This invention relates to a system for coating green or uncured tires and, more particularly, to a fluid delivery system for spraying a coating on predetermined areas both inside and outside green tires.
Pneumatic rubber tires are conventionally produced by molding and curing an uncured or green tire in a molding press, in which the green tire is pressed outwardly against a mold surface by means of an inner fluid expandable bladder. By this method, the green tire is shaped against the mold surface to define the tire's tread pattern and configuration of sidewalls. By application of heat, the tire is cured. Generally, the bladder is expanded by internal pressure provided by a fluid such as hot gas, hot water and/or steam which also participates in the transfer of heat for curing or vulcanization purposes. The tire is then usually allowed to cool in the mold, sometimes aided by added cold or cooler water to the internal surface of the bladder. The mold is then opened, the bladder collapsed by removal of its internal fluid pressure, and the tire removed from the tire mold. Such tire curing procedure is well known to those having skill in the art.
The use of synthetic rubber compounds in the manufacture of tires makes it necessary to apply suitable coatings to the rubber surfaces of the fabricated tire carcasses. The coatings ensure proper distribution of rubber during the curing operation and the production of finished tires with unblemished surfaces. The coatings are generally liquid in form, and are known as lubricants where applied to the interior surface of a green tire, and as anti-blemish paints where applied to the outer surface at the sidewall areas of the green tire.
The outside green tire paints allow the rubber to slip as it comes in contact with the metal mold, and the paints also serve as a release agent when the tire must separate from the mold at the end of the vulcanization cycle. Another function of the paint is to provide bleeding of air, which becomes trapped between the tire and the mold. Outside green tire paints also aid in the appearance of the finished tire.
Care must be taken that certain areas of the green tire are not coated, and that the lubricant employed at the interior of the carcass does not reach any exterior surface of the carcass. Also, applying the coatings manually by either spraying or brushing is time consuming and laborious. Automatic applications, are well known in the art, however, these prior art applications require presorting and separate applicators for tire size differences and outer spraying.
A known robotic tire spraying system is described in U.S. Pat. No. 7,943,201 to Hendricks, Sr., the entire disclosure of which is hereby incorporated herein by reference. The system analyzes individual green tires using an integrated vision system. The system controls the robotic spray position, the fan, fluid, atomizing air, and tire rotation speed for optimal spray coverage on both the inside and outside of green tires. The system includes a conveyor, an overhead mounted camera located over an infeed station, and a second camera located perpendicular to the green tire's tread and several feet away from the center of the tire. Pictures of the green tire in the station are used to estimate the center and radius of the tire and locate the angle of the bar code with respect to the center of the tire. Reference points are provided from the camera images and robot positions are calculated to control the spraying.
Another robotic tire spraying system is described in U.S. Patent Application Publication No. 2013/0078385. also to Hendricks, Sr. The system includes a downdraft spray booth for receiving a tire. A fluid delivery system is disposed in the spray booth, and includes at least one spray gun for delivering a coating to the tire. A robot transports the tire to the spray booth. Each of the spray booth, the fluid delivery system, and the robot are disposed on a platform, for convenient transport and installation of the system.
There is a continuing need for a precision fluid delivery system that minimizes overspray and provides uniform coverage of tires in tire spraying systems. Desirably, the precision fluid delivery system can be used to retrofit existing robotic tire spraying systems, and permits a fine adjustment of the tire spraying conditions in operation.
In concordance with the instant disclosure, a precision fluid delivery system that minimizes overspray and provides uniform coverage of tires in tire spraying systems, which can be used to retrofit existing tire spraying systems, and which permits a fine adjustment of the tire spraying conditions in operation, has surprisingly been discovered.
In one embodiment, a precision fluid delivery system includes a peristaltic pump, a motor, and a controller. The peristaltic pump has a fluid inlet for communication with a fluid source, and a fluid outlet for communication with a tire spraying system. The motor is coupled to and configured to drive the peristaltic pump. The controller is in communication with the motor. The controller provides a fine control of the peristaltic pump for delivery of the fluid to the tire spraying system.
In another embodiment, a tire spraying system includes a spray booth for receiving a tire, at least one spray gun for delivering a coating of a fluid to a tire, and the precision fluid delivery system. The fluid outlet of the peristaltic pump is in fluid communication with the at least one spray gun of the tire spraying system.
In a further embodiment, a method for retrofitting a tire spraying system includes providing the tire spraying system and a precision fluid delivery system. The fluid inlet of the precision fluid delivery system is then placed in fluid communication with the fluid source, and the fluid outlet of the precision fluid delivery system is placed in fluid communication with the at least one spray gun. The tire spraying system is thereby retrofitted for precision delivery of fluid in a tire spraying operation.
The above, as well as other advantages of the present invention, will become readily apparent to those skilled in the art from the following detailed description of a preferred embodiment when considered in the light of the accompanying drawings in which:
The following detailed description and appended drawings describe and illustrate various exemplary embodiments of the invention. The description and drawings serve to enable one skilled in the art to make and use the invention, and are not intended to limit the scope of the invention in any manner. In respect of the methods disclosed, the steps presented are exemplary in nature, and thus, the order of the steps is not necessary or critical.
In addition to the precision fluid delivery system 100, which is further shown in
Although the spray gun 10 shown in
The robot 12 of the tire spraying system 2 is configured to selectively transport the tire 6 to and from the spray booth 4. As shown in
The tire spraying system 2 of the present disclosure may also include a platform 14 for transport of the tire spraying system 2. For example, each of the spray booth 4, the fluid delivery system 8, and the robot 12 may be disposed on the platform 14. In a particular embodiment, the platform 14 is a portable skid configured to be moved by a skid loader or like equipment. The platform 14 permits a convenient transport and rapid installation of the tire spraying system 2 at a facility where tires 6 are to be painted.
A safety fence 16 may also be disposed around at least a portion of the platform 14, including at least one of the spray booth 4, the fluid delivery system 100, and the robot 12, as desired. In certain embodiments, the safety fence 16 is disposed around at least a portion of a perimeter of the platform 14. In an illustrative embodiment, the safety fence 16 includes an entry gate 18 and an exit gate 20. The tire 6 is transported to the tire spraying system 2, prior to spraying, through the entry gate 18. Following spraying, the tire 6 is transported from the tire spraying system 2 through the exit gate 20.
The transportation of the tire 6 through the tire spraying system 2 may be performed with conveying equipment such as a conveyor 22. The conveyor 22 may include at least one of a powered belt conveyor and a non-powered roller conveyor, for example. In particular, the conveyor 22 is disposed between the entry gate 18 and the exit gate 20, and further disposed on the platform 14, for disposition of the tire 6 adjacent the robot 12 for the spraying operation. It should be appreciated that the tire 6 may be manually loaded onto the conveyor 22 of the tire spraying system 2, through the entry gate 18. Additional conveyors, belts, and other transportation systems outside of the tire spraying system 2 may be employed to deliver and retrieve the tire 6 from the conveyor 22 of tire spraying system 2, as desired.
With renewed reference to
The motor 104 is coupled to, and configured to drive, the peristaltic pump 102. In particular embodiments, the motor 104 is a servo motor, which permits a precision control of the peristaltic pump 102. In other embodiments, the motor 104 is may be a fixed speed, stepper, or variable speed electric motor. Pneumatic and hydraulic motors may also be used to the drive the peristaltic pump, as desired. One of ordinary skill in the art may select any suitable type of the motor 104 within the scope of the present disclosure.
The controller 106 is in communication with the motor 104. The controller 106 is configured to operate the peristaltic pump 102 for delivery of fluid from the fluid source 110 to the tire spraying system 2.
The controller may include a processor and a memory. The memory may include a tangible, non-transitory computer-readable storage medium on instructions are embodied for execution by the processor. The controller 106 may be used to calculate spray parameters for each individual tire 6, for example, based upon measurements, barcode readings, and the like. In particular, the tire position relative to the spray gun, fan width, atomizing air, rotation speed, and spray volume may be calculated by the controller 106 on a per-tire basis.
In certain embodiments, the controller 106 may also be used for operating at least one of the robot 12 and the at least one spray gun 10 when spraying the tire 6. The controller 106 may further have a human interface or terminal 114 that permits an establishment of settings or manual operation of the precision fluid delivery system 100. The controller 106 may be disposed on the platform 14, or may be disposed a separate location apart from the platform 14, as desired.
The controller 106 may also be in communication with at least one sensor. For example, the at least one sensor may include a tire size sensor 116 for measuring the dimensions of the tire 6 prior to a spraying of the tire 6 in the tire spraying system 2. As shown in
In another example, the tire size sensor 116 in communication with the controller 106 is a camera 28. The camera 28 may be used to generate an image of the tire 6, which is delivered to the controller 106 for calculating the spray parameters. The camera 28 may be disposed to a side of the tire 6 or overhead of the tire 6, as desired. As with the measurements obtained by the light array system 26, the image generated by the camera 28 may be used by the controller 106 in operating the at least one spray gun 10 and the robot 12 of the tire spraying system 2.
As shown in
Advantageously, the arm 30 may be collapsed, for example, telescopically or at a hinge point, or removed, for example, by pulling a pin (not shown) connecting the arm 30 to a lower support 32 mounted on the platform 14, in order that the tire spraying system 2 may be readied for transport. Although the camera 28 is shown being the only sensor attached to the arm 30, it should be understood that the light arrays 26, or other tire size sensors 116 such as barcode readers, radio-frequency identification scanners, and the like, may also be attached to the arm 30 within the scope of the present disclosure.
With renewed reference to
Upon sensing that the level of the fluid within the fluid holding tank has reached a predetermined threshold, the controller 106 may be configured to shut down an operation of the peristaltic pump 102 until the fluid in the fluid holding tank is replenished. The controller 106 may likewise notify an operator of the precision fluid delivery system 100, for example, using the terminal 114, that the fluid holding tank 110 needs to be replenished.
The at least one sensor in communication with the controller 106 may further include a contact sensor 120. The contact sensor 120 is in fluid communication with the peristaltic pump 102, and configured to detect a presence of a leaked fluid from the peristaltic pump 102. Any suitable means for detecting the presence of the leaked fluid, including electrical-resistance based sensors, may be used within the scope of the present disclosure.
For example, as shown in
The controller 106 may also be in communication with a pressure sensor 122. The pressure sensor 122 may be in fluid communication with, and disposed between, the peristaltic pump 102 and the tire spraying system 2, for example. The pressure sensor 122 is configured to detect whether a pressure of the fluid from the peristaltic pump 102 meets a predetermined threshold. In a particular embodiment, the pressure sensor 122 is a high/low pressure sensor that is configured to detect whether the pressure of the fluid from the peristaltic pump 102 exceeds a predetermined upper threshold or drops below a predetermined lower threshold.
It should be appreciated that, where the pressure exceeds a predetermined upper threshold, a blockage downstream from the pressure sensor 122, for example, a blockage at the spray gun 10, may have occurred. A skilled artisan should also appreciate that, where the pressure drops below the predetermined threshold, a leakage or other malfunction upstream from the pressure sensor 122 may have occurred. In such instances, the controller 106 is configured to shut down the motor 104 upon the detection of the pressure of the fluid from the peristaltic pump 102 meeting the predetermined threshold.
As shown in
The at least one proportional air valve 124 has an air inlet in communication with an air source, for example, an air compressor or a high pressure air tank, and an air outlet in communication with the spray gun 10 of the tire spraying system. The at least one proportional air valve 124 is in communication with the controller 106, which is configured to regulate the at least one proportional air valve 124 and a delivery of the air to control the fan size of the fluid as it is expelled from the spray gun 10.
The calculations employed by the controller 106 to regulate the fan size may take into account parameters such as fluid viscosity, solids, pH, and other suitable variables. These parameters may be input by the operator of the precision fluid delivery system 100 using the terminal 114, for example. In another example, these parameters are monitored in real time by the controller 106 using the at least one sensor of the precision fluid delivery system 100.
The precision fluid delivery system 100 also includes a pneumatic manifold assembly 126. The pneumatic manifold assembly 126 has an air inlet in communication with the air source, and an air outlet for communication with a pneumatic actuator of the tire spraying system 2. The pneumatic actuator may be any actuator used within the tire spraying system 2 for movement of a part, for example, the tire spray gun 10. The pneumatic manifold assembly 126 is in communication with the controller 106. It should be appreciated that the controller 106 may also be configured to regulate an actuation of the pneumatic actuator of the tire spraying system 2.
In certain embodiments, as shown in
Referring now to
The peristaltic pump 102 is a positive displacement pump having at least one flexible tube 132 that is disposed on a rotor 133. The rotor 133 has a plurality of rollers 134. The fluid is contained within a flexible tube 132, and the rollers 134 of the rotor 133 compress the flexible tube 132 as the rotor 133 turns. In operation, the part of the flexible tube 132 under compression is pinched closed or “occludes”, thereby forcing the fluid to be pumped to move through the flexible tube 132. Additionally, as the flexible tube 132 opens to its natural state after the passing of the rollers 134, fluid flow is induced to the pump. The fluid for tire spraying is thereby pumped through the at least one flexible tube 132 as the rotor 133 is rotated by the motor 104.
In the peristaltic pump 102 shown in
It should be appreciated that the precision fluid delivery system 100 may include a pair of the peristaltic pumps 102 and a pair of the proportional air valves 124, for example, as shown in
Advantageously, the precision fluid delivery system 100 for the robotic tire spraying system 2 of the present disclosure minimizes overspray and provides uniform coverage of tires. Furthermore, conventional spraying systems can be readily retrofitted with the precision fluid delivery system 100, to permit a fine adjustment of the tire spraying conditions in operation.
While certain representative embodiments and details have been shown for purposes of illustrating the invention, it will be apparent to those skilled in the art that various changes may be made without departing from the scope of the invention, which is further described in the following appended claims.
Number | Name | Date | Kind |
---|---|---|---|
3507247 | Kwierant | Apr 1970 | A |
3813042 | Szczepanski | May 1974 | A |
3822948 | Handl | Jul 1974 | A |
4125639 | Brandl | Nov 1978 | A |
4728274 | Siegenthaler | Mar 1988 | A |
4778060 | Wessner, Jr. | Oct 1988 | A |
5153034 | Telchuk et al. | Oct 1992 | A |
5188904 | Graves | Feb 1993 | A |
5268580 | He | Dec 1993 | A |
5309931 | Meyer, III | May 1994 | A |
5397394 | Orr | Mar 1995 | A |
5429682 | Harlow, Jr. et al. | Jul 1995 | A |
5562773 | Church | Oct 1996 | A |
5631028 | Mizokawa et al. | May 1997 | A |
5895762 | Greenfield et al. | Apr 1999 | A |
6077469 | Golightly et al. | Jun 2000 | A |
6393338 | Kemnitz | May 2002 | B1 |
6939404 | Davis et al. | Sep 2005 | B1 |
6946032 | Pohl et al. | Sep 2005 | B2 |
7399362 | Pohl et al. | Jul 2008 | B2 |
7943201 | Hendricks, Sr. | May 2011 | B2 |
8397662 | Herre et al. | Mar 2013 | B2 |
20020023585 | Sashihara | Feb 2002 | A1 |
20030136338 | Pohl et al. | Jul 2003 | A1 |
20040023612 | Kriesel | Feb 2004 | A1 |
20040047995 | Krueger | Mar 2004 | A1 |
20040148796 | Morrison | Aug 2004 | A1 |
20050068774 | Pippa et al. | Mar 2005 | A1 |
20050184016 | Silverman | Aug 2005 | A1 |
20050247263 | Pohl et al. | Nov 2005 | A1 |
20060164825 | Pippa et al. | Jul 2006 | A1 |
20060292308 | Clifford et al. | Dec 2006 | A1 |
20070056510 | Antaya | Mar 2007 | A1 |
20070166463 | Kelly | Jul 2007 | A1 |
20070281100 | Herre et al. | Dec 2007 | A1 |
20070283685 | Ripper et al. | Dec 2007 | A1 |
20080047973 | Elsom et al. | Feb 2008 | A1 |
20090061099 | Hendricks, Sr. | Mar 2009 | A1 |
20120219428 | Cantolino et al. | Aug 2012 | A1 |
20120325142 | Takahashi | Dec 2012 | A1 |
20130039778 | Blackson et al. | Feb 2013 | A1 |
20130074362 | Lesicka | Mar 2013 | A1 |
20130078385 | Hendricks, Sr. | Mar 2013 | A1 |
Number | Date | Country |
---|---|---|
11129343 | May 1999 | JP |
20040018978 | Mar 2004 | KR |
Number | Date | Country | |
---|---|---|---|
20150151314 A1 | Jun 2015 | US |