Precision electrode movement control for renal nerve ablation

Information

  • Patent Grant
  • 9358365
  • Patent Number
    9,358,365
  • Date Filed
    Saturday, July 30, 2011
    12 years ago
  • Date Issued
    Tuesday, June 7, 2016
    7 years ago
Abstract
A catheter is configured to access a renal artery. A lumen of the catheter's shaft is dimensioned to receive a flexible actuation member which extends between the shaft's proximal and distal ends. The actuation member is moveable within the lumen and subject to elastic deformation, friction, and/or whip along its length. A flexible support member is coupled to a distal end of the actuation member and extendible beyond a distal tip of the shaft. An RF ablation electrode at a distal end of the support member is configured to ablated perivascular renal nerve tissue. A position converter at the distal end of the shaft is configured to convert movement of the actuation member into one or both of controlled rotational and axial movement of the support member and electrode to one of a multiplicity of stable circumferential positions substantially free of elastic deformation, friction, and/or whip impacting actuation member movement.
Description
SUMMARY

Embodiments of the disclosure are directed to control mechanisms situated at a distal end of an elongated flexible member that provide for precision movement of a component coupled to a distal end or other portion of the control mechanism. Embodiments of the disclosure are directed to control mechanisms situated at a distal end of an elongated flexible member dimensioned for deployment within a vessel of the body that provide for precision movement of a component coupled to a distal end or other portion of the control mechanism. Various embodiments are directed to a position converter situated at a distal end of a catheter and configured to convert movement of a proximal actuation member into one or both of controlled rotational movement and controlled axial movement of a component coupled to a distal end of the position converter substantially free of one or more of elastic deformation, friction, and whip impacting actuation member movement. Various embodiments are directed to a position converter situated at a distal end of a catheter and configured to convert movement of a proximal actuation member into one or both of controlled rotational movement and controlled axial movement of a component coupled to a distal end of the position converter to one of a plurality of stable circumferential and/or axial positions.


The position converter may comprise various types of orientation, positioning, and/or indexing components. For example, in some embodiments, the position converter may comprise a ratcheting arrangement configured to convert axial movement of a proximal actuation member into one or both of controlled rotational movement and controlled axial movement of a component coupled to the distal end of the position converter. In other embodiments, the position converter may comprise a magnetic indexing arrangement configured to magnetically urge a component coupled to the distal end of the position converter to one of a plurality of stable circumferential and/or axial positions. In further embodiments, the position converter may comprise a geometric keyed orientation mechanism configured to guide a key component of a proximal actuation member into and along a keyway arrangement that limits movement of a component coupled to the distal end of the position converter to one of a plurality of stable circumferential positions and/or stable axial positions. The component coupled to the distal end of the position converter may comprise a medical device, such as a sensor, an electrode, an ablation device, or other medical instrument. The component may comprise, for example, an ablation electrode or other type of ablation device, such as an ultrasound, laser, microwave, or thermal ablation device, configured for one or both of ablation and monitoring/imaging.


Embodiments of the disclosure are generally directed to apparatuses and methods for ablating target tissue of the body from within a vessel. Embodiments are directed to high frequency AC ablation catheters, systems, and methods that employ a control mechanism for moving an electrode during ablation with precision. Various embodiments of the disclosure are directed to apparatuses and methods for ablating perivascular renal nerves, such as for the treatment of hypertension.


According to various embodiments, an apparatus includes a catheter comprising a flexible shaft having a proximal end, a distal end, a length, and a lumen extending between the proximal and distal ends. The length of the shaft is sufficient to access a location within the body at or proximate target tissue to be ablated. A flexible actuation member is provided within the lumen of the shaft and extends between the shaft's proximal and distal ends. The actuation member is moveable within the lumen of the shaft and subject to one or more of elastic deformation, friction, and whip along its length during movement within the shaft's lumen. A flexible support is coupled to a distal end of the actuation member and extendible beyond a distal tip of the shaft. An electrode is provided at a distal end of the support member and configured to contact tissue at or near the target tissue.


The electrode is configured to deliver high frequency AC energy sufficient to ablate the target tissue proximate the electrode. The support member is configured to maintain a desired position of the electrode. A position converter is provided at the distal end of the shaft and configured to convert movement of the actuation member into at least controlled rotational movement of the support member and the electrode to one of a plurality of stable circumferential positions substantially free of the one or more of elastic deformation, friction, and whip impacting actuation member movement. In some embodiments, the position converter is configured to convert axial movement of the actuation member, which is subject to elastic deformation, friction, and whip, into controlled axial movement of the support member and the electrode to one of a plurality of stable axial positions.


In accordance with various embodiments, a catheter includes a flexible shaft having a proximal end, a distal end, a length, and a lumen extending between the proximal and distal ends. The length of the shaft is sufficient to access a patient's renal artery relative to a percutaneous access location. A flexible actuation member is provided within the lumen and extends between the proximal and distal ends of the shaft. The actuation member is moveable within the lumen of the shaft and subject to one or more of elastic deformation, friction, and whip along its length during movement within the shaft's lumen. A flexible support is provided at a distal end of the actuation member and extendible beyond a distal tip of the shaft and into a lumen of the renal artery. An electrode is provided at a distal end of the support member and configured to contact an inner wall of the renal artery and deliver high frequency AC energy sufficient to ablate perivascular renal nerve tissue proximate the electrode. The support member is configured to urge the electrode into contact with the inner wall of the renal artery.


A position converter is provided at the distal end of the shaft and configured to convert movement of the actuation member into at least controlled rotational movement of the support member and the electrode to one of a plurality of stable circumferential positions substantially free of the one or more of elastic deformation, friction, and whip impacting actuation member movement. In some embodiments, the position converter is configured to convert axial movement of the actuation member, which is subject to elastic deformation, friction, and whip, into controlled axial movement of the support member and the electrode to one of a plurality of stable axial positions.


According to some embodiments, the position converter includes a ratcheting arrangement configured to mechanically convert axial movement of the actuation member into controlled rotational movement of the support member and the electrode to one of the plurality of stable circumferential and/or axial positions. In other embodiments, the position converter includes a magnetic indexing arrangement configured to magnetically urge the support member and the electrode to one of the plurality of stable circumferential and/or axial positions. In further embodiments, the position converter includes a geometric keyed orientation mechanism configured to guide a key component of the support member into and along a keyway arrangement that limits movement of the support member and the electrode to one of the plurality of stable circumferential and/or axial positions.


In accordance with various embodiments, a catheter includes a flexible shaft having a proximal end, a distal end, a length, and a lumen extending between the proximal and distal ends. The length of the shaft is sufficient to access target tissue of the body. A slotted tube includes a proximal end, a distal end, and a length extending between the proximal and distal ends sufficient to access the target tissue. The slotted tube is dimensioned for displacement within the lumen of the shaft. The slotted tube includes a plurality of regions defined along the length of the slotted tube having disparate slot patterns associated with disparate mechanical properties including torque transmission and bending flexibility.


In some embodiments, an electrical conductor arrangement extends along the length of the slotted tube. An electrode arrangement is provided at the distal end of the slotted tube and coupled to the conductor arrangement. The electrode arrangement is configured to deliver high frequency AC energy sufficient to ablate the target tissue. In other embodiments, different types of components may be situated at the distal end of the slotted tube and provided with appropriate conductors/couplings, such as a medical device, a sensor, an electrode, an ablation device, or other medical instrument. Representative examples of components that may be situated at the distal end of the slotted tube include, for example, an ultrasound, laser, microwave, or thermal energy transfer device, some of which can be configured for one or both of ablation and monitoring/imaging.


According to some embodiments, a catheter includes a flexible shaft having a proximal end, a distal end, a length, and a lumen extending between the proximal and distal ends. The length of the shaft is sufficient to access a patient's renal artery relative to a percutaneous access location. A slotted tube includes a proximal end, a distal end, and a length extending between the proximal and distal ends sufficient to access the patient's renal artery relative to the percutaneous access location. The slotted tube is dimensioned for displacement within the lumen of the shaft and includes a plurality of regions defined along its length having disparate slot patterns associated with disparate mechanical properties including torque transmission and bending flexibility. An electrical conductor arrangement extends along the length of the slotted tube. An electrode arrangement is provided at the distal end of the slotted tube and coupled to the conductor arrangement. The electrode arrangement is configured to deliver high frequency AC energy sufficient to ablate perivascular renal nerve tissue proximate the renal artery.


Embodiments are directed to methods of ablating target tissue involving advancing an ablation electrode of an ablation catheter to a location of the body at or near target tissue to be ablated. The ablation electrode is provided at a distal end of a flexible support member. The support member is coupled to a position converter situated at a distal end of the catheter. Also coupled to the position converter is a flexible actuation member that extends from the distal end of the catheter to its proximal end. Movement of the support member and the electrode is effected by movement of the actuation member at the proximal end of the catheter, typically by a clinician or robotic system. Movement of the actuation member within the catheter's shaft is subject to one or more of elastic deformation, friction, and whip which can adversely impact control of electrode movement at or near the target tissue. Methods of the disclosure involve converting movement of the actuation member, which is adversely impacted by one or more of elastic deformation, friction, and whip, into controlled rotational movement and/or controlled axial displacement which is substantially free of any such elastic deformation, friction, and/or whip.


Methods involve controlling electrode rotation during ablation to one of a plurality of predetermined stable circumferential positions, which eliminates any adverse impact of elastic deformation, friction, and/or whip impacting movement of an actuation member at the proximal end of the catheter. Methods may also involve controlling electrode axial displacement during ablation to one of a plurality of predetermined stable axial positions, which eliminates any adverse impact of elastic deformation, friction, and or whip impacting movement of the actuation member.


These and other features can be understood in view of the following detailed discussion and the accompanying drawings.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is an illustration of a right kidney and renal vasculature including a renal artery branching laterally from the abdominal aorta;



FIGS. 2A and 2B illustrate sympathetic innervation of the renal artery;



FIG. 3A illustrates various tissue layers of the wall of the renal artery;



FIGS. 3B and 3C illustrate a portion of a renal nerve;



FIG. 4 illustrates an apparatus for ablating target tissue of a vessel which incorporates precision electrode movement control in accordance with various embodiments;



FIG. 5 illustrates an apparatus for ablating target tissue of a vessel which incorporates precision electrode movement control using a magnetic position converter in accordance with various embodiments;



FIG. 6 illustrates an apparatus for ablating target tissue of a vessel which incorporates precision electrode movement control using a magnetic position converter arranged in a helical or spiral shape in accordance with various embodiments;



FIG. 7 illustrates an apparatus for ablating target tissue of a vessel which incorporates precision electrode movement control using a ratcheting position converter in accordance with various embodiments;



FIG. 8 illustrates an apparatus for ablating target tissue of a vessel which incorporates precision electrode movement control using a ratcheting position converter in accordance with other embodiments;



FIG. 9 illustrates an apparatus for ablating target tissue of a vessel which incorporates precision electrode movement control using a geometric orientation position converter in accordance with other embodiments;



FIG. 10 shows the a cross-section of a geometric orientation position converter of a type shown in FIG. 9;



FIG. 11 shows a tapered entrance to a keyway structure of a geometric orientation position converter of a type shown in FIG. 9;



FIGS. 12A-12D show various sectional views of a keyway and key component having various geometries in accordance with various embodiments.



FIGS. 13A-14C show various views of a keyway having various configurations in accordance with various embodiments;



FIG. 15 illustrates an ablation catheter which incorporates an elongated metallic slotted tube in accordance with various embodiments;



FIG. 16 shows various details of an elongated metallic slotted tube for use in an ablation catheter in accordance with various embodiments;



FIG. 17 shows various details of an elongated metallic slotted tube which incorporates a tension wire for controlling curvature of the slotted tube's distal tip;



FIG. 18 illustrates an ablation catheter which incorporates an elongated metallic slotted tube deployed within a patient's renal artery for ablating perivascular renal nerve tissue in accordance with various embodiments; and



FIG. 19 shows a representative high frequency AC renal therapy apparatus in accordance with various embodiments.





DISCLOSURE

Embodiments of the disclosure are directed to apparatuses and methods for ablating target tissue of the body. Embodiments of the disclosure are directed to apparatuses and methods for controlling the movement of an ablation electrode during ablation with precision. Embodiments of the disclosure are directed to apparatuses and methods for ablating perivascular renal nerves from within the renal artery using a precision electrode movement control apparatus for the treatment of hypertension.


Ablation of perivascular renal nerves can be an effective treatment for hypertension. Radiofrequency (RF) electrodes placed in the renal artery can be used to ablate the renal nerves, but with risk of injury to the artery wall. To control injury to the artery wall, one approach is to ablate at discrete locations along and around the artery. However, reliable control of electrode position has been difficult, which is adversely impacted by catheter or electrode “whip” as the electrode is moved around in the artery, for example. Also, precise control of the proximal hub of conventional ablation devices may not translate into correspondingly precise control of the tip, due to flexibility, curves, friction, and so forth. Embodiments of the disclosure provide a more precise way of controlling electrode position to desired locations in the renal artery, for example.


Various embodiments of the disclosure are directed to apparatuses and methods for renal denervation for treating hypertension. Hypertension is a chronic medical condition in which the blood pressure is elevated. Persistent hypertension is a significant risk factor associated with a variety of adverse medical conditions, including heart attacks, heart failure, arterial aneurysms, and strokes. Persistent hypertension is a leading cause of chronic renal failure. Hyperactivity of the sympathetic nervous system serving the kidneys is associated with hypertension and its progression. Deactivation of nerves in the kidneys via renal denervation can reduce blood pressure, and may be a viable treatment option for many patients with hypertension who do not respond to conventional drugs.


The kidneys are instrumental in a number of body processes, including blood filtration, regulation of fluid balance, blood pressure control, electrolyte balance, and hormone production. One primary function of the kidneys is to remove toxins, mineral salts, and water from the blood to form urine. The kidneys receive about 20-25% of cardiac output through the renal arteries that branch left and right from the abdominal aorta, entering each kidney at the concave surface of the kidneys, the renal hilum.


Blood flows into the kidneys through the renal artery and the afferent arteriole, entering the filtration portion of the kidney, the renal corpuscle. The renal corpuscle is composed of the glomerulus, a thicket of capillaries, surrounded by a fluid-filled, cup-like sac called Bowman's capsule. Solutes in the blood are filtered through the very thin capillary walls of the glomerulus due to the pressure gradient that exists between the blood in the capillaries and the fluid in the Bowman's capsule. The pressure gradient is controlled by the contraction or dilation of the arterioles. After filtration occurs, the filtered blood moves through the efferent arteriole and the peritubular capillaries, converging in the interlobular veins, and finally exiting the kidney through the renal vein.


Particles and fluid filtered from the blood move from the Bowman's capsule through a number of tubules to a collecting duct. Urine is formed in the collecting duct and then exits through the ureter and bladder. The tubules are surrounded by the peritubular capillaries (containing the filtered blood). As the filtrate moves through the tubules and toward the collecting duct, nutrients, water, and electrolytes, such as sodium and chloride, are reabsorbed into the blood.


The kidneys are innervated by the renal plexus which emanates primarily from the aorticorenal ganglion. Renal ganglia are formed by the nerves of the renal plexus as the nerves follow along the course of the renal artery and into the kidney. The renal nerves are part of the autonomic nervous system which includes sympathetic and parasympathetic components. The sympathetic nervous system is known to be the system that provides the bodies “fight or flight” response, whereas the parasympathetic nervous system provides the “rest and digest” response. Stimulation of sympathetic nerve activity triggers the sympathetic response which causes the kidneys to increase production of hormones that increase vasoconstriction and fluid retention. This process is referred to as the renin-angiotensin-aldosterone-system (RAAS) response to increased renal sympathetic nerve activity.


In response to a reduction in blood volume, the kidneys secrete renin, which stimulates the production of angiotensin. Angiotensin causes blood vessels to constrict, resulting in increased blood pressure, and also stimulates the secretion of the hormone aldosterone from the adrenal cortex. Aldosterone causes the tubules of the kidneys to increase the reabsorption of sodium and water, which increases the volume of fluid in the body and blood pressure.


Congestive heart failure (CHF) is a condition that has been linked to kidney function. CHF occurs when the heart is unable to pump blood effectively throughout the body. When blood flow drops, renal function degrades because of insufficient perfusion of the blood within the renal corpuscles. The decreased blood flow to the kidneys triggers an increase in sympathetic nervous system activity (i.e., the RAAS becomes too active) that causes the kidneys to secrete hormones that increase fluid retention and vasorestriction. Fluid retention and vasorestriction in turn increases the peripheral resistance of the circulatory system, placing an even greater load on the heart, which diminishes blood flow further. If the deterioration in cardiac and renal functioning continues, eventually the body becomes overwhelmed, and an episode of heart failure decompensation occurs, often leading to hospitalization of the patient.



FIG. 1 is an illustration of a right kidney 10 and renal vasculature including a renal artery 12 branching laterally from the abdominal aorta 20. In FIG. 1, only the right kidney 10 is shown for purposes of simplicity of explanation, but reference will be made herein to both right and left kidneys and associated renal vasculature and nervous system structures, all of which are contemplated within the context of embodiments of the disclosure. The renal artery 12 is purposefully shown to be disproportionately larger than the right kidney 10 and abdominal aorta 20 in order to facilitate discussion of various features and embodiments of the present disclosure.


The right and left kidneys are supplied with blood from the right and left renal arteries that branch from respective right and left lateral surfaces of the abdominal aorta 20. Each of the right and left renal arteries is directed across the crus of the diaphragm, so as to form nearly a right angle with the abdominal aorta 20. The right and left renal arteries extend generally from the abdominal aorta 20 to respective renal sinuses proximate the hilum 17 of the kidneys, and branch into segmental arteries and then interlobular arteries within the kidney 10. The interlobular arteries radiate outward, penetrating the renal capsule and extending through the renal columns between the renal pyramids. Typically, the kidneys receive about 20% of total cardiac output which, for normal persons, represents about 1200 mL of blood flow through the kidneys per minute.


The primary function of the kidneys is to maintain water and electrolyte balance for the body by controlling the production and concentration of urine. In producing urine, the kidneys excrete wastes such as urea and ammonium. The kidneys also control reabsorption of glucose and amino acids, and are important in the production of hormones including vitamin D, renin and erythropoietin.


An important secondary function of the kidneys is to control metabolic homeostasis of the body. Controlling hemostatic functions include regulating electrolytes, acid-base balance, and blood pressure. For example, the kidneys are responsible for regulating blood volume and pressure by adjusting volume of water lost in the urine and releasing erythropoietin and renin, for example. The kidneys also regulate plasma ion concentrations (e.g., sodium, potassium, chloride ions, and calcium ion levels) by controlling the quantities lost in the urine and the synthesis of calcitrol. Other hemostatic functions controlled by the kidneys include stabilizing blood pH by controlling loss of hydrogen and bicarbonate ions in the urine, conserving valuable nutrients by preventing their excretion, and assisting the liver with detoxification.


Also shown in FIG. 1 is the right suprarenal gland 11, commonly referred to as the right adrenal gland. The suprarenal gland 11 is a star-shaped endocrine gland that rests on top of the kidney 10. The primary function of the suprarenal glands (left and right) is to regulate the stress response of the body through the synthesis of corticosteroids and catecholamines, including cortisol and adrenaline (epinephrine), respectively. Encompassing the kidneys 10, suprarenal glands 11, renal vessels 12, and adjacent perirenal fat is the renal fascia, e.g., Gerota's fascia, (not shown), which is a fascial pouch derived from extraperitoneal connective tissue.


The autonomic nervous system of the body controls involuntary actions of the smooth muscles in blood vessels, the digestive system, heart, and glands. The autonomic nervous system is divided into the sympathetic nervous system and the parasympathetic nervous system. In general terms, the parasympathetic nervous system prepares the body for rest by lowering heart rate, lowering blood pressure, and stimulating digestion. The sympathetic nervous system effectuates the body's fight-or-flight response by increasing heart rate, increasing blood pressure, and increasing metabolism.


In the autonomic nervous system, fibers originating from the central nervous system and extending to the various ganglia are referred to as preganglionic fibers, while those extending from the ganglia to the effector organ are referred to as postganglionic fibers. Activation of the sympathetic nervous system is effected through the release of adrenaline (epinephrine) and to a lesser extent norepinephrine from the suprarenal glands 11. This release of adrenaline is triggered by the neurotransmitter acetylcholine released from preganglionic sympathetic nerves.


The kidneys and ureters (not shown) are innervated by the renal nerves 14. FIGS. 1 and 2A-2B illustrate sympathetic innervation of the renal vasculature, primarily innervation of the renal artery 12. The primary functions of sympathetic innervation of the renal vasculature include regulation of renal blood flow and pressure, stimulation of renin release, and direct stimulation of water and sodium ion reabsorption.


Most of the nerves innervating the renal vasculature are sympathetic postganglionic fibers arising from the superior mesenteric ganglion 26. The renal nerves 14 extend generally axially along the renal arteries 12, enter the kidneys 10 at the hilum 17, follow the branches of the renal arteries 12 within the kidney 10, and extend to individual nephrons. Other renal ganglia, such as the renal ganglia 24, superior mesenteric ganglion 26, the left and right aorticorenal ganglia 22, and celiac ganglia 28 also innervate the renal vasculature. The celiac ganglion 28 is joined by the greater thoracic splanchnic nerve (greater TSN). The aorticorenal ganglia 26 is joined by the lesser thoracic splanchnic nerve (lesser TSN) and innervates the greater part of the renal plexus.


Sympathetic signals to the kidney 10 are communicated via innervated renal vasculature that originates primarily at spinal segments T10-T12 and L1. Parasympathetic signals originate primarily at spinal segments S2-S4 and from the medulla oblongata of the lower brain. Sympathetic nerve traffic travels through the sympathetic trunk ganglia, where some may synapse, while others synapse at the aorticorenal ganglion 22 (via the lesser thoracic splanchnic nerve, i.e., lesser TSN) and the renal ganglion 24 (via the least thoracic splanchnic nerve, i.e., least TSN). The postsynaptic sympathetic signals then travel along nerves 14 of the renal artery 12 to the kidney 10. Presynaptic parasympathetic signals travel to sites near the kidney 10 before they synapse on or near the kidney 10.


With particular reference to FIG. 2A, the renal artery 12, as with most arteries and arterioles, is lined with smooth muscle 34 that controls the diameter of the renal artery lumen 13. Smooth muscle, in general, is an involuntary non-striated muscle found within the media layer of large and small arteries and veins, as well as various organs. The glomeruli of the kidneys, for example, contain a smooth muscle-like cell called the mesangial cell. Smooth muscle is fundamentally different from skeletal muscle and cardiac muscle in terms of structure, function, excitation-contraction coupling, and mechanism of contraction.


Smooth muscle cells can be stimulated to contract or relax by the autonomic nervous system, but can also react on stimuli from neighboring cells and in response to hormones and blood borne electrolytes and agents (e.g., vasodilators or vasoconstrictors). Specialized smooth muscle cells within the afferent arteriole of the juxtaglomerular apparatus of kidney 10, for example, produces renin which activates the angiotension II system.


The renal nerves 14 innervate the smooth muscle 34 of the renal artery wall 15 and extend lengthwise in a generally axial or longitudinal manner along the renal artery wall 15. The smooth muscle 34 surrounds the renal artery circumferentially, and extends lengthwise in a direction generally transverse to the longitudinal orientation of the renal nerves 14, as is depicted in FIG. 2B.


The smooth muscle 34 of the renal artery 12 is under involuntary control of the autonomic nervous system. An increase in sympathetic activity, for example, tends to contract the smooth muscle 34, which reduces the diameter of the renal artery lumen 13 and decreases blood perfusion. A decrease in sympathetic activity tends to cause the smooth muscle 34 to relax, resulting in vessel dilation and an increase in the renal artery lumen diameter and blood perfusion. Conversely, increased parasympathetic activity tends to relax the smooth muscle 34, while decreased parasympathetic activity tends to cause smooth muscle contraction.



FIG. 3A shows a segment of a longitudinal cross-section through a renal artery, and illustrates various tissue layers of the wall 15 of the renal artery 12. The innermost layer of the renal artery 12 is the endothelium 30, which is the innermost layer of the intima 32 and is supported by an internal elastic membrane. The endothelium 30 is a single layer of cells that contacts the blood flowing though the vessel lumen 13. Endothelium cells are typically polygonal, oval, or fusiform, and have very distinct round or oval nuclei. Cells of the endothelium 30 are involved in several vascular functions, including control of blood pressure by way of vasoconstriction and vasodilation, blood clotting, and acting as a barrier layer between contents within the lumen 13 and surrounding tissue, such as the membrane of the intima 32 separating the intima 32 from the media 34, and the adventitia 36. The membrane or maceration of the intima 32 is a fine, transparent, colorless structure which is highly elastic, and commonly has a longitudinal corrugated pattern.


Adjacent the intima 32 is the media 33, which is the middle layer of the renal artery 12. The media is made up of smooth muscle 34 and elastic tissue. The media 33 can be readily identified by its color and by the transverse arrangement of its fibers. More particularly, the media 33 consists principally of bundles of smooth muscle fibers 34 arranged in a thin plate-like manner or lamellae and disposed circularly around the arterial wall 15. The outermost layer of the renal artery wall 15 is the adventitia 36, which is made up of connective tissue. The adventitia 36 includes fibroblast cells 38 that play an important role in wound healing.


A perivascular region 37 is shown adjacent and peripheral to the adventitia 36 of the renal artery wall 15. A renal nerve 14 is shown proximate the adventitia 36 and passing through a portion of the perivascular region 37. The renal nerve 14 is shown extending substantially longitudinally along the outer wall 15 of the renal artery 12. The main trunk of the renal nerves 14 generally lies in or on the adventitia 36 of the renal artery 12, often passing through the perivascular region 37, with certain branches coursing into the media 33 to enervate the renal artery smooth muscle 34.


Embodiments of the disclosure may be implemented to provide varying degrees of denervation therapy to innervated renal vasculature. For example, embodiments of the disclosure may provide for control of the extent and relative permanency of renal nerve impulse transmission interruption achieved by denervation therapy delivered using a treatment apparatus of the disclosure. The extent and relative permanency of renal nerve injury may be tailored to achieve a desired reduction in sympathetic nerve activity (including a partial or complete block) and to achieve a desired degree of permanency (including temporary or irreversible injury).


Returning to FIGS. 3B and 3C, the portion of the renal nerve 14 shown in FIGS. 3B and 3C includes bundles 14a of nerve fibers 14b each comprising axons or dendrites that originate or terminate on cell bodies or neurons located in ganglia or on the spinal cord, or in the brain. Supporting tissue structures 14c of the nerve 14 include the endoneurium (surrounding nerve axon fibers), perineurium (surrounds fiber groups to form a fascicle), and epineurium (binds fascicles into nerves), which serve to separate and support nerve fibers 14b and bundles 14a. In particular, the endoneurium, also referred to as the endoneurium tube or tubule, is a layer of delicate connective tissue that encloses the myelin sheath of a nerve fiber 14b within a fasciculus.


Major components of a neuron include the soma, which is the central part of the neuron that includes the nucleus, cellular extensions called dendrites, and axons, which are cable-like projections that carry nerve signals. The axon terminal contains synapses, which are specialized structures where neurotransmitter chemicals are released in order to communicate with target tissues. The axons of many neurons of the peripheral nervous system are sheathed in myelin, which is formed by a type of glial cell known as Schwann cells. The myelinating Schwann cells are wrapped around the axon, leaving the axolemma relatively uncovered at regularly spaced nodes, called nodes of Ranvier. Myelination of axons enables an especially rapid mode of electrical impulse propagation called saltation.


In some embodiments, a treatment apparatus of the disclosure may be implemented to deliver denervation therapy that causes transient and reversible injury to renal nerve fibers 14b. In other embodiments, a treatment apparatus of the disclosure may be implemented to deliver denervation therapy that causes more severe injury to renal nerve fibers 14b, which may be reversible if the therapy is terminated in a timely manner. In preferred embodiments, a treatment apparatus of the disclosure may be implemented to deliver denervation therapy that causes severe and irreversible injury to renal nerve fibers 14b, resulting in permanent cessation of renal sympathetic nerve activity. For example, a treatment apparatus may be implemented to deliver a denervation therapy that disrupts nerve fiber morphology to a degree sufficient to physically separate the endoneurium tube of the nerve fiber 14b, which can prevent regeneration and re-innervation processes.


By way of example, and in accordance with Seddon's classification as is known in the art, a treatment apparatus of the disclosure may be implemented to deliver a denervation therapy that interrupts conduction of nerve impulses along the renal nerve fibers 14b by imparting damage to the renal nerve fibers 14b consistent with neruapraxia. Neurapraxia describes nerve damage in which there is no disruption of the nerve fiber 14b or its sheath. In this case, there is an interruption in conduction of the nerve impulse down the nerve fiber, with recovery taking place within hours to months without true regeneration, as Wallerian degeneration does not occur. Wallerian degeneration refers to a process in which the part of the axon separated from the neuron's cell nucleus degenerates. This process is also known as anterograde degeneration. Neurapraxia is the mildest form of nerve injury that may be imparted to renal nerve fibers 14b by use of a treatment apparatus according to embodiments of the disclosure.


A treatment apparatus may be implemented to interrupt conduction of nerve impulses along the renal nerve fibers 14b by imparting damage to the renal nerve fibers consistent with axonotmesis. Axonotmesis involves loss of the relative continuity of the axon of a nerve fiber and its covering of myelin, but preservation of the connective tissue framework of the nerve fiber. In this case, the encapsulating support tissue 14c of the nerve fiber 14b are preserved. Because axonal continuity is lost, Wallerian degeneration occurs. Recovery from axonotmesis occurs only through regeneration of the axons, a process requiring time on the order of several weeks or months. Electrically, the nerve fiber 14b shows rapid and complete degeneration. Regeneration and re-innervation may occur as long as the endoneural tubes are intact.


A treatment apparatus may be implemented to interrupt conduction of nerve impulses along the renal nerve fibers 14b by imparting damage to the renal nerve fibers 14b consistent with neurotmesis. Neurotmesis, according to Seddon's classification, is the most serious nerve injury in the scheme. In this type of injury, both the nerve fiber 14b and the nerve sheath are disrupted. While partial recovery may occur, complete recovery is not possible. Neurotmesis involves loss of continuity of the axon and the encapsulating connective tissue 14c, resulting in a complete loss of autonomic function, in the case of renal nerve fibers 14b. If the nerve fiber 14b has been completely divided, axonal regeneration causes a neuroma to form in the proximal stump.


A more stratified classification of neurotmesis nerve damage may be found by reference to the Sunderland System as is known in the art. The Sunderland System defines five degrees of nerve damage, the first two of which correspond closely with neurapraxia and axonotmesis of Seddon's classification. The latter three Sunderland System classifications describe different levels of neurotmesis nerve damage.


The first and second degrees of nerve injury in the Sunderland system are analogous to Seddon's neurapraxia and axonotmesis, respectively. Third degree nerve injury, according to the Sunderland System, involves disruption of the endoneurium, with the epineurium and perineurium remaining intact. Recovery may range from poor to complete depending on the degree of intrafascicular fibrosis. A fourth degree nerve injury involves interruption of all neural and supporting elements, with the epineurium remaining intact. The nerve is usually enlarged. Fifth degree nerve injury involves complete transection of the nerve fiber 14b with loss of continuity.


Referring now to FIG. 4, a distal end of an ablation catheter 100 is shown deployed in a renal artery 12 of a patient. According to this embodiment, the ablation catheter 100 includes a flexible shaft 202 and a lumen 203 that extends along the length of the shaft 202. The length of the shaft 202 is preferably sufficient to access a desired location of the body, such as the patient's renal artery 12 as shown in this illustrative example. A flexible actuation member 206 is provided within the lumen 203 of the shaft 202 and extends to the proximal end of the shaft 202. The actuation member 206 is movable within the lumen 203 of the shaft 202 and subject to one or more of elastic deformation, friction, and with along its length during movement within the shaft's lumen 203. The proximal end of the actuation member 206 may be fitted with a handle or other arrangement that facilitates rotational and axial movement of the actuation number 206 by a clinician or a robotic system.


The embodiment shown in FIG. 4 further includes a flexible support member 205 coupled to a distal end of the actuation member 206 and is configured to be extendable beyond the distal tip 207 of the shaft 202 and into a lumen 13 of the renal artery 12. An electrode 208 is provided at a distal end of the support member 205 and configured to contact a wall 15 of the renal artery 12 and deliver high-frequency AC energy sufficient to ablate perivascular renal nerve tissue 37 proximate the electrode 208. The support member 205 preferably has a curved shape configured to urge the electrode 208 into contact with the wall 15 of the renal artery 12. A position converter 204 is provided at the distal end of the shaft 202 and coupled to the distal end of the actuation member 206 and a proximal end of the support member 205.


The position converter 204 is configured to convert movement of the actuation member 206 into at least controlled rotational movement of the support member 205 and the electrode 208 to one of a plurality of stable circumferential positions substantially free of one or more of elastic deformation, friction, and whip impacting actuation member movement. The position converter 204 may also be configured to convert movement of the actuation member 206 into controlled axial movement of the support member 205 and the electrode 208 to one of a plurality of stable axial position. In some embodiments, the actuation member 206 and the support member 205 define a continuous member, and the position converter 204 acts upon this continuous member. In other embodiments, the actuation member 206 and the support member 205 define separate members, each having a proximal end and a distal end. In such embodiments, the proximal end of the support member 205 and the distal end of the actuation member 206 are coupled via the position converter 204.


Turning now to FIG. 5, there is illustrated a position converter 204 which includes a magnetic indexing arrangement 201 provided at a distal end of an ablation catheter 100 in accordance with various embodiments. The position converter 204 shown in FIG. 5 provides for magnetic alignment of the support member 205 and the electrode 208 using a discrete magnetically actuated indexing mechanism, so that the electrode 208 can be positioned at the appropriate locations along and around the wall 15 of the renal artery 12. The distal end of the support member 205 is typically curved, so that the electrode 208 makes good contact with the vessel wall 15. The magnetic indexing arrangement 201 is configured to magnetically urge the support member 205 and the electrode 208 to one of a plurality of stable circumferential positions. In some embodiments, a representative example of which is shown in FIG. 5, the magnetic indexing arrangement 204 is configured to magnetically urge the support member 205 and the electrode 208 to one of a plurality of stable circumferential and axial positions.


A magnet 216 is situated on the actuation member 206 at a desired location. Magnets 215 situated on the catheter's shaft 202 interact with the actuation member magnet 216 to urge the support member 205 and electrode 208 into only specific stable locations. The support member 205 and electrode 208 are advanced and rotated between the stable locations by the clinician or a robotic system. Advantageously, only rough imaging information is required to verify that the electrode 208 is in the desired location, since the magnetic forces prevent small misalignments, and the electrode 208 is stable only in a substantially different position which could easily be seen on an imaging device.


According to a representative method of use, the support number 205 and electrode 208 are advanced to the distal-most extent, at which point the electrode 208 is activated with the magnets 216, 215 aiding in circumferential alignment at a first treatment location. The support member 205 may be withdrawn a short distance into the catheter's shaft 202 and the electrode 208 activated again, with the magnets 216, 215 aiding in positioning the electrode 208 at a circumferential orientation different from the first location, and so forth until ablation has been performed at all desired treatment locations.


According to various embodiments, the shaft 202 of the ablation catheter 100 includes multiple sets of magnets 215 at different axial locations, with polarities arranged at different circumferential points at the different axial locations. In the embodiment illustrated in FIG. 5, for example, there are four axial positions indicated (axial positions #1, #2, #3, and #4) which are located 90° apart from one another. The polarity of each magnet of the shaft magnet arrangement 215 and that of the support member magnet arrangement 216 is indicated as N (North) or S (South).


Pairs of magnets 215 are situated circumferentially offset from one another by 90° at the four axial positions #1, #2, #3, and #4, each of which defines a magnetically stable position. A single magnet is shown situated on the support member 205. The support member 205 and electrode 208 are urged by the magnetic forces to orient at these axial positions to four different circumferential directions. For additional alignment force, the support member 205 can include multiple magnets 216 oriented appropriately so that the multiple sets of shaft magnets 215 and multiple support member magnets 216 interact.


When the support member 205 is advanced to one axial position, the magnets 215 on the shaft 202 interact with the magnet 216 on the support member 205 to urge the electrode 208 to one circumferential location. When the support number 205 is advanced or retracted to a different axial position, the magnets 215 on the shaft 202 interact with the magnet 216 on the support member 205 to urge the electrode 208 to a different circumferential location. In this way, a desired number (e.g., 2 to 10) discrete ablation sites, for example, can be obtained at predetermined axial and circumferential locations. Any one spot in the renal artery 12 would have minor or small areas of injury, and any subsequent healing response or stenosis would be insignificant.


It is understood that the number of magnet pairs and location of these pairs (circumferentially and/or axially) on the shaft 202 can differ from that shown in FIG. 5 to achieve a desired number of magnetically stable positions at desired circumferential and/or axial directions. For example, six magnetically stable positions can be achieved by situating a pair of magnets 205 on the shaft at desired spaced-apart axial positions circumferentially offset from one another by 60°. By way of further example, eight magnetically stable positions can be achieved by situating a pair of magnets 205 on the shaft at desired spaced-apart axial positions circumferentially offset from one another by 45°. In some embodiments, it may be desirable to provide controlled circumferential positioning of the support member 205 at a single axial location, such as for creating a circumferential lesion in target tissue. In such embodiments, pairs of magnets would be situated circumferentially offset from one another by 90° or other desired angle at a specified axial location of the shaft 202.


In accordance with other embodiments, and with reference to FIG. 6, a catheter, such as a guiding catheter, includes a magnetic indexing arrangement having a helical configuration, so that the support member 205 and electrode 208 are guided along a predictable helical path. The distal end of the shaft 202 is preferably fashioned to include a pre-form a helical shape. Additional magnetic or other alignment or indexing features can be incorporated to provide limited axial stability as well, so that a number of discrete ablation locations can be obtained, and spaced apart as desired.


The magnets 215 in the catheter's shaft 202 can be continuous, or a series of oriented magnets. The magnets on the support member 205 can similarly be continuous or a series of oriented magnets. According to some embodiments, when the support member 205 is advanced or retracted by corresponding movement of the actuation member 206, the support member 205 rotates in a predictable helical path, providing position control for the electrode 208 along a predictable helical path on the artery wall 15. In other embodiments, when the support member 205 is rotated by corresponding movement of the actuation member 206, the support member 205 rotates in a predictable circumferential path, providing position control for the electrode 208 along a predictable circumferential path on the artery wall 15. Intermittent application of RF energy to electrical conductors coupled to the electrode 208 produces a helical pattern or a circumferential pattern of separate ablation zones. In some embodiments, a physical helical groove can be provided to further aid in orienting the support member 205 and electrode 208 along a predictable helical path.


If alignment mechanisms were incorporated near the proximal hub of the ablation catheter as in the case of conventional approaches, curvature, poor torque transmission and/or friction could significantly reduce the effectiveness of such alignment mechanisms. Because the present embodiments use magnetic alignment forces that are applied near the distal end of the shaft 202 and actuation member 206, any elastic deformation in the bulk of the shaft 202 or actuation member 206 would have no significant effect on electrode 208 positioning (rotational and/or axial positioning).


Multiple magnets 215 around the circumference of the catheter's shaft 205 can be used to create multiple discrete stable locations of the support member 205 and electrode 208 at the same axial location, so that two or more small ablation spots can be obtained at that axial location, spaced circumferentially apart to control artery wall injury. An additional set of magnets 216 can be used to similarly guide the support member 205 and electrode 208 to two or more stable circumferential locations at a different axial location. In this way, less axial distance is required to obtain discrete areas of ablation, which may be an advantage in anatomies with short renal artery trunks. Mechanical guides near the end of a catheter's shaft 202 can be used to control the location or orientation of the electrode 208. Mechanical guides and magnetic guides can be used in combination.


In accordance with various embodiments, apparatuses and methods provide for circumferential position control of an RF electrode placed in vessel of the body using a ratcheting arrangement provided at a distal end of the shaft of an ablation catheter. An ablation catheter employing a ratcheting arrangement that provides for precision control of an electrode's circumferential position is particularly useful for ablating perivascular renal nerves adjacent the renal artery of the patient. To avoid renal artery stenosis, discrete zones of ablation can be created by moving an RF electrode axially and/or circumferentially in the renal artery.


According to various embodiments, a ratcheting position control arrangement includes a spring-loaded rotating ratcheting element, like portions of a ballpoint pen retraction mechanism. In a pen, for example, the ink reservoir typically does not rotate, but components of the ratcheting mechanism do. In some embodiments, the ratcheting position control arrangement can be actuated to move the ablation electrode to a number of discrete circumferential stable locations were ablation is performed. In such embodiments, each actuation of the ratcheting causes the ablation electrode to move from one stable circumferential location to the next stable circumferential location. This process is repeated until ablation has been performed at each of the stable circumferential locations.


In accordance with other embodiments, combined axial and circumferential positioning of the ablation electrode is achieved. In embodiments where the rotation feature of the ratchet mechanism is combined with the axial displacement feature (like the pen retracting), the ablation electrode is moved both axially and circumferentially between discrete stable positions. With each actuation of the ratchet mechanism, the electrode moves to a new stable position. At each stable position, RF energy is delivered by the ablation electrode to create a controlled region of injury. The combined effect of separate injury regions causes ablation of the perivascular renal nerves with beneficial effect on hypertension, with limited areas of renal artery injury. With this approach, a predetermined number of discrete ablation sites can be obtained at predetermined axial and circumferential locations. Any one spot in the renal artery would have minor or small areas of injury, and any subsequent healing response or stenosis would be insignificant.


Cooling can be incorporated into the ablation catheter design to further reduce renal artery injury. For example, the ablation catheter can be implemented as an infusion catheter, in which a biocompatible cooling fluid is transported from a proximal end of the catheter to the distal end of the catheter. Provision of cooling at the electrode-tissue interface can reduce the risk of thermal injury to the renal artery wall. Various other cooling approaches are contemplated.


In apparatuses of the present disclosure, the support member to which the ablation electrode is mounted can be coupled to the rotating ratcheting element so that it rotates 60 or 90 degrees (or other predetermined angles), for example, at each actuation of the ratchet mechanism. When the actuation member is pushed or pulled at its proximal and to overcome a spring force, a rotating ratchet mechanism is actuated which rotates the support member and electrode to the next stable circumferential position.


In other embodiments, combined axial and circumferential positioning is provided. In configurations where the rotation feature of the ratchet mechanism is combined with the axial displacement feature (like the pen retracting), the support member and electrode move both axially and circumferentially between discrete positions. Rather than pushing or pulling on the RF electrode wire to activate the ratchet mechanism, a separate control wire or tube can be provided.


Referring now to FIGS. 7 and 8, there is shown a position converter implemented as a ratcheting arrangement 204 in accordance with various embodiments. The ratcheting arrangement 204 is provided at a distal end of the shaft 202 and has a proximal end and a distal end. A spring arrangement 212 is situated at the proximal end of the ratcheting arrangement 204. At the distal end of the ratcheting arrangement 204, a keyway arrangement 200 preferably includes a multiplicity of keyways 210. A keyway 210 defines a guide path that constrains the movement of the support member 205 and electrode 208 to a predetermined path, such as by limiting the rotational and/or axial travel of the support member 205 and electrode 208.


Typically, the ratcheting arrangement 204 incorporates a multiplicity of keyways 210, although a single keyway 210 may be appropriate in some applications. The keyways 210 are configured to receive a key component 207 provided on the distal end of the actuation member 206. Each of the keyways 210 has opposing end locations, each of which can define a predetermined stable circumferential and/or axial position for orienting the support member 205 and the electrode 208. A multiplicity of circumferentially spaced keyways 210 having an axial aspect may be incorporated in the ratcheting arrangement 204. Depending on the configuration of the ratcheting arrangement 204, a desired number of discrete ablation sites can be obtained, such as between two and eight discrete ablation sites, at predetermined axial and circumferential locations. Various additional components including gear or spring elements can be incorporated into the ratcheting arrangement 204 in accordance with various embodiments.



FIG. 7 further shows a control member 209 which can be used to actuate the ratcheting arrangement 204. The control member 209 can be implemented as a control wire or, as shown in FIG. 7, a control tube. In embodiments where the ratcheting arrangement 204 provides for rotational positioning of the support member 205 and electrode 208 with no axial positioning provided, the control member 209 need not be included, and an actuation member 206 of a type previously described herein can be used to actuate the ratcheting arrangement 204. In such embodiments, actuation of the ratcheting mechanism 204 can be accomplished by pushing and pulling the actuation member 206. In embodiments where the ratcheting arrangement 204 provides for both rotational and axial positioning of the support member 205 and electrode 208, the separate control member 209 may be employed in the actuation of the ratcheting arrangement 204.



FIG. 8 schematically illustrates the controlled movement of the ablation electrode 208 between four stable positions located circumferentially and axially apart from one another. The electrode 208 follows a generally zigzag path from one stable position to another resulting from actuation of the ratcheting mechanism 204 and constrained movement dictated by the keyways 210. When the electrode 208 reaches each of the stable positions, the support member 205 has a spring bias that forces the electrode 208 against the wall 15 of the renal artery 12. Depending on the keyway design, the electrode 208 may or may not maintain continuous contact with the renal artery wall 15 when traversing a path between stable positions.


The ablation procedure preferably begins by advancing the support member 205 and electrode 208 to its distal-most position, which is shown as stable position #1 in FIG. 8. In general, the support member 205 and electrode 208 are moved from one stable position to the next stable position in response to each actuation of the ratcheting arrangement 204, which in this illustrative embodiment is accomplished using the control member 209. With the electrode 208 located at stable position #1, RF energy is delivered to the electrode 208. After completing ablation at stable position #1, the control member 209 is pushed, causing the support member 205 and electrode 208 to traverse along path-A. The control member 209 is pushed until a spring force produced by the spring arrangement 212 is overcome, at which point the electrode 208 is located at stable position #2. RF energy is delivered to the electrode 208 at stable position #2 until ablation at this location is completed. Pushing the control member 209 causes the electrode 208 to move from stable position #2 to stable position #3 along path-B. RF energy is delivered to the electrode 208 at stable position #3 until ablation at this location is completed. The control member 209 is again pushed by the clinician or robotic system causing the electrode 208 to move from stable position #3 to stable position #4 along path-C. RF energy is delivered to the electrode 208 at stable position #4 until ablation at this location is completed. The electrode 208 can be moved to its initial starting location at stable position #1 by again pushing the control member 209, causing the electrode 208 to move from stable position #3 to stable position #4 along path-D. After completing ablation at all stable locations, the support member 205 electrode 208 can be retracted into the lumen of the shaft 202.


According to various embodiments, and with reference to FIGS. 9-11, a position converter of an ablation catheter 100 includes a geometric keyed orientation mechanism 220 provided at the distal end of a guiding catheter or sheath, and further includes corresponding key components 207 provided on the actuation member 206. The geometric keyed orientation mechanism 220 is configured to guide a key component 207 of the actuation member 206 into and along a keyway arrangement 221 that limits movement of the support member 205 and the electrode 208 to one of a plurality of stable circumferential positions. In some embodiments, the geometric keyed orientation mechanism 220 is configured to guide a key component 207 of the actuation member 206 and the electrode 208 to one of a plurality of stable circumferential positions and one of a plurality of stable axial position.


The keyway arrangement 221 includes a multiplicity of axial space-apart keyways 210 each comprising a tapered entrance 222 configured to guide the key component 208 into alignment with each of the keyways 210. The tapered entrance 222 of each keyway 210 can be configured to guide the key component 208 into the keyway 210 if the relative orientation is within +/−45, 60 or 90 degrees (or some other angle range), for example. FIG. 11 illustrates that only a rough orientation of the actuation member 206 needs to be transmitted from the proximal end of the actuation member 206 to the geometric keyed orientation mechanism 220, since the tapered entrance 222 provides for fine orientation adjustments of the support member 205 and electrode 208. For example, FIG. 11 shows misalignment between a key component 207 of the actuation member 206 and a keyway 210 which provides a desired electrode orientation. Gross misalignment between the key component 207 and the keyway 210 is corrected by the tapered entrance 222, which channels the misaligned key component 207 into proper alignment with the keyway 210.


In some embodiments, the keyway arrangement 221 includes a multiplicity of space-apart keyways 210, with alternate keyways 210 of the keyway arrangement 221 having differing lengths. In other embodiments, the keyway arrangement 221 includes a multiplicity of circumferentially and axially spaced-apart keyways 210. The keyways arrangement 221 may be formed with keyways 210 having varying geometries. For example, as with reference to FIGS. 12A-12D, keyways 210 may have one of an elliptical, square, rectangular, triangular, or other geometric cross-section that provides stability to properly orient the support member 205 and electrode 208.


In some embodiments, and with reference to FIGS. 13A-14C, a helical keyway or a zigzag keyway can be used, with the clinician providing slight bias or rough orientation to move the actuation member 206 to the next desired location, and the refined orientation is provided by the keyway/keyway component geometry. A keyway transition feature, such as a short axial slot 212, can be incorporated into a keyway arrangement 221 to provide tactile feedback indicating a transition from one keyway 210 to the next keyway 210.


In some configurations, pushing or pulling on the actuation member 206 relative to the guiding catheter or sheath 202 moves the keyed components between the stable locations. FIGS. 13A-14C schematically illustrates various configurations of keyways 210. In FIGS. 13A-14C, the generally cylindrical keyway configurations have been opened up for ease of illustration. In addition to the configurations illustrated in FIGS. 13A-14C, helical patterns, or combinations of various patterns can be used to control electrode positions to a set of limited-stability locations.


Maintaining good contact with the artery wall during ablation of perivascular renal nerves for hypertension control has been difficult. If contact is variable, the tissue temperatures are not well controlled, and an ablative temperature may not be achieved in the target tissue, while temperature in other areas, such as portions of the artery wall, may deviate enough to cause unwanted arterial tissue injury. For ideal anatomy, good vessel apposition can be achieved more easily. However, especially with tortuous or diseased renal arteries, there can be very poor contact to effectively and predictably transfer heat, electrical current, or other energy from an ablation device to the tissue. Conventional RF electrode wires have not provided the required balance of pushability, torque control, and flexibility along the length to provide for reliable contact of the electrode with the vessel wall.


Apparatuses and methods of the disclosure provide for improved directability of intra-arterial RF electrode wires for better apposition to the artery wall during renal nerve ablation. According to various embodiments, and with reference to FIG. 15, and ablation catheter 100 includes a flexible shaft 202 having a lumen dimensioned to receive an RF electrode wire in the form of a slotted tube structure 230. In embodiments involving renal denervation, the shaft 202 has a proximal end, a distal end, a length, and a lumen extending between the proximal and distal ends. The length of the shaft 202 is sufficient to access a patient's renal artery relative to a percutaneous access location. The slotted tube 230 has a proximal end, a distal end, and a length extending between the proximal and distal ends sufficient to access the patient's renal artery relative to the percutaneous access location. The slotted tube 230 is dimensioned for displacement within the lumen of the shaft 202.


The slotted tube 230, according to various embodiments, comprises a multiplicity of regions defined along its length. Each of the slotted tube regions has disparate slot patterns associated with disparate mechanical properties, such as torque transmission and bending flexibility. An electrical conductor arrangement 232 extends along the length of the slotted tube 230. An electrode arrangement 208 is provided at a distal end of the slotted tube 230 and is coupled to the conductor arrangement 232. Electrode arrangement 208 is configured to deliver high-frequency AC energy sufficient to ablate perivascular renal nerve tissue proximate the renal artery.


According to various ablation methods, a guiding catheter or sheath 100 is directed to a renal artery and placed at a desired location and orientation within the artery. The slotted tube 230 is advanced within the lumen of the shaft 202 of the guiding catheter and positioned in contact with the renal artery wall at the treatment location. The RF electrode 208 is energized to cause ablation of perivascular renal nerves. After completing ablation at this site, the guiding catheter or sheath 100 is moved to another location within the renal artery, and the RF electrode 208 is energized to cause ablation of perivascular renal nerves adjacent this site. This process is repeated for the current renal artery and then the contra-lateral renal artery until all desired renal artery sites have been subject to ablation. The ablation catheter arrangement is that removed from the patient's body.



FIG. 16 shows various features of a slotted tube 230 in accordance with various embodiments. According to some embodiments, the slotted tube 230 is formed to include a metallic slotted tube shaft. In other embodiments, the slotted tube 230 is formed from material other than metal. For example, the slotted tube 230 may be constructed as a slotted polymer tube. In other configurations, the slotted tube 230 may incorporate ringed, helical, or braided components. In some configurations, fiber-reinforced components may be used to construct the slotted tube 230. Also, separate components for each segment of the slotted tube 230 may be bonded together, for example. The slotted tube configuration provides superior torque control for accurate positioning and orientation of the electrode, while maintaining sufficient flexibility to facilitate access to the target site.


As is shown in FIG. 16, an RF electrode 208 is attached at the distal tip of the slotted tube 230. Insulated electrical conductor wires 232 pass through the central lumen of the slotted to 230 and provide power to the RF electrode 208. The proximal ends of the electrical conductor wires 232 connect to an external power supply and control unit.


In some embodiments, the slotted to 230 is lined with a thin polymeric tube 234 that surrounds the slotted tube 230 other than at one or more perfusion locations at the distal end of the slotted tube 230. For example, short portions of the slotted tube 230 near the distal end may be purposefully devoid of the polymeric tube 234. Alternatively, the polymeric tube 230 can extend as far as the electrode 208, and include perforations or apertures to define a perfusion region. The polymeric tube 234 forms a fluid-type lumen around the slotted tube 230 through which a liquid can be transported between the proximal and distal ends of the slotted to 230. For example, a cooling fluid may be transported from a fluid source at the proximal end of the slotted to 230 and transported to the distal perfusion region of the slotted tube 230 proximate the electrode 208. A biocompatible cooling fluid may be used to provide cooling at the electrode-tissue interface. The fluid-tight lumen surrounding the slotted tube 230 may also be used for flushing without leakage through the slots in the tube 230.


In some configurations, the slotted tube 230 is used to conduct electric current to a unipolar electrode 208, with the return path to a remote pad in contact with the patient's skin. In other configurations, the slotted tube 230 includes multiple electrodes 208 situated near the distal end, with insulated electrical conductor wires used to power the multiple electrodes. In still other configurations, one or more bipolar RF electrode pairs may be situated at the distal end of the slotted tube 230, with insulated electrical conductor wires as required.


One or more sensors near the distal end, such as temperature sensors, can be included, with insulated electrical conductor wires used for power or signal transfer for the sensors. For example, a temperature sensor may be situated at or near the electrode 208. The temperature sensor provides sensing of a temperature at the electrode-tissue interface during ablation. Signals generated by the temperature sensor can be transmitted to the distal end of the catheter 100 using conductor wires that extend through the slotted tube 230. Temperature signals can be used by an external power and control system to automatically or semi-automatically control power delivery (and cooling fluid if desired) to the electrode 208 during an ablation procedure.



FIG. 17 illustrates a slotted tube 230 with an active curve mechanism in accordance with various embodiments. The illustrative example shown in FIG. 17 includes a tension wire 238 coupled to the distal tip of the slotted tube 230 and extending between the distal tip and the proximal end of the slotted tube 230. The tension wire 238 causes the distal tip of the slotted tube 232 to curve in response to a tensioning force applied to the proximal end of the tension wire 238.


The slot pattern of the slotted tube 230 can be configured to obtain desired mechanical properties. For example, the slot pattern can vary, to provide tuned properties in different regions, and with transition zones to avoid abrupt property changes which could result in kinking or other problems. In general, the entire length of the slotted tube 230 is typically configured for good torque transmission so that the clinician can control the circumferential orientation of the electrode 208, with a moderate amount of bending flexibility to allow advancement through sheaths and the vasculature. In a tip region of the slotted tube 230, a short region of increased bending stiffness can be incorporated so that a tip curve is maintained to aid in directing the electrode 208 to contact the artery wall. The tip curve can be maintained by spring-like elasticity in this region. In an intermediate region of the slotted tube 230 near the tip region, enhanced bending stiffness can be incorporated so that the slotted tube 230 can easily bend at the renal artery ostium to minimize arterial trauma, even though the tip curve is maintained, and the enhanced torque transmission is used to control electrode orientation within the renal artery.


To further control mechanical properties at the tip region, the slot pattern of the slotted tube 230 can be tuned to provide a biased flexibility, such as to allow the tip curve to bend the electrode 208 outwardly towards the vessel wall in one plane, but to resist bending in an orthogonal plane, so that the circumferential positioning of the electrode 208 is well controlled. In some embodiments, a curve portion near the distal end of the slotted tube 230 can have a different slotted tube structure, or no slots, and provides an orientation curve so that the electrode 208 can be pressed towards the artery wall. The curved tip can have a preset curved shape which is maintained by forming or treating this region to a permanent curve, or a shape-memory material can be used to achieve the curve using thermal or other control. Alternatively, an active-curve mechanism can be provided, such as by using a biased tube structure and a tension wire 238 to actively flex the curve portion when desired. Other mechanisms can be used to control the curved tip portion, such as torsional bias, external sheath constraint, and a push-wire, for example.


A distinctive aspect of a slotted tube 230 in accordance with various embodiments is that its construction effectively decouples flexural and torsional stiffness of this structure. This provides for the “tuning” (e.g., optimizing or customization) of various mechanical properties of the slotted tube 230 at different axial locations along its length. Moreover, flexural stiffness can be non-linear due to interference between adjacent ribs of the slotted tube 230. The slotted tube 230 can be customized to incorporate different slot patterns at different axial locations along its length to achieve desired mechanical properties that may have at least some of the following attributes:

    • Single Plane Symmetry (slotted tube flexing in a preferred direction): This attribute imparts a directional steering capability, which can be achieved by providing longitudinally continuous spines within the slotted tube structure. If the spines are off-set from the axis, the shaft of the slotted tube 230 will have a preferred direction within the symmetry plane.
    • Multiple Symmetry Plane: If more than 2 axial spines are present, there will be multiple symmetry planes. The effect will be most pronounced with the presence of an even number of spines. This is a form of geometric keying.
    • Axisymmetric Flexibility: Adjacent connectors can be staggered so that axially uniform flexibility is provided with minimal loss of torsional rigidity. This may be viewed as a “flex coupler” design. If connecting spines precess or spiral along the axis, the shaft of the slotted tube 230 will tend to deform in a similar manner.


The preferred distribution of properties along the slotted tube 230 is typically dependent on the desired electrode configuration. Consider an electrode of a slotted tube 230 arranged tangent to the surface with an S-curve. The portion of the slotted tube 230 with the S-curve may have the following attributes:

    • a primary curve (closest to tip) having highly flexible axisymmetric flexure.
    • a pull wire terminates between the primary and a secondary curve.
    • the secondary curve having single plane symmetry to provide directional steering and stability.
    • a tertiary curve which is axisymmetric with moderate flexure to provide torque transmission and smooth axial control.


It is noted that for acute tip contact angles, the primary curve can be eliminated. Also, multi-plane symmetry in the tertiary curve provides a rotary detent effect. The effect is exaggerated if bending is concentrated in a short section of the slotted tube 230.


In accordance with an associated method, the slotted tube 230 can be guided to a treatment location in a renal artery using a guiding catheter or sheath, utilizing the enhanced torque control of the slotted tube 230 to orient the electrode 208 to a desired position in good contact with the artery wall. With the electrode 208 positioned against the artery wall at a desired site, RF energy is used to ablate perivascular renal nerves. An external control unit is used to energize the electrode 208, which can be configured for operation in either a unipolar mode (using an external pad return electrode) or a bipolar mode.


In accordance with various embodiments, and with reference to FIG. 18, the slotted tube 230 is dimensioned for displacement within the lumen of the shaft of a guiding catheter or sheath, and includes a plurality of regions defined along its length having disparate slot patterns associated with disparate mechanical properties including torque transmission and bending flexibility. The multiplicity of regions defined along the length of the slotted tube 230 include a proximal region (4), a turn region (3), and a tip region (1). The proximal region (4) is defined between the proximal end of the slotted tube 230 and the turn region (3). The proximal region (4) preferably has a slot pattern configured to provide enhanced torque transmission relative to bending flexibility.


The turn region (3) preferably has a slot pattern configured to provide enhanced bending flexibility relative to torque transmission to facilitate bending of the slotted tube 230 around an aortorenal junction 21 at the ostium of the renal artery 12. The tip region (1) is defined between a distal tip of the slotted tube 230 and the turn region (3). The tip region (1) is configured to support the electrode(s) 208 and preferably has a curved shape. The tip region (1) preferably has a slot pattern configured to provide enhanced bending stiffness sufficient to maintain contact between the electrode(s) 208 and the wall 15 of the renal artery 12. In some embodiments, the multiplicity of regions defined along the length of the slotted tube 230 further includes an intermediate region (2) defined between the tip region (1) and the turn region (3). The slot pattern in the intermediate region (2) is preferably configured to provide a balance between torque transmission and bending flexibility. Not shown are transition regions between each of the distinct regions (1)-(4), which provide for a gradual change in slotted tube properties between regions.



FIG. 19 shows a representative RF renal therapy apparatus 300 in accordance with various embodiments of the disclosure. The apparatus 300 illustrated in FIG. 19 includes external electrode activation circuitry 320 which comprises power control circuitry 322 and timing control circuitry 324. The external electrode activation circuitry 320, which includes an RF generator, is coupled to temperature measuring circuitry 328 and may be coupled to an optional impedance sensor 326. The catheter 100, which can be configured as a guiding catheter, includes a shaft 202 that incorporates a lumen arrangement 211 configured for receiving an RF ablation wire configured as a slotted tube 230 and, if desired, a variety of other components, such as conductors, pharmacological agents, actuator elements, obturators, sensors, or other components as needed or desired. The catheter 100 is typically introduced into the arterial or venous system via a percutaneous access location 229.


The RF generator of the external electrode activation circuitry 320 may include a return pad electrode 330 that is configured to comfortably engage the patient's back or other portion of the body near the kidneys. Radiofrequency energy produced by the RF generator is coupled to the electrode 208 of the slotted tube 230 by conductor wires that extend between the electrode 208 and the proximal end of the catheter 100.


Renal denervation therapy using the apparatus shown in FIG. 19 is typically performed using the RF electrode 208 positioned at desired locations within the renal artery 12 and the return pad electrode 330 positioned on the patient's back, with the RF generator operating in a unipolar mode. In other implementations, two or more RF electrodes 208 can be situated at the distal end of the slotted tube 230 and configured for operation in a bipolar configuration, in which case the return electrode pad 330 is not needed. The radiofrequency energy flows through the electrode(s) 208 in accordance with a predetermined activation sequence (e.g., sequential or concurrent) and ablates target tissue which includes perivascular renal nerves.


In general, when renal artery tissue temperatures rise above about 113° F. (50° C.), protein is permanently damaged (including those of renal nerve fibers). If heated over about 65° C., collagen denatures and tissue shrinks. If heated over about 65° C. and up to 100° C., cell walls break and oil separates from water. Above about 100° C., tissue desiccates. According to some embodiments, the electrode activation circuitry 320 is configured to control activation and deactivation of the electrode(s) 208 in accordance with a predetermined energy delivery protocol and in response to signals received from temperature measuring circuitry 328. The electrode activation circuitry 320 preferably controls radiofrequency energy delivered to the electrode(s) 208 so as to maintain the current densities at a level sufficient to cause heating of the target tissue to at least a temperature of 55° C.


One or more temperature sensors situated at the distal end of the slotted tube 230 provide for continuous monitoring of renal artery tissue temperatures, and RF generator power is automatically adjusted so that the target temperatures are achieved and maintained. An impedance sensor arrangement 326 may be used to measure and monitor electrical impedance during RF denervation therapy, and the power and timing of the RF generator 320 may be moderated based on the impedance measurements or a combination of impedance and temperature measurements.


Marker bands 314 can be placed on one or multiple parts of the slotted tube 230 and the catheter's shaft 202 to enable visualization during the procedure. Other portions of the catheter's shaft 202, such as a hinge mechanism 356, may include a marker band 314. The marker bands 314 may be solid or split bands of platinum or other radiopaque metal, for example. Radiopaque materials are understood to be materials capable of producing a relatively bright image on a fluoroscopy screen or another imaging technique during a medical procedure. This relatively bright image aids the user in determining specific portions of the catheter 100 and slotted tube 230, such as the electrode 208, for example.


Various aspects of the disclosure embodiments can be applied to other directed energy mechanisms for renal nerve ablation, such as for directing laser or microwave or ultrasound or cryothermal energy or ionizing radiation to selected locations within the renal artery. “Back-up” support curves can be provided, akin to coronary guiding catheter curves, to use the opposite wall of the renal artery for additional support to ensure adequate contact between the electrode and the artery wall. These and other features disclosed in the following commonly owned patents and published applications can be selectively incorporated into the various embodiments disclosed herein:


U.S. Patent Publication No. 2011-0257523, filed as U.S. patent application Ser. No. 13/086,116 on Apr. 13, 2011, which claims the benefit of U.S. Provisional Patent Application Ser. No. 61/324,164 filed Apr. 14, 2010; U.S. Patent Publication No. 2011-0257641, filed as U.S. patent application Ser. No. 13/086,121 on Apr. 13, 2011, which claims the benefit of U.S. Provisional Patent Application Ser. No. 61/324,163 filed Apr. 14, 2010; U.S. Patent Publication No. 2012-0029496, filed as U.S. patent application Ser. No. 13/193,437 on Jul. 28, 2011, which claims the benefit of U.S. Provisional Patent Application Ser. No. 61/369,460 filed Jul. 30, 2010; U.S. Patent Publication No. 2011-0270238, filed as U.S. patent application Ser. No. 12/980,952 on Dec. 29, 2010, which claims the benefit of U.S. Provisional Patent Application Ser. No. 61/291,476 filed Dec. 31, 2009; U.S. Patent Publication No. 2011-0263921, filed as U.S. patent application Ser. No. 12/980,972 on Dec. 29, 2010, which claims the benefit of U.S. Provisional Patent Application Ser. No. 61/291,480 filed Dec. 31, 2009; U.S. Patent Publication No. 2011-0307034, filed as U.S. patent application Ser. No. 13/157,844 on Jun. 10, 2011, which claims the benefit of U.S. Provisional Patent Application Ser. No. 61/353,853 filed Jun. 11, 2010; and U.S. Patent Publication No. 2011-0264086, filed as U.S. patent application Ser. No. 13/087,163 on Oct. 14, 2011, which claims the benefit of U.S. Provisional Patent Application Ser. No. 61/324,165 filed Apr. 14, 2010, each of which is incorporated herein by reference.


Although many of the embodiments disclosed herein are directed to ablation of body tissue, it is to be understood that various embodiments are directed to control mechanisms situated at a distal end of an elongated flexible member that provide for precision movement of a component coupled to a distal end or other portion of the control mechanism, where the component need not include an ablation device. Embodiments of the disclosure are also directed to control mechanisms situated at a distal end of an elongated flexible member dimensioned for deployment within a vessel of the body that provide for precision movement of a component coupled to a distal end or other portion of the control mechanism. It is to be understood that even though numerous characteristics of various embodiments have been set forth in the foregoing description, together with details of the structure and function of various embodiments, this detailed description is illustrative only, and changes may be made in detail, especially in matters of structure and arrangements of parts illustrated by the various embodiments to the full extent indicated by the broad general meaning of the terms in which the appended claims are expressed.

Claims
  • 1. An apparatus, comprising: a catheter comprising a flexible shaft having a proximal end, a distal end, a length, and a lumen extending between the proximal and distal ends, the length of the flexible shaft sufficient to access a patient's renal artery relative to a percutaneous access location;a flexible actuation member provided within the lumen and extending between the proximal and distal ends of the shaft, the flexible actuation member moveable within the lumen of the flexible shaft and subject to one or more of elastic deformation, friction, and whip along its length during movement within the flexible shaft's lumen;a flexible support member coupled to a distal end of the flexible actuation member and extendible beyond a distal tip of the flexible shaft and into a lumen of the renal artery;an electrode provided at a distal end of the flexible support member and configured to contact an inner wall of the renal artery and deliver high frequency AC energy sufficient to ablate perivascular renal nerve tissue proximate the electrode, the flexible support member configured to urge the electrode into contact with the inner wall of the renal artery; anda position converter provided at the distal end of the flexible shaft and coupled to the distal end of the flexible actuation member and a proximal end of the flexible support member, the position converter configured to convert movement of the flexible actuation member into at least controlled rotational movement of the flexible support member and the electrode to one of a plurality of stable circumferential positions substantially free of the one or more of elastic deformation, friction, and whip impacting the flexible actuation member movement; wherein the position converter is configured to convert movement of the actuation member into controller axial movement of the flexible support member and the electrode to one of a plurality of stable axial positions.
  • 2. The apparatus of claim 1, wherein: the position converter is disposed within the lumen of the flexible shaft;the flexible actuation member and the flexible support member define a continuous member; andthe continuous member is movable within the position converter.
  • 3. The apparatus of claim 1, wherein: the position converter is disposed within the lumen of the flexible shaft; andthe flexible actuation member and the flexible support member define separate members each having a proximal end and a distal end.
  • 4. The apparatus of claim 1, wherein the position converter comprises a ratcheting arrangement configured to convert axial movement of the flexible actuation member into controlled rotational movement of the flexible support member and the electrode to one of the plurality of stable circumferential positions.
  • 5. The apparatus of claim 1, wherein the position converter comprises a ratcheting arrangement configured to convert axial movement of the flexible actuation member into controlled axial and rotational movement of the flexible support member and the electrode to one of a plurality of stable circumferential and axial positions.
  • 6. The apparatus of claim 4, wherein the ratcheting arrangement comprises a spring-loaded rotating ratcheting element having a proximal end coupled to the distal end of the flexible actuation member and a distal end coupled to the proximal end of the flexible support member, the spring-loaded rotating ratcheting element configured to rotate the flexible support member and the electrode to one of a plurality of stable circumferential positions in response to an actuation force applied to the proximal end of the flexible actuation member.
  • 7. The apparatus of claim 4, wherein the ratcheting arrangement comprises: a control member having a proximal end, a distal end, and a length extending along the length of the flexible shaft;a spring-loaded rotating ratcheting element having a proximal end coupled to the distal end of the control member and a distal end coupled to the proximal end of the flexible support member;a plurality of circumferentially spaced keyways having opposing end locations each of which defines a predetermined stable axial and circumferential position; anda key component provided at a distal end of the flexible support member and having a shape configured to be received by each of the plurality of circumferentially spaced keyways;wherein the rotating ratcheting element rotatably aligns the key component of the flexible support member with one of the plurality of circumferentially spaced keyways and the aligned flexible support member is axially displaced along said one of the plurality of circumferentially spaced keyways to one of the stable axial and circumferential position in response to each application of an actuation force to the proximal end of the control member.
  • 8. The apparatus of claim 1, wherein the position converter comprises a magnetic indexing arrangement configured to magnetically urge the flexible support member and the electrode to one of the plurality of stable circumferential positions.
  • 9. The apparatus of claim 1, wherein the position converter comprises a magnetic indexing arrangement configured to magnetically urge the flexible support member and the electrode to one of the plurality of stable circumferential positions and one of a plurality of stable axial positions.
  • 10. The apparatus of claim 8, wherein the magnetic indexing arrangement comprises: a magnet arrangement provided at the distal end of the flexible shaft; anda magnet arrangement provided on the flexible actuation member, the magnet arrangements of the flexible shaft and the flexible actuation member magnetically interacting to urge the flexible support member and the electrode to rotate to one of the plurality of stable circumferential positions in response to an actuation force applied to the proximal end of the flexible actuation member.
  • 11. The apparatus of claim 8, wherein the magnetic indexing arrangement comprises: a plurality of magnets provided at discrete circumferential and axial locations at the distal end of the shaft; anda plurality of magnets provided on the flexible actuation member at discrete axial locations of the flexible actuation member, the magnets of the flexible shaft and the flexible actuation member magnetically interacting to urge the flexible support member and the electrode to rotate to one of the plurality of stable circumferential positions in response to an actuation force applied to the proximal end of the flexible actuation member.
  • 12. The apparatus of claim 8, wherein the distal end of the flexible shaft comprises a pre-formed spiral shape, and the magnetic indexing arrangement comprises: a plurality of magnets provided at discrete circumferential and axial locations along the spiral shaped distal end of the flexible shaft; anda plurality of magnets provided on the flexible actuation member at discrete axial locations of the flexible actuation member, the magnets of the flexible shaft and the flexible actuation member magnetically interacting to urge the flexible support member and the electrode to rotate to one of the plurality of stable circumferential positions along the spiral shaped distal end of the flexible shaft in response to an actuation force applied to the proximal end of the flexible actuation member.
  • 13. The apparatus of claim 1, wherein the position converter comprises a geometric keyed orientation mechanism configured to guide a key component of the flexible actuation member into and along a keyway arrangement that limits the movement of the flexible support member and the electrode to one of the plurality of stable circumferential positions.
  • 14. The apparatus of claim 1, wherein the position converter comprises a geometric keyed orientation mechanism configured to guide a key component of the flexible actuation member into and along a keyway arrangement that limits the rotational movement of the flexible support member and the electrode to one of the plurality of stable circumferential positions and limits the axial movement of the flexible support member and the electrode to one of a plurality of stable axial positions.
  • 15. The apparatus of claim 13, wherein the keyway arrangement comprises a plurality of spaced-apart keyways each comprising a tapered entrance configured to guide the key component into alignment with each of the plurality of spaced-apart keyways.
  • 16. The apparatus of claim 13, wherein the keyway arrangement comprises a plurality of circumferentially spaced-apart keyways, with alternate keyways of the keyway arrangement having differing lengths.
  • 17. The apparatus of claim 13, wherein the keyway arrangement comprises a plurality of circumferentially and axially spaced-apart keyways.
  • 18. The apparatus of claim 13, wherein the keyway arrangement comprises a plurality of spaced-apart keyways, the plurality of spaced-apart keyways having one of an elliptical, square, rectangular, and triangular cross-section.
RELATED APPLICATIONS

This application claims the benefit of Provisional Patent Application Ser. No. 61/369,463 filed Jul. 30, 2010, to which priority is claimed pursuant to 35 U.S.C. §119(e) and which is hereby incorporated herein by reference.

US Referenced Citations (1487)
Number Name Date Kind
164184 Kiddee Jun 1875 A
1167014 O'Brien Jan 1916 A
2505358 Gusberg et al. Apr 1950 A
2701559 Cooper Feb 1955 A
3108593 Glassman Oct 1963 A
3108594 Glassman Oct 1963 A
3540431 Mobin Nov 1970 A
3847001 Thamasett Nov 1974 A
3952747 Kimmell Apr 1976 A
3996938 Clark, III Dec 1976 A
4046150 Schwartz et al. Sep 1977 A
4290427 Chin Sep 1981 A
4402686 Medel Sep 1983 A
4483341 Witteles et al. Nov 1984 A
4574804 Kurwa Mar 1986 A
4587975 Salo et al. May 1986 A
4649936 Ungar et al. Mar 1987 A
4682596 Bales et al. Jul 1987 A
4709698 Johnston et al. Dec 1987 A
4765331 Petruzzi et al. Aug 1988 A
4770653 Shturman Sep 1988 A
4784132 Fox et al. Nov 1988 A
4784162 Ricks et al. Nov 1988 A
4785806 Deckelbaum et al. Nov 1988 A
4788975 Shturman et al. Dec 1988 A
4790310 Ginsburg et al. Dec 1988 A
4799479 Spears Jan 1989 A
4823791 D'Amelio et al. Apr 1989 A
4830003 Wolff et al. May 1989 A
4849484 Heard Jul 1989 A
4862886 Clarke et al. Sep 1989 A
4887605 Angelsen et al. Dec 1989 A
4920979 Bullara et al. May 1990 A
4938766 Jarvik Jul 1990 A
4955377 Lennox et al. Sep 1990 A
4976711 Parins et al. Dec 1990 A
5034010 Kittrell et al. Jul 1991 A
5052402 Bencini et al. Oct 1991 A
5053033 Clarke et al. Oct 1991 A
5071424 Reger et al. Dec 1991 A
5074871 Groshong et al. Dec 1991 A
5098429 Sterzer et al. Mar 1992 A
5098431 Rydell Mar 1992 A
5109859 Jenkins May 1992 A
5125928 Parins et al. Jun 1992 A
5129396 Rosen et al. Jul 1992 A
5139496 Hed Aug 1992 A
5143836 Hartman et al. Sep 1992 A
5156610 Reger et al. Oct 1992 A
5158564 Schnepp-Pesch Oct 1992 A
5170802 Mehra Dec 1992 A
5178620 Eggers et al. Jan 1993 A
5178625 Groshong et al. Jan 1993 A
5190540 Lee Mar 1993 A
5211651 Reger et al. May 1993 A
5234407 Teirstein et al. Aug 1993 A
5242441 Avitall Sep 1993 A
5251634 Weinberg et al. Oct 1993 A
5255679 Imran Oct 1993 A
5263493 Avitall Nov 1993 A
5267954 Nita et al. Dec 1993 A
5277201 Stern et al. Jan 1994 A
5282484 Reger et al. Feb 1994 A
5286254 Shapland et al. Feb 1994 A
5295484 Marcus Mar 1994 A
5297564 Love et al. Mar 1994 A
5300068 Rosar et al. Apr 1994 A
5301683 Durkan Apr 1994 A
5304115 Pflueger et al. Apr 1994 A
5304121 Sahatjian Apr 1994 A
5304171 Gregory et al. Apr 1994 A
5304173 Kittrell et al. Apr 1994 A
5306250 March et al. Apr 1994 A
5312328 Nita et al. May 1994 A
5314466 Stern et al. May 1994 A
5322064 Lundquist Jun 1994 A
5324255 Passafaro et al. Jun 1994 A
5326341 Lew et al. Jul 1994 A
5326342 Pflueger et al. Jul 1994 A
5330518 Neilson et al. Jul 1994 A
5333614 Feiring Aug 1994 A
5342292 Nita et al. Aug 1994 A
5344395 Whalen et al. Sep 1994 A
5364392 Warner et al. Nov 1994 A
5365172 Hrovat et al. Nov 1994 A
5368557 Nita et al. Nov 1994 A
5368558 Nita et al. Nov 1994 A
5380274 Nita et al. Jan 1995 A
5380319 Saito et al. Jan 1995 A
5382228 Nita et al. Jan 1995 A
5383874 Jackson et al. Jan 1995 A
5383917 Desai et al. Jan 1995 A
5397301 Pflueger et al. Mar 1995 A
5397339 Desai Mar 1995 A
5401272 Perkins et al. Mar 1995 A
5403311 Abele et al. Apr 1995 A
5405318 Nita et al. Apr 1995 A
5405346 Grundy et al. Apr 1995 A
5409000 Imran Apr 1995 A
5417672 Nita et al. May 1995 A
5419767 Eggers et al. May 1995 A
5427118 Nita et al. Jun 1995 A
5432876 Appeldorn et al. Jul 1995 A
5441498 Perkins et al. Aug 1995 A
5447509 Mills et al. Sep 1995 A
5451207 Yock et al. Sep 1995 A
5453091 Taylor et al. Sep 1995 A
5454788 Walker et al. Oct 1995 A
5454809 Janssen Oct 1995 A
5455029 Hartman et al. Oct 1995 A
5456682 Edwards et al. Oct 1995 A
5457042 Hartman et al. Oct 1995 A
5471982 Edwards et al. Dec 1995 A
5474530 Passafaro et al. Dec 1995 A
5478351 Meade et al. Dec 1995 A
5496311 Abele et al. Mar 1996 A
5496312 Klicek et al. Mar 1996 A
5498261 Strul Mar 1996 A
5505201 Grill et al. Apr 1996 A
5505730 Edwards Apr 1996 A
5507744 Tay et al. Apr 1996 A
5522873 Jackman et al. Jun 1996 A
5531520 Grimson et al. Jul 1996 A
5540656 Pflueger et al. Jul 1996 A
5540679 Fram et al. Jul 1996 A
5540681 Strul et al. Jul 1996 A
5542917 Nita et al. Aug 1996 A
5545161 Imran Aug 1996 A
5562100 Kittrell et al. Oct 1996 A
5571122 Kelly et al. Nov 1996 A
5571151 Gregory Nov 1996 A
5573531 Gregory Nov 1996 A
5573533 Strul Nov 1996 A
5584831 McKay Dec 1996 A
5584872 Lafontaine et al. Dec 1996 A
5588962 Nicholas et al. Dec 1996 A
5599346 Edwards et al. Feb 1997 A
5601526 Chapelon et al. Feb 1997 A
5609606 O'Boyle et al. Mar 1997 A
5626576 Janssen May 1997 A
5630837 Crowley May 1997 A
5637090 McGee et al. Jun 1997 A
5643255 Organ Jul 1997 A
5643297 Nordgren et al. Jul 1997 A
5647847 Lafontaine et al. Jul 1997 A
5649923 Gregory et al. Jul 1997 A
5651780 Jackson et al. Jul 1997 A
5653684 Laptewicz et al. Aug 1997 A
5662671 Barbut et al. Sep 1997 A
5665062 Houser Sep 1997 A
5665098 Kelly et al. Sep 1997 A
5666964 Meilus Sep 1997 A
5667490 Keith et al. Sep 1997 A
5672174 Gough et al. Sep 1997 A
5676693 Lafontaine Oct 1997 A
5678296 Fleischhacker et al. Oct 1997 A
5681282 Eggers et al. Oct 1997 A
RE35656 Feinberg Nov 1997 E
5688266 Edwards et al. Nov 1997 A
5693015 Walker et al. Dec 1997 A
5693029 Leonhardt et al. Dec 1997 A
5693043 Kittrell et al. Dec 1997 A
5693082 Warner et al. Dec 1997 A
5695504 Gifford et al. Dec 1997 A
5697369 Long, Jr. et al. Dec 1997 A
5697909 Eggers et al. Dec 1997 A
5702386 Stern et al. Dec 1997 A
5702433 Taylor et al. Dec 1997 A
5706809 Littmann et al. Jan 1998 A
5713942 Stern et al. Feb 1998 A
5715819 Svenson et al. Feb 1998 A
5735846 Panescu et al. Apr 1998 A
5741214 Ouchi et al. Apr 1998 A
5741248 Stern et al. Apr 1998 A
5741249 Moss et al. Apr 1998 A
5743903 Stern et al. Apr 1998 A
5748347 Erickson May 1998 A
5749914 Janssen May 1998 A
5755682 Knudson et al. May 1998 A
5755715 Stern et al. May 1998 A
5755753 Knowlton et al. May 1998 A
5769847 Panescu et al. Jun 1998 A
5769880 Truckai et al. Jun 1998 A
5775338 Hastings Jul 1998 A
5776174 Van Tassel Jul 1998 A
5779698 Clayman et al. Jul 1998 A
5782760 Schaer Jul 1998 A
5785702 Murphy-Chutorian et al. Jul 1998 A
5797849 Vesely et al. Aug 1998 A
5797903 Swanson et al. Aug 1998 A
5800484 Gough et al. Sep 1998 A
5800494 Campbell et al. Sep 1998 A
5810802 Panescu et al. Sep 1998 A
5810803 Moss et al. Sep 1998 A
5810810 Tay et al. Sep 1998 A
5817092 Behl Oct 1998 A
5817113 Gifford et al. Oct 1998 A
5817144 Gregory et al. Oct 1998 A
5823956 Roth et al. Oct 1998 A
5827203 Nita Oct 1998 A
5827268 Laufer Oct 1998 A
5829447 Stevens et al. Nov 1998 A
5830213 Panescu et al. Nov 1998 A
5830222 Makower Nov 1998 A
5832228 Holden et al. Nov 1998 A
5833593 Liprie Nov 1998 A
5836874 Swanson et al. Nov 1998 A
5840076 Swanson et al. Nov 1998 A
5843016 Lugnani et al. Dec 1998 A
5846238 Jackson et al. Dec 1998 A
5846239 Swanson et al. Dec 1998 A
5846245 McCarthy et al. Dec 1998 A
5848969 Panescu et al. Dec 1998 A
5853411 Whayne et al. Dec 1998 A
5855614 Stevens et al. Jan 1999 A
5860974 Abele Jan 1999 A
5865801 Houser Feb 1999 A
5868735 Lafontaine et al. Feb 1999 A
5868736 Swanson et al. Feb 1999 A
5871483 Jackson et al. Feb 1999 A
5871524 Knowlton et al. Feb 1999 A
5875782 Ferrari et al. Mar 1999 A
5876369 Houser Mar 1999 A
5876374 Alba et al. Mar 1999 A
5876397 Edelman et al. Mar 1999 A
5879348 Owens et al. Mar 1999 A
5891114 Chien et al. Apr 1999 A
5891135 Jackson et al. Apr 1999 A
5891136 McGee et al. Apr 1999 A
5891138 Tu et al. Apr 1999 A
5895378 Nita Apr 1999 A
5897552 Edwards et al. Apr 1999 A
5902328 LaFontaine et al. May 1999 A
5904651 Swanson et al. May 1999 A
5904667 Falwell May 1999 A
5904697 Gifford et al. May 1999 A
5904709 Arndt et al. May 1999 A
5906614 Stern et al. May 1999 A
5906623 Peterson May 1999 A
5906636 Casscells, III et al. May 1999 A
5916192 Nita et al. Jun 1999 A
5916227 Keith et al. Jun 1999 A
5916239 Geddes et al. Jun 1999 A
5919219 Knowlton Jul 1999 A
5924424 Stevens et al. Jul 1999 A
5925038 Panescu et al. Jul 1999 A
5934284 Plaia et al. Aug 1999 A
5935063 Nguyen Aug 1999 A
5938670 Keith et al. Aug 1999 A
5947977 Slepian et al. Sep 1999 A
5948011 Knowlton et al. Sep 1999 A
5951494 Wang et al. Sep 1999 A
5951539 Nita et al. Sep 1999 A
5954717 Behl et al. Sep 1999 A
5957882 Nita et al. Sep 1999 A
5957941 Ream et al. Sep 1999 A
5957969 Warner et al. Sep 1999 A
5961513 Swanson et al. Oct 1999 A
5964757 Ponzi et al. Oct 1999 A
5967976 Larsen et al. Oct 1999 A
5967978 Littmann et al. Oct 1999 A
5967984 Chu et al. Oct 1999 A
5971975 Mills et al. Oct 1999 A
5972026 Laufer et al. Oct 1999 A
5980563 Tu et al. Nov 1999 A
5989208 Nita et al. Nov 1999 A
5989284 Laufer Nov 1999 A
5993462 Pomeranz et al. Nov 1999 A
5997497 Nita et al. Dec 1999 A
5999678 Murphy-Chutorian et al. Dec 1999 A
6004269 Crowley et al. Dec 1999 A
6004316 Laufer et al. Dec 1999 A
6007514 Nita Dec 1999 A
6010522 Barbut et al. Jan 2000 A
6013033 Berger et al. Jan 2000 A
6014590 Whayne et al. Jan 2000 A
6022309 Celliers et al. Feb 2000 A
6024740 Lesh Feb 2000 A
6030611 Gorecki et al. Feb 2000 A
6032675 Rubinsky et al. Mar 2000 A
6033397 Laufer et al. Mar 2000 A
6033398 Farley et al. Mar 2000 A
6036687 Laufer et al. Mar 2000 A
6036689 Tu et al. Mar 2000 A
6041260 Stern et al. Mar 2000 A
6050994 Sherman Apr 2000 A
6056744 Edwards May 2000 A
6056746 Goble et al. May 2000 A
6063085 Tay et al. May 2000 A
6066096 Smith et al. May 2000 A
6066139 Ryan et al. May 2000 A
6068638 Makower May 2000 A
6068653 Lafontaine May 2000 A
6071277 Farley et al. Jun 2000 A
6071278 Panescu et al. Jun 2000 A
6078839 Carson Jun 2000 A
6079414 Roth Jun 2000 A
6080171 Keith et al. Jun 2000 A
6081749 Ingle et al. Jun 2000 A
6086581 Reynolds et al. Jul 2000 A
6093166 Knudson et al. Jul 2000 A
6096021 Helm et al. Aug 2000 A
6099526 Whayne et al. Aug 2000 A
6102908 Tu et al. Aug 2000 A
6106477 Miesel et al. Aug 2000 A
6110187 Donlon et al. Aug 2000 A
6114311 Parmacek et al. Sep 2000 A
6117101 Diederich et al. Sep 2000 A
6117128 Gregory Sep 2000 A
6120476 Fung et al. Sep 2000 A
6120516 Selmon et al. Sep 2000 A
6121775 Pearlman Sep 2000 A
6123679 Lafaut et al. Sep 2000 A
6123682 Knudson et al. Sep 2000 A
6123702 Swanson et al. Sep 2000 A
6123703 Tu et al. Sep 2000 A
6123718 Tu et al. Sep 2000 A
6129725 Tu et al. Oct 2000 A
6135997 Laufer et al. Oct 2000 A
6142991 Schatzberger et al. Nov 2000 A
6142993 Whayne et al. Nov 2000 A
6149647 Tu et al. Nov 2000 A
6152899 Farley et al. Nov 2000 A
6152912 Jansen et al. Nov 2000 A
6156046 Passafaro et al. Dec 2000 A
6158250 Tibbals et al. Dec 2000 A
6159187 Park et al. Dec 2000 A
6159225 Makower Dec 2000 A
6161048 Sluijter et al. Dec 2000 A
6162184 Swanson et al. Dec 2000 A
6165163 Chien et al. Dec 2000 A
6165172 Farley et al. Dec 2000 A
6165187 Reger Dec 2000 A
6168594 LaFontaine et al. Jan 2001 B1
6171321 Gifford, III et al. Jan 2001 B1
6179832 Jones et al. Jan 2001 B1
6179835 Panescu et al. Jan 2001 B1
6179859 Bates et al. Jan 2001 B1
6183468 Swanson et al. Feb 2001 B1
6183486 Snow et al. Feb 2001 B1
6190379 Heuser et al. Feb 2001 B1
6191862 Swanson et al. Feb 2001 B1
6197021 Panescu et al. Mar 2001 B1
6200266 Shokrollahi et al. Mar 2001 B1
6203537 Adrian Mar 2001 B1
6203561 Ramee et al. Mar 2001 B1
6210406 Webster Apr 2001 B1
6211247 Goodman Apr 2001 B1
6217576 Tu et al. Apr 2001 B1
6219577 Brown, III et al. Apr 2001 B1
6228076 Winston et al. May 2001 B1
6228109 Tu et al. May 2001 B1
6231516 Keilman et al. May 2001 B1
6231587 Makower May 2001 B1
6235044 Root et al. May 2001 B1
6236883 Ciaccio et al. May 2001 B1
6237605 Vaska et al. May 2001 B1
6238389 Paddock et al. May 2001 B1
6238392 Long May 2001 B1
6241666 Pomeranz et al. Jun 2001 B1
6241753 Knowlton Jun 2001 B1
6245020 Moore et al. Jun 2001 B1
6245045 Stratienko Jun 2001 B1
6248126 Lesser et al. Jun 2001 B1
6251128 Knopp et al. Jun 2001 B1
6258087 Edwards et al. Jul 2001 B1
6273886 Edwards et al. Aug 2001 B1
6280466 Kugler et al. Aug 2001 B1
6283935 Laufer et al. Sep 2001 B1
6283959 Lalonde et al. Sep 2001 B1
6284743 Parmacek et al. Sep 2001 B1
6287323 Hammerslag Sep 2001 B1
6290696 Lafontaine Sep 2001 B1
6292695 Webster, Jr. et al. Sep 2001 B1
6293942 Goble et al. Sep 2001 B1
6293943 Panescu et al. Sep 2001 B1
6296619 Brisken et al. Oct 2001 B1
6298256 Meyer Oct 2001 B1
6299379 Lewis Oct 2001 B1
6299623 Wulfman Oct 2001 B1
6309379 Willard et al. Oct 2001 B1
6309399 Barbut et al. Oct 2001 B1
6311090 Knowlton Oct 2001 B1
6317615 KenKnight et al. Nov 2001 B1
6319242 Patterson et al. Nov 2001 B1
6319251 Tu et al. Nov 2001 B1
6322559 Daulton et al. Nov 2001 B1
6325797 Stewart et al. Dec 2001 B1
6325799 Goble Dec 2001 B1
6328699 Eigler et al. Dec 2001 B1
6346074 Roth Feb 2002 B1
6346104 Daly et al. Feb 2002 B2
6350248 Knudson et al. Feb 2002 B1
6350276 Knowlton Feb 2002 B1
6353751 Swanson et al. Mar 2002 B1
6355029 Joye et al. Mar 2002 B1
6357447 Swanson et al. Mar 2002 B1
6361519 Knudson et al. Mar 2002 B1
6364840 Crowley Apr 2002 B1
6371965 Gifford, III et al. Apr 2002 B2
6375668 Gifford et al. Apr 2002 B1
6377854 Knowlton Apr 2002 B1
6377855 Knowlton Apr 2002 B1
6379352 Reynolds et al. Apr 2002 B1
6379373 Sawhney et al. Apr 2002 B1
6381497 Knowlton Apr 2002 B1
6381498 Knowlton Apr 2002 B1
6383151 Diederich et al. May 2002 B1
6387105 Gifford, III et al. May 2002 B1
6387380 Knowlton May 2002 B1
6389311 Whayne et al. May 2002 B1
6389314 Feiring May 2002 B2
6391024 Sun et al. May 2002 B1
6394096 Constantz May 2002 B1
6394956 Chandrasekaran et al. May 2002 B1
6398780 Farley et al. Jun 2002 B1
6398782 Pecor et al. Jun 2002 B1
6398792 O'Connor Jun 2002 B1
6401720 Stevens et al. Jun 2002 B1
6402719 Ponzi et al. Jun 2002 B1
6405090 Knowlton Jun 2002 B1
6409723 Edwards Jun 2002 B1
6413255 Stern Jul 2002 B1
6421559 Pearlman Jul 2002 B1
6423057 He et al. Jul 2002 B1
6425867 Vaezy et al. Jul 2002 B1
6425912 Knowlton Jul 2002 B1
6427118 Suzuki Jul 2002 B1
6428534 Joye et al. Aug 2002 B1
6428536 Panescu et al. Aug 2002 B2
6430446 Knowlton Aug 2002 B1
6432102 Joye et al. Aug 2002 B2
6436056 Wang et al. Aug 2002 B1
6438424 Knowlton Aug 2002 B1
6440125 Rentrop Aug 2002 B1
6442413 Silver Aug 2002 B1
6443965 Gifford, III et al. Sep 2002 B1
6445939 Swanson et al. Sep 2002 B1
6447505 McGovern et al. Sep 2002 B2
6447509 Bonnet et al. Sep 2002 B1
6451034 Gifford, III et al. Sep 2002 B1
6451044 Naghavi et al. Sep 2002 B1
6453202 Knowlton Sep 2002 B1
6454737 Nita et al. Sep 2002 B1
6454757 Nita et al. Sep 2002 B1
6454775 Demarais et al. Sep 2002 B1
6458098 Kanesaka Oct 2002 B1
6461378 Knowlton Oct 2002 B1
6468276 McKay Oct 2002 B1
6468297 Williams et al. Oct 2002 B1
6470216 Knowlton Oct 2002 B1
6470219 Edwards et al. Oct 2002 B1
6471696 Berube et al. Oct 2002 B1
6475213 Whayne et al. Nov 2002 B1
6475215 Tanrisever Nov 2002 B1
6475238 Fedida et al. Nov 2002 B1
6477426 Fenn et al. Nov 2002 B1
6480745 Nelson et al. Nov 2002 B2
6481704 Koster et al. Nov 2002 B1
6482202 Goble et al. Nov 2002 B1
6484052 Visuri et al. Nov 2002 B1
6485489 Teirstein et al. Nov 2002 B2
6488679 Swanson et al. Dec 2002 B1
6489307 Phillips et al. Dec 2002 B1
6491705 Gifford, III et al. Dec 2002 B2
6494891 Cornish et al. Dec 2002 B1
6497711 Plaia et al. Dec 2002 B1
6500172 Panescu et al. Dec 2002 B1
6500174 Maguire et al. Dec 2002 B1
6508765 Suorsa et al. Jan 2003 B2
6508804 Sarge et al. Jan 2003 B2
6508815 Strul et al. Jan 2003 B1
6511478 Burnside et al. Jan 2003 B1
6511496 Huter et al. Jan 2003 B1
6511500 Rahme Jan 2003 B1
6514236 Stratienko Feb 2003 B1
6514245 Williams et al. Feb 2003 B1
6514248 Eggers et al. Feb 2003 B1
6517534 McGovern et al. Feb 2003 B1
6517572 Kugler et al. Feb 2003 B2
6522913 Swanson et al. Feb 2003 B2
6522926 Kieval et al. Feb 2003 B1
6524299 Tran et al. Feb 2003 B1
6527765 Kelman et al. Mar 2003 B2
6527769 Langberg et al. Mar 2003 B2
6540761 Houser Apr 2003 B2
6542781 Koblish et al. Apr 2003 B1
6544780 Wang Apr 2003 B1
6546272 MacKinnon et al. Apr 2003 B1
6547788 Maguire et al. Apr 2003 B1
6549800 Atalar et al. Apr 2003 B1
6552796 Magnin et al. Apr 2003 B2
6554780 Sampson et al. Apr 2003 B1
6558381 Ingle et al. May 2003 B2
6558382 Jahns et al. May 2003 B2
6564096 Mest May 2003 B2
6565582 Gifford, III et al. May 2003 B2
6569109 Sakurai et al. May 2003 B2
6569177 Dillard et al. May 2003 B1
6570659 Schmitt May 2003 B2
6572551 Smith et al. Jun 2003 B1
6572612 Stewart et al. Jun 2003 B2
6577902 Laufer et al. Jun 2003 B1
6579308 Jansen et al. Jun 2003 B1
6579311 Makower Jun 2003 B1
6582423 Thapliyal et al. Jun 2003 B1
6589238 Edwards et al. Jul 2003 B2
6592526 Lenker Jul 2003 B1
6592567 Levin et al. Jul 2003 B1
6595959 Stratienko Jul 2003 B1
6600956 Maschino et al. Jul 2003 B2
6602242 Fung Aug 2003 B1
6602246 Joye et al. Aug 2003 B1
6605084 Acker et al. Aug 2003 B2
6623452 Chien et al. Sep 2003 B2
6623453 Guibert et al. Sep 2003 B1
6632193 Davison et al. Oct 2003 B1
6632196 Houser Oct 2003 B1
6645223 Boyle et al. Nov 2003 B2
6648854 Patterson et al. Nov 2003 B1
6648878 Lafontaine Nov 2003 B2
6648879 Joye et al. Nov 2003 B2
6651672 Roth Nov 2003 B2
6652513 Panescu et al. Nov 2003 B2
6652515 Maguire et al. Nov 2003 B1
6656136 Weng et al. Dec 2003 B1
6658279 Swanson et al. Dec 2003 B2
6659981 Stewart et al. Dec 2003 B2
6666858 Lafontaine Dec 2003 B2
6666863 Wentzel et al. Dec 2003 B2
6669655 Acker et al. Dec 2003 B1
6669692 Nelson et al. Dec 2003 B1
6673040 Samson et al. Jan 2004 B1
6673064 Rentrop Jan 2004 B1
6673066 Werneth Jan 2004 B2
6673090 Root et al. Jan 2004 B2
6673101 Fitzgerald et al. Jan 2004 B1
6673290 Whayne et al. Jan 2004 B1
6676678 Gifford, III et al. Jan 2004 B2
6679268 Stevens et al. Jan 2004 B2
6681773 Murphy et al. Jan 2004 B2
6682541 Gifford, III et al. Jan 2004 B1
6684098 Oshio et al. Jan 2004 B2
6685732 Kramer Feb 2004 B2
6685733 Dae et al. Feb 2004 B1
6689086 Nita et al. Feb 2004 B1
6689148 Sawhney et al. Feb 2004 B2
6690181 Dowdeswell et al. Feb 2004 B1
6692490 Edwards Feb 2004 B1
6695830 Vigil et al. Feb 2004 B2
6695857 Gifford, III et al. Feb 2004 B2
6699241 Rappaport et al. Mar 2004 B2
6699257 Gifford, III et al. Mar 2004 B2
6702748 Nita et al. Mar 2004 B1
6702811 Stewart et al. Mar 2004 B2
6706010 Miki et al. Mar 2004 B1
6706011 Murphy-Chutorian et al. Mar 2004 B1
6706037 Zvuloni et al. Mar 2004 B2
6709431 Lafontaine Mar 2004 B2
6711429 Gilboa et al. Mar 2004 B1
6712815 Sampson et al. Mar 2004 B2
6714822 King et al. Mar 2004 B2
6716184 Vaezy et al. Apr 2004 B2
6720350 Kunz et al. Apr 2004 B2
6723043 Kleeman et al. Apr 2004 B2
6723064 Babaev Apr 2004 B2
6736811 Panescu et al. May 2004 B2
6743184 Sampson et al. Jun 2004 B2
6746401 Panescu Jun 2004 B2
6746464 Makower Jun 2004 B1
6746474 Saadat Jun 2004 B2
6748953 Sherry et al. Jun 2004 B2
6749607 Edwards et al. Jun 2004 B2
6752805 Maguire et al. Jun 2004 B2
6760616 Hoey et al. Jul 2004 B2
6763261 Casscells, III et al. Jul 2004 B2
6764501 Ganz Jul 2004 B2
6769433 Zikorus et al. Aug 2004 B2
6770070 Balbierz Aug 2004 B1
6771996 Bowe et al. Aug 2004 B2
6773433 Stewart et al. Aug 2004 B2
6786900 Joye et al. Sep 2004 B2
6786901 Joye et al. Sep 2004 B2
6786904 Döscher et al. Sep 2004 B2
6788977 Fenn et al. Sep 2004 B2
6790206 Panescu Sep 2004 B2
6790222 Kugler et al. Sep 2004 B2
6796981 Wham et al. Sep 2004 B2
6797933 Mendis et al. Sep 2004 B1
6797960 Spartiotis et al. Sep 2004 B1
6800075 Mische et al. Oct 2004 B2
6802857 Walsh et al. Oct 2004 B1
6807444 Tu et al. Oct 2004 B2
6811550 Holland et al. Nov 2004 B2
6813520 Truckai et al. Nov 2004 B2
6814730 Li Nov 2004 B2
6814733 Schwartz et al. Nov 2004 B2
6823205 Jara Nov 2004 B1
6824516 Batten et al. Nov 2004 B2
6827726 Parodi Dec 2004 B2
6827926 Robinson et al. Dec 2004 B2
6829497 Mogul Dec 2004 B2
6830568 Kesten et al. Dec 2004 B1
6837886 Collins et al. Jan 2005 B2
6837888 Ciarrocca et al. Jan 2005 B2
6845267 Harrison et al. Jan 2005 B2
6847848 Sterzer Jan 2005 B2
6849073 Hoey et al. Feb 2005 B2
6849075 Bertolero et al. Feb 2005 B2
6853425 Kim et al. Feb 2005 B2
6855123 Nita Feb 2005 B2
6855143 Davison Feb 2005 B2
6869431 Maguire et al. Mar 2005 B2
6872183 Sampson et al. Mar 2005 B2
6884260 Kugler et al. Apr 2005 B2
6889694 Hooven May 2005 B2
6893436 Woodard et al. May 2005 B2
6895077 Karellas et al. May 2005 B2
6895265 Silver May 2005 B2
6898454 Atalar et al. May 2005 B2
6899711 Stewart et al. May 2005 B2
6899718 Gifford, III et al. May 2005 B2
6905494 Yon et al. Jun 2005 B2
6908462 Joye et al. Jun 2005 B2
6909009 Koridze Jun 2005 B2
6911026 Hall et al. Jun 2005 B1
6915806 Pacek et al. Jul 2005 B2
6923805 LaFontaine et al. Aug 2005 B1
6926246 Ginggen Aug 2005 B2
6926713 Rioux et al. Aug 2005 B2
6926716 Baker et al. Aug 2005 B2
6929009 Makower et al. Aug 2005 B2
6929632 Nita et al. Aug 2005 B2
6929639 Lafontaine Aug 2005 B2
6932776 Carr Aug 2005 B2
6936047 Nasab et al. Aug 2005 B2
6942620 Nita et al. Sep 2005 B2
6942657 Sinofsky et al. Sep 2005 B2
6942677 Nita et al. Sep 2005 B2
6942692 Landau et al. Sep 2005 B2
6949097 Stewart et al. Sep 2005 B2
6949121 Laguna Sep 2005 B1
6952615 Satake Oct 2005 B2
6953425 Brister Oct 2005 B2
6955174 Joye et al. Oct 2005 B2
6955175 Stevens et al. Oct 2005 B2
6959711 Murphy et al. Nov 2005 B2
6960207 Vanney et al. Nov 2005 B2
6962584 Stone et al. Nov 2005 B1
6964660 Maguire et al. Nov 2005 B2
6966908 Maguire et al. Nov 2005 B2
6972015 Joye et al. Dec 2005 B2
6972024 Kilpatrick et al. Dec 2005 B1
6974456 Edwards et al. Dec 2005 B2
6978174 Gelfand Dec 2005 B2
6979329 Burnside et al. Dec 2005 B2
6979420 Weber Dec 2005 B2
6984238 Gifford, III et al. Jan 2006 B2
6985774 Kieval et al. Jan 2006 B2
6986739 Warren et al. Jan 2006 B2
6989009 Lafontaine Jan 2006 B2
6989010 Francischelli et al. Jan 2006 B2
6991617 Hektner et al. Jan 2006 B2
7001378 Yon et al. Feb 2006 B2
7006858 Silver et al. Feb 2006 B2
7022105 Edwards Apr 2006 B1
7022120 Lafontaine Apr 2006 B2
7025767 Schaefer et al. Apr 2006 B2
7033322 Silver Apr 2006 B2
7033372 Cahalan Apr 2006 B1
7041098 Farley et al. May 2006 B2
7050848 Hoey et al. May 2006 B2
7063670 Sampson et al. Jun 2006 B2
7063679 Maguire et al. Jun 2006 B2
7063719 Jansen et al. Jun 2006 B2
7066895 Podany Jun 2006 B2
7066900 Botto et al. Jun 2006 B2
7066904 Rosenthal et al. Jun 2006 B2
7072720 Puskas Jul 2006 B2
7074217 Strul et al. Jul 2006 B2
7081112 Joye et al. Jul 2006 B2
7081114 Rashidi Jul 2006 B2
7083614 Fjield et al. Aug 2006 B2
7084276 Vu et al. Aug 2006 B2
7087026 Callister et al. Aug 2006 B2
7087051 Bourne et al. Aug 2006 B2
7087052 Sampson et al. Aug 2006 B2
7087053 Vanney Aug 2006 B2
7089065 Westlund et al. Aug 2006 B2
7097641 Arless et al. Aug 2006 B1
7100614 Stevens et al. Sep 2006 B2
7101368 Lafontaine Sep 2006 B2
7104983 Grasso, III et al. Sep 2006 B2
7104987 Biggs et al. Sep 2006 B2
7108715 Lawrence-Brown et al. Sep 2006 B2
7112196 Brosch et al. Sep 2006 B2
7112198 Satake Sep 2006 B2
7112211 Gifford, III et al. Sep 2006 B2
7122019 Kesten et al. Oct 2006 B1
7122033 Wood Oct 2006 B2
7134438 Makower et al. Nov 2006 B2
7137963 Nita et al. Nov 2006 B2
7137980 Buysse et al. Nov 2006 B2
7153315 Miller Dec 2006 B2
7155271 Halperin et al. Dec 2006 B2
7157491 Mewshaw et al. Jan 2007 B2
7157492 Mewshaw et al. Jan 2007 B2
7158832 Kieval et al. Jan 2007 B2
7160296 Pearson et al. Jan 2007 B2
7162303 Levin Jan 2007 B2
7165551 Edwards et al. Jan 2007 B2
7169144 Hoey et al. Jan 2007 B2
7172589 Lafontaine Feb 2007 B2
7172610 Heitzmann et al. Feb 2007 B2
7181261 Silver et al. Feb 2007 B2
7184811 Phan et al. Feb 2007 B2
7184827 Edwards Feb 2007 B1
7189227 Lafontaine Mar 2007 B2
7192427 Chapelon et al. Mar 2007 B2
7192586 Bander Mar 2007 B2
7197354 Sobe Mar 2007 B2
7198632 Lim et al. Apr 2007 B2
7200445 Dalbec et al. Apr 2007 B1
7201749 Govari et al. Apr 2007 B2
7203537 Mower Apr 2007 B2
7214234 Rapacki et al. May 2007 B2
7220233 Nita et al. May 2007 B2
7220239 Wilson et al. May 2007 B2
7220257 Lafontaine May 2007 B1
7220270 Sawhney et al. May 2007 B2
7232458 Saadat Jun 2007 B2
7232459 Greenberg et al. Jun 2007 B2
7238184 Megerman et al. Jul 2007 B2
7241273 Maguire et al. Jul 2007 B2
7241736 Hunter et al. Jul 2007 B2
7247141 Makin et al. Jul 2007 B2
7250041 Chiu et al. Jul 2007 B2
7250440 Mewshaw et al. Jul 2007 B2
7252664 Nasab et al. Aug 2007 B2
7252679 Fischell et al. Aug 2007 B2
7264619 Venturelli Sep 2007 B2
7279600 Mewshaw et al. Oct 2007 B2
7280863 Shachar Oct 2007 B2
7282213 Schroeder et al. Oct 2007 B2
7285119 Stewart et al. Oct 2007 B2
7285120 Im et al. Oct 2007 B2
7288089 Yon et al. Oct 2007 B2
7288096 Chin Oct 2007 B2
7291146 Steinke et al. Nov 2007 B2
7293562 Malecki et al. Nov 2007 B2
7294125 Phalen et al. Nov 2007 B2
7294126 Sampson et al. Nov 2007 B2
7294127 Leung et al. Nov 2007 B2
7297131 Nita Nov 2007 B2
7297475 Koiwai et al. Nov 2007 B2
7300433 Lane et al. Nov 2007 B2
7301108 Egitto et al. Nov 2007 B2
7310150 Guillermo et al. Dec 2007 B2
7313430 Urquhart et al. Dec 2007 B2
7314483 Landau et al. Jan 2008 B2
7317077 Averback et al. Jan 2008 B2
7323006 Andreas et al. Jan 2008 B2
7326206 Paul et al. Feb 2008 B2
7326226 Root et al. Feb 2008 B2
7326235 Edwards Feb 2008 B2
7326237 DePalma et al. Feb 2008 B2
7329236 Kesten et al. Feb 2008 B2
7335180 Nita et al. Feb 2008 B2
7335192 Keren et al. Feb 2008 B2
7338467 Lutter Mar 2008 B2
7341570 Keren et al. Mar 2008 B2
7343195 Strommer et al. Mar 2008 B2
7347857 Anderson et al. Mar 2008 B2
7348003 Salcedo et al. Mar 2008 B2
7352593 Zeng et al. Apr 2008 B2
7354927 Vu Apr 2008 B2
7359732 Kim et al. Apr 2008 B2
7361341 Salcedo et al. Apr 2008 B2
7364566 Elkins et al. Apr 2008 B2
7367970 Govari et al. May 2008 B2
7367975 Malecki et al. May 2008 B2
7371231 Rioux et al. May 2008 B2
7387126 Cox et al. Jun 2008 B2
7393338 Nita Jul 2008 B2
7396355 Goldman et al. Jul 2008 B2
7402151 Rosenman et al. Jul 2008 B2
7402312 Rosen et al. Jul 2008 B2
7404824 Webler et al. Jul 2008 B1
7406970 Zikorus et al. Aug 2008 B2
7407502 Strul et al. Aug 2008 B2
7407506 Makower Aug 2008 B2
7407671 McBride et al. Aug 2008 B2
7408021 Averback et al. Aug 2008 B2
7410486 Fuimaono et al. Aug 2008 B2
7413556 Zhang et al. Aug 2008 B2
7425212 Danek et al. Sep 2008 B1
7426409 Casscells, III et al. Sep 2008 B2
7435248 Taimisto et al. Oct 2008 B2
7447453 Kim et al. Nov 2008 B2
7449018 Kramer Nov 2008 B2
7452538 Ni et al. Nov 2008 B2
7473890 Grier et al. Jan 2009 B2
7476384 Ni et al. Jan 2009 B2
7479157 Weber et al. Jan 2009 B2
7481803 Kesten et al. Jan 2009 B2
7485104 Kieval Feb 2009 B2
7486805 Krattiger Feb 2009 B2
7487780 Hooven Feb 2009 B2
7493154 Bonner et al. Feb 2009 B2
7494485 Beck et al. Feb 2009 B2
7494486 Mische et al. Feb 2009 B2
7494488 Weber Feb 2009 B2
7494661 Sanders Feb 2009 B2
7495439 Wiggins Feb 2009 B2
7497858 Chapelon et al. Mar 2009 B2
7499745 Littrup et al. Mar 2009 B2
7500985 Saadat Mar 2009 B2
7505812 Eggers et al. Mar 2009 B1
7505816 Schmeling et al. Mar 2009 B2
7507233 Littrup et al. Mar 2009 B2
7507235 Keogh et al. Mar 2009 B2
7511494 Wedeen Mar 2009 B2
7512445 Truckai et al. Mar 2009 B2
7527643 Case et al. May 2009 B2
7529589 Williams et al. May 2009 B2
7540852 Nita et al. Jun 2009 B2
7540870 Babaev Jun 2009 B2
RE40863 Tay et al. Jul 2009 E
7556624 Laufer et al. Jul 2009 B2
7558625 Levin et al. Jul 2009 B2
7563247 Maguire et al. Jul 2009 B2
7566319 McAuley et al. Jul 2009 B2
7569052 Phan et al. Aug 2009 B2
7582111 Krolik et al. Sep 2009 B2
7584004 Caparso et al. Sep 2009 B2
7585835 Hill et al. Sep 2009 B2
7591996 Hwang et al. Sep 2009 B2
7597704 Frazier et al. Oct 2009 B2
7598228 Hattori et al. Oct 2009 B2
7599730 Hunter et al. Oct 2009 B2
7603166 Casscells, III et al. Oct 2009 B2
7604608 Nita et al. Oct 2009 B2
7604633 Truckai et al. Oct 2009 B2
7615015 Coleman Nov 2009 B2
7615072 Rust et al. Nov 2009 B2
7617005 Demarais et al. Nov 2009 B2
7620451 Demarais et al. Nov 2009 B2
7621902 Nita et al. Nov 2009 B2
7621929 Nita et al. Nov 2009 B2
7626015 Feinstein et al. Dec 2009 B2
7626235 Kinoshita Dec 2009 B2
7632268 Edwards et al. Dec 2009 B2
7632845 Vu et al. Dec 2009 B2
7635383 Gumm Dec 2009 B2
7640046 Pastore et al. Dec 2009 B2
7641633 Laufer et al. Jan 2010 B2
7641679 Joye et al. Jan 2010 B2
7646544 Batchko et al. Jan 2010 B2
7647115 Levin et al. Jan 2010 B2
7653438 Deem et al. Jan 2010 B2
7655006 Sauvageau et al. Feb 2010 B2
7662114 Seip et al. Feb 2010 B2
7664548 Amurthur et al. Feb 2010 B2
7670279 Gertner Mar 2010 B2
7670335 Keidar Mar 2010 B2
7671084 Mewshaw et al. Mar 2010 B2
7678104 Keidar Mar 2010 B2
7678106 Lee Mar 2010 B2
7678108 Chrisitian et al. Mar 2010 B2
7691080 Seward et al. Apr 2010 B2
7699809 Urmey Apr 2010 B2
7706882 Francischelli et al. Apr 2010 B2
7715912 Rezai et al. May 2010 B2
7717853 Nita May 2010 B2
7717909 Strul et al. May 2010 B2
7717948 Demarais et al. May 2010 B2
7722539 Carter et al. May 2010 B2
7725157 Dumoulin et al. May 2010 B2
7727178 Wilson et al. Jun 2010 B2
7736317 Stephens et al. Jun 2010 B2
7736360 Mody et al. Jun 2010 B2
7736362 Eberl et al. Jun 2010 B2
7738952 Yun et al. Jun 2010 B2
7740629 Anderson et al. Jun 2010 B2
7741299 Feinstein et al. Jun 2010 B2
7742795 Stone et al. Jun 2010 B2
7744594 Yamazaki et al. Jun 2010 B2
7753907 DiMatteo et al. Jul 2010 B2
7756583 Demarais et al. Jul 2010 B2
7758510 Nita et al. Jul 2010 B2
7758520 Griffin et al. Jul 2010 B2
7759315 Cuzzocrea et al. Jul 2010 B2
7766833 Lee et al. Aug 2010 B2
7766878 Tremaglio, Jr. et al. Aug 2010 B2
7766892 Keren et al. Aug 2010 B2
7767844 Lee et al. Aug 2010 B2
7769427 Shachar Aug 2010 B2
7771372 Wilson Aug 2010 B2
7771421 Stewart et al. Aug 2010 B2
7776967 Perry et al. Aug 2010 B2
7777486 Hargreaves et al. Aug 2010 B2
7780660 Bourne et al. Aug 2010 B2
7789876 Zikorus et al. Sep 2010 B2
7792568 Zhong et al. Sep 2010 B2
7799021 Leung et al. Sep 2010 B2
7803168 Gifford et al. Sep 2010 B2
7806871 Li et al. Oct 2010 B2
7811265 Hering et al. Oct 2010 B2
7811281 Rentrop Oct 2010 B1
7811313 Mon et al. Oct 2010 B2
7816511 Kawashima et al. Oct 2010 B2
7818053 Kassab Oct 2010 B2
7819866 Bednarek Oct 2010 B2
7822460 Halperin et al. Oct 2010 B2
7828837 Khoury Nov 2010 B2
7832407 Gertner Nov 2010 B2
7833220 Mon et al. Nov 2010 B2
7837676 Sinelnikov et al. Nov 2010 B2
7837720 Mon Nov 2010 B2
7841978 Gertner Nov 2010 B2
7846157 Kozel Dec 2010 B2
7846160 Payne et al. Dec 2010 B2
7846172 Makower Dec 2010 B2
7849860 Makower et al. Dec 2010 B2
7850685 Kunis et al. Dec 2010 B2
7853333 Demarais et al. Dec 2010 B2
7854734 Biggs et al. Dec 2010 B2
7857756 Warren et al. Dec 2010 B2
7862565 Eder et al. Jan 2011 B2
7863897 Slocum, Jr. et al. Jan 2011 B2
7869854 Shachar et al. Jan 2011 B2
7873417 Demarais et al. Jan 2011 B2
7887538 Bleich et al. Feb 2011 B2
7894905 Pless et al. Feb 2011 B2
7896873 Hiller et al. Mar 2011 B2
7901400 Wham et al. Mar 2011 B2
7901402 Jones et al. Mar 2011 B2
7901420 Dunn Mar 2011 B2
7905862 Sampson Mar 2011 B2
7918850 Govari et al. Apr 2011 B2
7927370 Webler et al. Apr 2011 B2
7937143 Demarais et al. May 2011 B2
7938830 Saadat et al. May 2011 B2
7942874 Eder et al. May 2011 B2
7942928 Webler et al. May 2011 B2
7946976 Gertner May 2011 B2
7950397 Thapliyal et al. May 2011 B2
7955293 Nita et al. Jun 2011 B2
7956613 Wald Jun 2011 B2
7959627 Utley et al. Jun 2011 B2
7962854 Vance et al. Jun 2011 B2
7967782 Laufer et al. Jun 2011 B2
7967808 Fitzgerald et al. Jun 2011 B2
7972327 Eberl et al. Jul 2011 B2
7972330 Alejandro et al. Jul 2011 B2
7983751 Zdeblick et al. Jul 2011 B2
8001976 Gertner Aug 2011 B2
8007440 Magnin et al. Aug 2011 B2
8012147 Lafontaine Sep 2011 B2
8019435 Hastings et al. Sep 2011 B2
8021362 Deem et al. Sep 2011 B2
8021413 Dierking et al. Sep 2011 B2
8025661 Arnold et al. Sep 2011 B2
8027718 Spinner et al. Sep 2011 B2
8031927 Karl et al. Oct 2011 B2
8033284 Porter et al. Oct 2011 B2
8048144 Thistle et al. Nov 2011 B2
8052636 Moll et al. Nov 2011 B2
8052700 Dunn Nov 2011 B2
8062289 Babaev Nov 2011 B2
8075580 Makower Dec 2011 B2
8080006 Lafontaine et al. Dec 2011 B2
8088127 Mayse et al. Jan 2012 B2
8116883 Williams et al. Feb 2012 B2
8119183 O'Donoghue et al. Feb 2012 B2
8120518 Jang et al. Feb 2012 B2
8123741 Marrouche et al. Feb 2012 B2
8128617 Bencini et al. Mar 2012 B2
8131371 Demarals et al. Mar 2012 B2
8131372 Levin et al. Mar 2012 B2
8131382 Asada Mar 2012 B2
8137274 Weng et al. Mar 2012 B2
8140170 Rezai et al. Mar 2012 B2
8143316 Ueno Mar 2012 B2
8145316 Deem et al. Mar 2012 B2
8145317 Demarais et al. Mar 2012 B2
8150518 Levin et al. Apr 2012 B2
8150519 Demarais et al. Apr 2012 B2
8150520 Demarais et al. Apr 2012 B2
8152830 Gumm Apr 2012 B2
8162933 Francischelli et al. Apr 2012 B2
8175711 Demarais et al. May 2012 B2
8187261 Watson May 2012 B2
8190238 Moll et al. May 2012 B2
8192053 Owen et al. Jun 2012 B2
8198611 LaFontaine et al. Jun 2012 B2
8214056 Hoffer et al. Jul 2012 B2
8221407 Phan et al. Jul 2012 B2
8226637 Satake Jul 2012 B2
8231617 Satake Jul 2012 B2
8241217 Chiang et al. Aug 2012 B2
8257724 Cromack et al. Sep 2012 B2
8257725 Cromack et al. Sep 2012 B2
8260397 Ruff et al. Sep 2012 B2
8263104 Ho et al. Sep 2012 B2
8273023 Razavi Sep 2012 B2
8277379 Lau et al. Oct 2012 B2
8287524 Siegel Oct 2012 B2
8287532 Carroll et al. Oct 2012 B2
8292881 Brannan et al. Oct 2012 B2
8293703 Averback et al. Oct 2012 B2
8295902 Salahieh et al. Oct 2012 B2
8295912 Gertner Oct 2012 B2
8308722 Ormsby et al. Nov 2012 B2
8317776 Ferren et al. Nov 2012 B2
8317810 Stangenes et al. Nov 2012 B2
8329179 Ni et al. Dec 2012 B2
8336705 Okahisa Dec 2012 B2
8343031 Gertner Jan 2013 B2
8343145 Brannan Jan 2013 B2
8347891 Demarais et al. Jan 2013 B2
8353945 Andreas et al. Jan 2013 B2
8364237 Stone et al. Jan 2013 B2
8366615 Razavi Feb 2013 B2
8382697 Brenneman et al. Feb 2013 B2
8388680 Starksen et al. Mar 2013 B2
8396548 Perry et al. Mar 2013 B2
8398629 Thistle Mar 2013 B2
8401667 Gustus et al. Mar 2013 B2
8403881 Ferren et al. Mar 2013 B2
8406877 Smith et al. Mar 2013 B2
8409172 Moll et al. Apr 2013 B2
8409193 Young et al. Apr 2013 B2
8409195 Young Apr 2013 B2
8418362 Zerfas et al. Apr 2013 B2
8452988 Wang May 2013 B2
8454594 Demarais et al. Jun 2013 B2
8460358 Andreas et al. Jun 2013 B2
8465452 Kassab Jun 2013 B2
8469919 Ingle et al. Jun 2013 B2
8473067 Hastings et al. Jun 2013 B2
8480663 Ingle et al. Jul 2013 B2
8485992 Griffin et al. Jul 2013 B2
8486060 Kotmel et al. Jul 2013 B2
8486063 Werneth et al. Jul 2013 B2
8488591 Miali et al. Jul 2013 B2
8758339 Bee et al. Jun 2014 B2
20010007070 Stewart et al. Jul 2001 A1
20010039419 Francischelli et al. Nov 2001 A1
20020022864 Mahvi et al. Feb 2002 A1
20020042639 Murphy-Chutorian et al. Apr 2002 A1
20020045811 Kittrell et al. Apr 2002 A1
20020045890 Celliers et al. Apr 2002 A1
20020062146 Makower et al. May 2002 A1
20020065542 Lax et al. May 2002 A1
20020087151 Mody et al. Jul 2002 A1
20020095197 Lardo et al. Jul 2002 A1
20020107536 Hussein Aug 2002 A1
20020147480 Mamayek Oct 2002 A1
20020169444 Mest et al. Nov 2002 A1
20020198520 Coen et al. Dec 2002 A1
20030065317 Rudie et al. Apr 2003 A1
20030092995 Thompson May 2003 A1
20030139689 Shturman et al. Jul 2003 A1
20030195501 Sherman et al. Oct 2003 A1
20030199747 Michlitsch et al. Oct 2003 A1
20040010118 Zerhusen et al. Jan 2004 A1
20040019348 Stevens et al. Jan 2004 A1
20040024371 Plicchi et al. Feb 2004 A1
20040043030 Griffiths et al. Mar 2004 A1
20040064090 Keren et al. Apr 2004 A1
20040073206 Foley et al. Apr 2004 A1
20040088002 Boyle et al. May 2004 A1
20040093055 Bartorelli et al. May 2004 A1
20040106871 Hunyor et al. Jun 2004 A1
20040117032 Roth Jun 2004 A1
20040147915 Hasebe Jul 2004 A1
20040162555 Farley et al. Aug 2004 A1
20040167506 Chen Aug 2004 A1
20040186356 O'Malley et al. Sep 2004 A1
20040187875 He et al. Sep 2004 A1
20040193211 Voegele et al. Sep 2004 A1
20040220556 Cooper et al. Nov 2004 A1
20040243022 Carney et al. Dec 2004 A1
20040253304 Gross et al. Dec 2004 A1
20040267250 Yon et al. Dec 2004 A1
20050010095 Stewart et al. Jan 2005 A1
20050015125 Mioduski et al. Jan 2005 A1
20050080374 Esch et al. Apr 2005 A1
20050129616 Salcedo et al. Jun 2005 A1
20050137180 Robinson et al. Jun 2005 A1
20050143817 Hunter et al. Jun 2005 A1
20050148842 Wang et al. Jul 2005 A1
20050149069 Bertolero et al. Jul 2005 A1
20050149080 Hunter et al. Jul 2005 A1
20050149158 Hunter et al. Jul 2005 A1
20050149173 Hunter et al. Jul 2005 A1
20050149175 Hunter et al. Jul 2005 A1
20050154277 Tang et al. Jul 2005 A1
20050154445 Hunter et al. Jul 2005 A1
20050154453 Hunter et al. Jul 2005 A1
20050154454 Hunter et al. Jul 2005 A1
20050165389 Swain et al. Jul 2005 A1
20050165391 Maguire et al. Jul 2005 A1
20050165467 Hunter et al. Jul 2005 A1
20050165488 Hunter et al. Jul 2005 A1
20050175661 Hunter et al. Aug 2005 A1
20050175662 Hunter et al. Aug 2005 A1
20050175663 Hunter et al. Aug 2005 A1
20050177103 Hunter et al. Aug 2005 A1
20050177225 Hunter et al. Aug 2005 A1
20050181004 Hunter et al. Aug 2005 A1
20050181008 Hunter et al. Aug 2005 A1
20050181011 Hunter et al. Aug 2005 A1
20050181977 Hunter et al. Aug 2005 A1
20050182479 Bonsignore et al. Aug 2005 A1
20050183728 Hunter et al. Aug 2005 A1
20050186242 Hunter et al. Aug 2005 A1
20050186243 Hunter et al. Aug 2005 A1
20050191331 Hunter et al. Sep 2005 A1
20050203410 Jenkins Sep 2005 A1
20050209587 Joye et al. Sep 2005 A1
20050214205 Salcedo et al. Sep 2005 A1
20050214207 Salcedo et al. Sep 2005 A1
20050214208 Salcedo et al. Sep 2005 A1
20050214209 Salcedo et al. Sep 2005 A1
20050214210 Salcedo et al. Sep 2005 A1
20050214268 Cavanagh et al. Sep 2005 A1
20050228286 Messerly et al. Oct 2005 A1
20050228415 Gertner Oct 2005 A1
20050228460 Levin et al. Oct 2005 A1
20050232921 Rosen et al. Oct 2005 A1
20050234312 Suzuki et al. Oct 2005 A1
20050245862 Seward et al. Nov 2005 A1
20050251116 Steinke et al. Nov 2005 A1
20050252553 Ginggen Nov 2005 A1
20050256398 Hastings et al. Nov 2005 A1
20050267556 Shuros et al. Dec 2005 A1
20060004323 Chang et al. Jan 2006 A1
20060018949 Ammon et al. Jan 2006 A1
20060024564 Manclaw Feb 2006 A1
20060025765 Landman et al. Feb 2006 A1
20060062786 Salcedo et al. Mar 2006 A1
20060083194 Dhrimaj et al. Apr 2006 A1
20060089637 Werneth et al. Apr 2006 A1
20060089638 Carmel et al. Apr 2006 A1
20060095096 DeBenedictis et al. May 2006 A1
20060106375 Werneth et al. May 2006 A1
20060142790 Gertner Jun 2006 A1
20060142801 Demarais et al. Jun 2006 A1
20060147492 Hunter et al. Jul 2006 A1
20060167106 Zhang et al. Jul 2006 A1
20060167498 DiLorenzo Jul 2006 A1
20060171895 Bucay-Couto Aug 2006 A1
20060184221 Stewart et al. Aug 2006 A1
20060189896 Davis et al. Aug 2006 A1
20060195139 Gertner Aug 2006 A1
20060206150 Demarais et al. Sep 2006 A1
20060212076 Demarais et al. Sep 2006 A1
20060212078 Demarais et al. Sep 2006 A1
20060224153 Fischell et al. Oct 2006 A1
20060239921 Mangat et al. Oct 2006 A1
20060240070 Cromack et al. Oct 2006 A1
20060247266 Yamada et al. Nov 2006 A1
20060247760 Ganesan et al. Nov 2006 A1
20060263393 Demopulos et al. Nov 2006 A1
20060265014 Demarais et al. Nov 2006 A1
20060265015 Demarais et al. Nov 2006 A1
20060269555 Salcedo et al. Nov 2006 A1
20060271111 Demarais et al. Nov 2006 A1
20060276852 Demarais et al. Dec 2006 A1
20060287644 Inganas et al. Dec 2006 A1
20070016184 Cropper et al. Jan 2007 A1
20070016274 Boveja et al. Jan 2007 A1
20070027390 Maschke et al. Feb 2007 A1
20070043077 Mewshaw et al. Feb 2007 A1
20070043409 Brian et al. Feb 2007 A1
20070049924 Rahn Mar 2007 A1
20070066957 Demarais et al. Mar 2007 A1
20070066972 Ormsby et al. Mar 2007 A1
20070073151 Lee Mar 2007 A1
20070093710 Maschke Apr 2007 A1
20070100405 Thompson et al. May 2007 A1
20070106247 Burnett et al. May 2007 A1
20070112327 Yun et al. May 2007 A1
20070118107 Francischelli et al. May 2007 A1
20070129720 Demarais et al. Jun 2007 A1
20070129760 Demarais et al. Jun 2007 A1
20070129761 Demarais et al. Jun 2007 A1
20070135875 Demarais et al. Jun 2007 A1
20070149963 Matsukuma et al. Jun 2007 A1
20070162109 Davila et al. Jul 2007 A1
20070173805 Weinberg et al. Jul 2007 A1
20070173899 Levin et al. Jul 2007 A1
20070179496 Swoyer et al. Aug 2007 A1
20070203480 Mody et al. Aug 2007 A1
20070203549 Demarais et al. Aug 2007 A1
20070207186 Scanlon et al. Sep 2007 A1
20070208134 Hunter et al. Sep 2007 A1
20070208210 Gelfand et al. Sep 2007 A1
20070208256 Marilla Sep 2007 A1
20070208301 Evard et al. Sep 2007 A1
20070219576 Cangialosi Sep 2007 A1
20070225781 Saadat et al. Sep 2007 A1
20070233170 Gertner Oct 2007 A1
20070239062 Chopra et al. Oct 2007 A1
20070248639 Demopulos et al. Oct 2007 A1
20070249703 Mewshaw et al. Oct 2007 A1
20070254833 Hunter et al. Nov 2007 A1
20070265687 Deem et al. Nov 2007 A1
20070278103 Hoerr et al. Dec 2007 A1
20070282302 Wachsman et al. Dec 2007 A1
20070292411 Salcedo et al. Dec 2007 A1
20070293782 Marino Dec 2007 A1
20070299043 Hunter et al. Dec 2007 A1
20080004673 Rossing et al. Jan 2008 A1
20080009927 Vilims Jan 2008 A1
20080015501 Gertner Jan 2008 A1
20080021408 Jacobsen et al. Jan 2008 A1
20080033049 Mewshaw Feb 2008 A1
20080039746 Hissong et al. Feb 2008 A1
20080039830 Munger et al. Feb 2008 A1
20080051454 Wang Feb 2008 A1
20080064957 Spence Mar 2008 A1
20080071269 Hilario et al. Mar 2008 A1
20080071306 Gertner Mar 2008 A1
20080082109 Moll et al. Apr 2008 A1
20080086072 Bonutti et al. Apr 2008 A1
20080091193 Kauphusman et al. Apr 2008 A1
20080097251 Babaev Apr 2008 A1
20080097426 Root et al. Apr 2008 A1
20080108867 Zhou May 2008 A1
20080119879 Brenneman et al. May 2008 A1
20080125772 Stone et al. May 2008 A1
20080132450 Lee et al. Jun 2008 A1
20080140002 Ramzipoor et al. Jun 2008 A1
20080147002 Gertner Jun 2008 A1
20080161662 Golijanin et al. Jul 2008 A1
20080161717 Gertner Jul 2008 A1
20080161801 Steinke et al. Jul 2008 A1
20080171974 Lafontaine et al. Jul 2008 A1
20080172035 Starksen et al. Jul 2008 A1
20080172104 Kieval et al. Jul 2008 A1
20080188912 Stone et al. Aug 2008 A1
20080188913 Stone et al. Aug 2008 A1
20080208162 Joshi Aug 2008 A1
20080208169 Boyle et al. Aug 2008 A1
20080213331 Gelfand et al. Sep 2008 A1
20080215117 Gross Sep 2008 A1
20080221448 Khuri-Yakub et al. Sep 2008 A1
20080234790 Bayer et al. Sep 2008 A1
20080243091 Humphreys et al. Oct 2008 A1
20080245371 Gruber Oct 2008 A1
20080249525 Lee et al. Oct 2008 A1
20080249547 Dunn Oct 2008 A1
20080255550 Bell Oct 2008 A1
20080255642 Zarins et al. Oct 2008 A1
20080262489 Steinke Oct 2008 A1
20080275484 Gertner Nov 2008 A1
20080281312 Werneth et al. Nov 2008 A1
20080281347 Gertner Nov 2008 A1
20080287918 Rosenman et al. Nov 2008 A1
20080294037 Richter Nov 2008 A1
20080300618 Gertner Dec 2008 A1
20080312644 Fourkas et al. Dec 2008 A1
20080312673 Viswanathan et al. Dec 2008 A1
20080317818 Griffith et al. Dec 2008 A1
20090018486 Goren et al. Jan 2009 A1
20090018566 Escudero et al. Jan 2009 A1
20090018609 DiLorenzo Jan 2009 A1
20090024194 Arcot-Krishnamurthy et al. Jan 2009 A1
20090030312 Hadjicostis Jan 2009 A1
20090036948 Levin et al. Feb 2009 A1
20090043372 Northrop et al. Feb 2009 A1
20090054082 Kim et al. Feb 2009 A1
20090062873 Wu et al. Mar 2009 A1
20090069671 Anderson Mar 2009 A1
20090076409 Wu et al. Mar 2009 A1
20090088735 Abboud et al. Apr 2009 A1
20090105631 Kieval Apr 2009 A1
20090112202 Young Apr 2009 A1
20090118620 Tgavalekos et al. May 2009 A1
20090118726 Auth et al. May 2009 A1
20090125099 Weber et al. May 2009 A1
20090131798 Minar et al. May 2009 A1
20090143640 Saadat et al. Jun 2009 A1
20090156988 Ferren et al. Jun 2009 A1
20090157057 Ferren et al. Jun 2009 A1
20090157161 Desai et al. Jun 2009 A1
20090171333 Hon Jul 2009 A1
20090192558 Whitehurst et al. Jul 2009 A1
20090198223 Thilwind et al. Aug 2009 A1
20090203962 Miller et al. Aug 2009 A1
20090203993 Mangat et al. Aug 2009 A1
20090204170 Hastings et al. Aug 2009 A1
20090210953 Moyer et al. Aug 2009 A1
20090216317 Cromack et al. Aug 2009 A1
20090221939 Demarais et al. Sep 2009 A1
20090221955 Babaev Sep 2009 A1
20090226429 Salcedo et al. Sep 2009 A1
20090240249 Chan et al. Sep 2009 A1
20090247933 Maor et al. Oct 2009 A1
20090247966 Gunn et al. Oct 2009 A1
20090248012 Maor et al. Oct 2009 A1
20090253974 Rahme Oct 2009 A1
20090264755 Chen et al. Oct 2009 A1
20090270850 Zhou et al. Oct 2009 A1
20090281533 Ingle et al. Nov 2009 A1
20090287137 Crowley Nov 2009 A1
20090318749 Stolen et al. Dec 2009 A1
20100009267 Chase et al. Jan 2010 A1
20100030061 Canfield et al. Feb 2010 A1
20100048983 Ball et al. Feb 2010 A1
20100049099 Thapliyal et al. Feb 2010 A1
20100049186 Ingle et al. Feb 2010 A1
20100049188 Nelson et al. Feb 2010 A1
20100049191 Habib et al. Feb 2010 A1
20100049283 Johnson Feb 2010 A1
20100057150 Demarais et al. Mar 2010 A1
20100069837 Rassat et al. Mar 2010 A1
20100076299 Gustus et al. Mar 2010 A1
20100076425 Carroux Mar 2010 A1
20100087782 Ghaffari et al. Apr 2010 A1
20100106005 Karczmar et al. Apr 2010 A1
20100114244 Manda et al. May 2010 A1
20100130836 Malchano et al. May 2010 A1
20100137860 Demarais et al. Jun 2010 A1
20100137952 Demarais et al. Jun 2010 A1
20100160903 Krespi Jun 2010 A1
20100160906 Jarrard Jun 2010 A1
20100168624 Sliwa Jul 2010 A1
20100168731 Wu et al. Jul 2010 A1
20100168739 Wu et al. Jul 2010 A1
20100174282 Demarais et al. Jul 2010 A1
20100191112 Demarais et al. Jul 2010 A1
20100191232 Boveda Jul 2010 A1
20100217162 Hissong et al. Aug 2010 A1
20100222786 Kassab Sep 2010 A1
20100222851 Demarais et al. Sep 2010 A1
20100222854 Demarais et al. Sep 2010 A1
20100228122 Keenan et al. Sep 2010 A1
20100249604 Hastings et al. Sep 2010 A1
20100249773 Clark et al. Sep 2010 A1
20100256616 Katoh et al. Oct 2010 A1
20100268217 Habib Oct 2010 A1
20100268307 Demarais et al. Oct 2010 A1
20100284927 Lu et al. Nov 2010 A1
20100286684 Hata et al. Nov 2010 A1
20100298821 Garbagnati Nov 2010 A1
20100305036 Barnes et al. Dec 2010 A1
20100312141 Keast et al. Dec 2010 A1
20100324472 Wulfman Dec 2010 A1
20110009750 Taylor et al. Jan 2011 A1
20110021976 Li et al. Jan 2011 A1
20110034832 Cioanta et al. Feb 2011 A1
20110040324 McCarthy et al. Feb 2011 A1
20110044942 Puri et al. Feb 2011 A1
20110060324 Wu et al. Mar 2011 A1
20110071400 Hastings et al. Mar 2011 A1
20110071401 Hastings et al. Mar 2011 A1
20110077498 McDaniel Mar 2011 A1
20110092781 Gertner Apr 2011 A1
20110092880 Gertner Apr 2011 A1
20110104061 Seward May 2011 A1
20110112400 Emery et al. May 2011 A1
20110118600 Gertner May 2011 A1
20110118726 De La Rama et al. May 2011 A1
20110130708 Perry et al. Jun 2011 A1
20110137155 Weber et al. Jun 2011 A1
20110144479 Hastings et al. Jun 2011 A1
20110146673 Keast et al. Jun 2011 A1
20110166499 Demarais et al. Jul 2011 A1
20110178570 Demarais et al. Jul 2011 A1
20110200171 Beetel et al. Aug 2011 A1
20110202098 Demarais et al. Aug 2011 A1
20110207758 Sobotka et al. Aug 2011 A1
20110208096 Demarais et al. Aug 2011 A1
20110257523 Hastings et al. Oct 2011 A1
20110257564 Demarais et al. Oct 2011 A1
20110257622 Salahieh et al. Oct 2011 A1
20110257641 Hastings et al. Oct 2011 A1
20110257642 Griggs, III Oct 2011 A1
20110263921 Vrba et al. Oct 2011 A1
20110264011 Wu et al. Oct 2011 A1
20110264075 Leung Oct 2011 A1
20110264086 Ingle Oct 2011 A1
20110264116 Kocur et al. Oct 2011 A1
20110270238 Rizq et al. Nov 2011 A1
20110306851 Wang Dec 2011 A1
20110319809 Smith Dec 2011 A1
20120029496 Smith Feb 2012 A1
20120029500 Jenson Feb 2012 A1
20120029505 Jenson Feb 2012 A1
20120029509 Smith Feb 2012 A1
20120029510 Haverkost Feb 2012 A1
20120029511 Smith et al. Feb 2012 A1
20120029512 Willard et al. Feb 2012 A1
20120029513 Smith et al. Feb 2012 A1
20120059241 Hastings et al. Mar 2012 A1
20120059286 Hastings et al. Mar 2012 A1
20120065506 Smith Mar 2012 A1
20120065554 Pikus Mar 2012 A1
20120095461 Herscher et al. Apr 2012 A1
20120101413 Beetel et al. Apr 2012 A1
20120101490 Smith Apr 2012 A1
20120101538 Ballakur et al. Apr 2012 A1
20120109021 Hastings et al. May 2012 A1
20120116382 Ku et al. May 2012 A1
20120116383 Mauch et al. May 2012 A1
20120116392 Willard May 2012 A1
20120116438 Salahieh et al. May 2012 A1
20120116486 Naga et al. May 2012 A1
20120123243 Hastings May 2012 A1
20120123258 Willard May 2012 A1
20120123261 Jenson et al. May 2012 A1
20120123303 Sogard et al. May 2012 A1
20120123406 Edmunds et al. May 2012 A1
20120130289 Demarais et al. May 2012 A1
20120130345 Levin et al. May 2012 A1
20120130359 Turovskiy May 2012 A1
20120130360 Buckley et al. May 2012 A1
20120130362 Hastings et al. May 2012 A1
20120130368 Jenson May 2012 A1
20120130458 Ryba et al. May 2012 A1
20120136344 Buckley et al. May 2012 A1
20120136349 Hastings May 2012 A1
20120136350 Goshgarian et al. May 2012 A1
20120136417 Buckley et al. May 2012 A1
20120136418 Buckley et al. May 2012 A1
20120143181 Demarais et al. Jun 2012 A1
20120143293 Mauch et al. Jun 2012 A1
20120143294 Clark et al. Jun 2012 A1
20120150267 Buckley et al. Jun 2012 A1
20120157986 Stone et al. Jun 2012 A1
20120157987 Steinke et al. Jun 2012 A1
20120157988 Stone et al. Jun 2012 A1
20120157989 Stone et al. Jun 2012 A1
20120157992 Smith et al. Jun 2012 A1
20120157993 Jenson et al. Jun 2012 A1
20120158101 Stone et al. Jun 2012 A1
20120158104 Huynh et al. Jun 2012 A1
20120172837 Demarais et al. Jul 2012 A1
20120172870 Jenson et al. Jul 2012 A1
20120184952 Jenson et al. Jul 2012 A1
20120197198 Demarais et al. Aug 2012 A1
20120197252 Deem et al. Aug 2012 A1
20120232409 Stahmann et al. Sep 2012 A1
20120265066 Crow et al. Oct 2012 A1
20120265198 Crow et al. Oct 2012 A1
20130012844 Demarais et al. Jan 2013 A1
20130012866 Deem et al. Jan 2013 A1
20130012867 Demarais et al. Jan 2013 A1
20130013024 Levin et al. Jan 2013 A1
20130023865 Steinke et al. Jan 2013 A1
20130035681 Subramaniam et al. Feb 2013 A1
20130066316 Steinke et al. Mar 2013 A1
20130085489 Fain et al. Apr 2013 A1
20130090563 Weber Apr 2013 A1
20130090578 Smith et al. Apr 2013 A1
20130090647 Smith Apr 2013 A1
20130090649 Smith et al. Apr 2013 A1
20130090650 Jenson et al. Apr 2013 A1
20130090651 Smith Apr 2013 A1
20130090652 Jenson Apr 2013 A1
20130096550 Hill Apr 2013 A1
20130096553 Hill et al. Apr 2013 A1
20130096554 Groff et al. Apr 2013 A1
20130096604 Hanson et al. Apr 2013 A1
20130110106 Richardson May 2013 A1
20130116687 Willard May 2013 A1
20130165764 Scheuermann et al. Jun 2013 A1
20130165844 Shuros et al. Jun 2013 A1
20130165916 Mathur et al. Jun 2013 A1
20130165917 Mathur et al. Jun 2013 A1
20130165920 Weber et al. Jun 2013 A1
20130165923 Mathur et al. Jun 2013 A1
20130165924 Mathur et al. Jun 2013 A1
20130165925 Mathur et al. Jun 2013 A1
20130165926 Mathur et al. Jun 2013 A1
20130165990 Mathur et al. Jun 2013 A1
20130172815 Perry et al. Jul 2013 A1
20130172872 Subramaniam et al. Jul 2013 A1
20130172877 Subramaniam et al. Jul 2013 A1
20130172878 Smith Jul 2013 A1
20130172879 Sutermeister Jul 2013 A1
20130172880 Willard Jul 2013 A1
20130172881 Hill et al. Jul 2013 A1
Foreign Referenced Citations (58)
Number Date Country
10038737 Feb 2002 DE
1053720 Nov 2000 EP
1180004 Feb 2002 EP
1335677 Aug 2003 EP
1874211 Jan 2008 EP
1906853 Apr 2008 EP
1961394 Aug 2008 EP
1620156 Jul 2009 EP
2076193 Jul 2009 EP
2091455 Aug 2009 EP
2197533 Jun 2010 EP
2208506 Jul 2010 EP
1579889 Aug 2010 EP
2092957 Jan 2011 EP
2349044 Aug 2011 EP
2027882 Oct 2011 EP
2378956 Oct 2011 EP
2037840 Dec 2011 EP
2204134 Apr 2012 EP
2320821 Oct 2012 EP
2456301 Jul 2009 GB
9858588 Dec 1998 WO
9900060 Jan 1999 WO
0047118 Aug 2000 WO
03026525 Apr 2003 WO
2004100813 Nov 2004 WO
2004110258 Dec 2004 WO
WO2006022790 Mar 2006 WO
WO2006041881 Apr 2006 WO
2006105121 Oct 2006 WO
WO2007035537 Mar 2007 WO
WO2007078997 Jul 2007 WO
WO2007086965 Aug 2007 WO
WO2007103879 Sep 2007 WO
WO2007103881 Sep 2007 WO
WO2007121309 Oct 2007 WO
WO2007146834 Dec 2007 WO
2008014465 Jan 2008 WO
WO2008003058 Jan 2008 WO
WO2008061150 May 2008 WO
WO2008061152 May 2008 WO
WO2008070413 Jun 2008 WO
2009121017 Oct 2009 WO
2010067360 Jun 2010 WO
WO2010078175 Jul 2010 WO
2010102310 Sep 2010 WO
WO2010129661 Nov 2010 WO
2011005901 Jan 2011 WO
2011053757 May 2011 WO
2011053772 May 2011 WO
2011091069 Jul 2011 WO
WO2011091069 Jul 2011 WO
2011130534 Oct 2011 WO
WO2011130005 Oct 2011 WO
WO2011139589 Nov 2011 WO
2012019156 Feb 2012 WO
WO2012019156 Feb 2012 WO
2013049601 Apr 2013 WO
Non-Patent Literature Citations (74)
Entry
U.S. Appl. No. 12/980,952, filed Dec. 29, 2010, Rizq et al.
U.S. Appl. No. 13/086,116, filed Apr. 13, 2011, Hastings et al.
U.S. Appl. No. 12/980,972, filed Dec. 29, 2010, Vrba et al.
U.S. Appl. No. 13/157,844, filed Jun. 10, 2011, Hastings et al.
U.S. Appl. No. 13/087,163, filed Apr. 14, 2011, Ingle.
U.S. Appl. No. 13/086,121, filed Apr. 13, 2011, Hastings et al.
CardioVascular Technologies Inc., “Heated Balloon Device Technology,” 11 pages, 2008.
Strategic Business Development, Inc., “Thermal and Disruptive Angioplasty: A Physician's Guide,” 8 pages, 1990.
Zhang et al., “Non-contact Radio-Frequency Ablation for Obtaining Deeper Lesions,” IEEE Transaction on Biomedical Engineering, vol. 50, No. 2, 6 pages, Feb. 2003.
Lazebnik et al., “Tissue Strain Analytics Virtual Touch Tissue Imaging and Qualification,” Siemens Whitepaper, Oct. 2008, 7 pages.
Han et al., “Third-Generation Cryosurgery for Primary and Recurrent Prostate Caner,” BJU International, vol. 93, pp. 14-18.
Zhou et al., “Mechanism Research of Cryoanalgesia,” Forefront Publishing Group, 1995.
Florete, “Cryoblative Procedure for Back Pain,” Jacksonville Medicine, Oct. 1998, 10 pages.
Stevenson, “Irrigated RF Ablation: Power Titration and Fluid Management for Optimal Safety Efficacy,” 2005, 4 pages.
Giliatt et al., “The Cause of Nerve Damage in Acute Compression,” Trans Am Neurol Assoc, 1974: 99; 71-4.
Omura et al., “A Mild Acute Compression Induces Neurapraxia in Rat Sciatic Nerve,” The International Journal of Neuroscience, vol. 114 (12), pp. 1561-1572.
Baun, “Interaction with Soft Tissue,” Principles of General & Vascular Sonography, Chapter 2, pp. 23-24, Before Mar. 2012.
Blue Cross Blue Shield Medicaly Policy, “Surgery Section—MRI-Guided Focused Ultrasound (MRgFUS) for the Treatment of Uterine Fibroids and Other Tumors,” 2005, 5 pages.
Gentry et al., “Combines 3D Intracardiac Echo and Ultrasound Ablation,” Medical Imaging 2003: Ultrasonic and Signal Processing, vol. 5035, 2003, pp. 166-173.
Lafon et al., “Optmizing the Shape of Ultrasound Transducers for Interstitial Thermal Ablations,” MEd Phys. Mar. 2002; 29(3): 290-7 (abstract only).
G. Ter Haar, “Ultrasound Focal Beam Surgery,” Ultrasound in Med. & Biol., 1995, vol. 21, No. 9, pp. 1089-1100.
Seip et al., “Transurethral High Intensity Focused Ultrasound: Catheter Based Prototypes and Experimental Results,” IEEE Ultrasonics Symposium Proceeding, 2000, 4 pages.
Toytman et al., “Tissue Dissection with Ultrafast Laser Using Extended and Multiple Foci,” SPIE Proceeding, Optical Interactions with Tissues and Cells XXI, vol. 7562, 2010, 10 pages.
Zhoue et al., “Non-Thermal Ablation of Rabbit Liver VX2 Tumore by Pulsed High Intensity Focused Ultrasound Contrast Agent: Pathological Characteristics,” World Journal of Gastroenterology, vol. 14(43), Nov. 21, 2008, pp. 6743-6747.
US 8,398,630, 3/2013, Demarais et al. (withdrawn).
Van Den Berg, “Light echoes image the human body,” OLE, Oct. 2001, p. 35-37.
“IntraLuminal: Products,” IntraLuminal Therapeutics, Inc., 2003, p. 1-9.
“Laser Catheter to Aid Coronary Surgery,” TechTalk: MIT, Jan. 9, 1991, p. 1-4.
“Optical Coherence Tomography: Advantages of OCT,” LightLab Imaging Technology.
“Optical Coherence Tomography: Image Gallery Cardiovascular Procedures,” LightLab Imaging Technology.
“Optical Coherence Tomography: LightLab Imaging Starts US Cardiology Clinical Investigations,” LightLab Imaging Technology, 2002.
“Optical Coherence Tomography: LightLab Sees Bright Prospects for Cardiac Application of OCT Technology,” LightLab Imaging Technology, 2001, vol. 27, No. 35.
“Optical Coherence Tomography: What is OCT?,” LightLab Imaging Technology.
“Optical Coherence Tomography: Why Use OCT?,” LightLab Imaging Technology.
“Products—Functional Measurement,” VOLCANO Functional Measurement Products US, Mar. 24, 2003, p. 1-2.
Brown et al., “Radiofrequency capacitive heaters: the effect of coupling medium resistivity on power absorption along a mouse leg,” Physics in Medicine and Biology, 1993, p. 1-12, vol. 38.
Carrington, “Future of CVI: It's all about plaque: Identification of vulnerable lesions, not ‘rusty pipes,’ could become cornerstone of preventive cardiology,” Diagnostic Imaging, 2001, p. 1-8.
Chen et al., “Percutaneous pulmonary artery denervation completely abolishes experimental pulmonary arterial hypertension in vivo,” EuroIntervention, 2013, p. 1-8.
Cimino, “Preventing plaque attack,” Mass High Tech, 2001, p. 1-2.
Dahm et al., “Relation of Degree of Laser Debulking of In-Stent Restenosis as a Predictor of Restenosis Rate,” The American Journal of Cardiology, 2002, p. 68-70, vol. 90.
De Korte et al., “Characterization of Plaque Components With Intravascular Ultrasound Elastography in Human Femoral and Coronary Arteries In Vitro,” Circulation, Aug. 8, 2000, p. 617-623.
Durney et al., “Radiofrequency Radiation Dosimetry Handbook,” Oct. 1986, p. 1-2, Fourth Edition.
Durney et al., “Radiofrequency Radiation Dosimetry Handbook: Contents,” Oct. 1986, p. 1-5, Fourth Edition.
Fournier-Desseux et al., “Assessment of 1-lead and 2-lead electrode patterns in electrical impedance endotomography,” Physiological Measurement, 2005, p. 337-349. Vo. 26, Institute of Physics Publishing.
Fram et al., “Feasibility of Radiofrequency Powered, Thermal Balloon Ablation of Atrioventricular Bypass Tracts Via the Coronary Sinus: In Vivo Canine Studies,” PACE, Aug. 1995, p. 1518-1530, vol. 18.
Fram et al., “Low Pressure Radiofrequency Balloon Angioplasty: Evaluation in Porcine Peripheral Arteries,” JACC, 1993, p. 1512-1521, vol. 21, No. 6, American College of Cardiology.
Fujimori et al., “Significant Prevention of In-Stent Restenosis by Evans Blue in Patients with Acute Myocardial Infarction,” American Heart Association, 2002.
Fujita et al., “Sarpogrelate, An Antagonist of 5-HT(2A) Receptor, Treatment Reduces Restenosis After Coronary Stenting,” American Heart Association, 2002.
Gabriel, “Appendix A: Experimental Data,” 1999, p. 1-21.
Gabriel, “Appendix C: Modeling the frequency dependence of the dielectric properties to a 4 dispersions spectrum,” p. 1-6.
Gregory et al., “Liquid Core Light Guide for Laser Angioplasty,” The Journal of Quantum Electronics, Dec. 1990, p. 2289-2296, vol. 26, No. 12.
Kaplan et al., “Healing after Arterial Dilatation with Radiofrequency Thermal and Nonthermal Balloon Angioplasty Sytems,” Journal of Investigative Surgery, 1993, p. 33-52, vol. 6.
Kolata, “New Studies Question Value of Opening Arteries,” The New York Times, Mar. 21, 2004, p. 1-5.
Konings et al., “Development of an Intravascular Impedance Catheter for Detection of Fatty Lesions in Arteries,” IEEE Transactions on Medical Imaging, Aug. 1997, p. 439-446, vol. 16, No. 4.
Kurtz et al., “Lamellar Refractive Surgery with Scanned Intrastromal Picosecond and Femtosecond Laser Pulses in Animal Eyes,” Journal of Refractive Surgery, Sep./Oct. 1998, p. 541-548.
Lee et al., “Thermal Compression and Molding of Atherosclerotic Vascular Tissue With Use of Radiofrequency Energy: Implications for Radiofrequency Balloon Angioplasty,” JACC, 1989, p. 1167-1175, vol. 13, No. 5, American College of Cardiology.
Lima et al., “Efficacy and Safety of Oral Sirolimus to Treat and Prevent In-Stent Restenosis: A Pilot Study Results,” American Heart Association, 2002, p. 2929.
Lima et al., “Systemic Immunosuppression Inhibits In-Stent Coronary Intimal Proliferation in Renal Transplant Patients,” American Heart Association, 2002, p. 2928.
Morice et al., “A Randomized Comparison of a Sirolimus-Eluting Stent With a Standard Stent for Coronary Revascularization,” The New England Journal of Medicine, Jun. 6, 2012, p. 1773-1780, vol. 346, No. 23.
Muller-Leisse et al., “Effectiveness and Safety of Ultrasonic Atherosclerotic Plaque Ablation: In Vitro Investigation,” CardioVascular and Interventional Radiology, 1993, p. 303-307, vol. 16.
Nair et al., “Regularized Autoregressive Analysis of Intravascular Ultrasound Backscatter: Improvement in Spatial Accuracy of Tissue Maps,” IEEE Transactions on Ultrasonics, Apr. 2004, p. 420-431, vol. 51, No. 4.
Popma et al., “Percutaneous Coronary and Valvular Intervention,” p. 1364-1405.
Resar et al., “Endoluminal Sealing of Vascular Wall Disruptions With Radiofrequency-Heated Balloon Angioplasty,” Catheterization and Cardiovascular Diagnosis, 1993, p. 161-167, vol. 29.
Romer et al., “Histopathology of Human Coronary Atherosclerosis by Quantifying Its Chemical Composition With Raman Spectroscopy,” Circulation, 1998, p. 878-885, vol. 97.
Schauerte et al., “Catheter Ablation of Cardiac Autonomic Nerves for Prevention of Vagal Atrial Fibrillation,” Circulation, 2000, p. 2774-2780, vol. 102.
Scheller et al., “Intracoronary Paclitaxel Added to Contrast Media Inhibits In-Stent Restenosis of Porcine Coronary Arteries,” American Heart Association, 2002, p. 2227.
Scheller et al., “Potential solutions to the current problem: coated balloon,” Eurolntervention, 2008, p. C63-C66, vol. 4 (Supplement C).
Shaffer, “Scientific basis of laser energy,” Clinics in Sports Medicine, 2002, p. 585-598, vol. 21.
Shmatukha et al., “MRI temperature mapping during thermal balloon angioplasty,” Physics in Medicine and Biology, 2006, p. N163-N171, vol. 51.
Slager et al., “Vaporization of Atherosclerotic Plaques by Spark Erosion,” J Am Coll Cardiol, 1985, p. 21-25.
Stiles et al., “Simulated Characterization of Atherosclerotic Lesions in the Coronary Arteries by Measurement of Bioimpedance,” IEEE Transactions on Biomedical Engineering, Jul. 2003, p. 916-921, vol. 50, No. 7.
Suselbeck et al., “In vivo intravascular electric impedance spectroscopy using a new catheter with integrated microelectrodes,” Basic Res Cardiol, 2005, p. 28-34, vol. 100.
Suselbeck et al., “Intravascular electric impedance spectroscopy of atherosclerotic lesions using a new impedance catheter system,” Basic Res Cardiol, 2005, p. 446-452, vol. 100.
Tepe et al., “Local Delivery of Paclitaxel to Inhibit Restenosis during Angioplasty of the Leg,” The New England Journal of Medicine, 2008, p. 689-699, vol. 358.
Related Publications (1)
Number Date Country
20120029513 A1 Feb 2012 US
Provisional Applications (1)
Number Date Country
61369463 Jul 2010 US