pursuant to Contract No. N00019-04-C-0093.
Number | Name | Date | Kind |
---|---|---|---|
2547619 | Buckland | Apr 1951 | A |
2699040 | Gaubatz | Jan 1955 | A |
3500639 | Stamm | Mar 1970 | A |
3905192 | Pierce et al. | Sep 1975 | A |
3981142 | Irwin | Sep 1976 | A |
4054028 | Kawaguchi | Oct 1977 | A |
4216652 | Herman et al. | Aug 1980 | A |
4244178 | Herman et al. | Jan 1981 | A |
4748806 | Drobny | Jun 1988 | A |
4875339 | Rasmussen et al. | Oct 1989 | A |
5067324 | Beytes et al. | Nov 1991 | A |
5235805 | Barbier et al. | Aug 1993 | A |
5323601 | Jarrell et al. | Jun 1994 | A |
5337583 | Giles et al. | Aug 1994 | A |
5524430 | Mazeaud et al. | Jun 1996 | A |
5560197 | Ansart et al. | Oct 1996 | A |
5581999 | Johnson | Dec 1996 | A |
5590530 | Owen et al. | Jan 1997 | A |
5687572 | Schrantz et al. | Nov 1997 | A |
6351949 | Rice et al. | Mar 2002 | B1 |
6675587 | Graves et al. | Jan 2004 | B2 |
20040261419 | McCaffrey et al. | Dec 2004 | A1 |
Entry |
---|
K. Ramamurthi, Characteristics of flow through small sharp-edged cylindrical orifices, Feb. 1999, Flow measurement and Instrumentation 10 (1999), p. 133-143. |
Number | Date | Country | |
---|---|---|---|
20100024427 A1 | Feb 2010 | US |