Claims
- 1. A precoated steel sheet having improved corrosion resistance and formability produced by
- (i) applying an undercoat of a chromate film with a weight of 10-600 mg/m.sup.2 as Cr to the plated surface of a Zn- or Zn alloy plated steel sheet, wherein the undercoat comprises an aqueous suspension containing partially-reduced chromic acid, colloidal silica and at least one reducing agent selected from the group consisting of a polyhydric alcohol, a polycarboxylic acid, and a hydroxycarboxylic acid in amounts such that weight ratio of silica to total chromic acid is in the range of from 0.1:1 to 5:1, and is produced by (a) introducing an effective amount of the at least one reducing agent into the suspension under effective temperatures to provide a partially-reduced chromic acid which has a ratio of Cr.sup.3+ /(Cr.sup.3+ +Cr.sup.6+) in range of from 0.1 to 0.6, and (b) introducing an additional amount of the at least one reducing agent such that the molar ratio of reducing agent to unreduced chromic acid is in the range of from 0.1:1 to 2.0:1;
- (ii) applying a topcoat of 0.3 to 10 .mu.m in thickness to the sheet which top coat is formed from a coating composition containing as a base resin a polyhydroxypolyether resin prepared by polycondensation of a dihydric phenol component selected from a mononuclear dihydric phenol, dinuclear dihydric phenol, and a mixture of both with an epihalohydrin, and
- (iii) baking said topcoat at a temperature of from 80.degree. to 200.degree. C., and further wherein both said undercoat and topcoat layers are free of a substantial amount of zinc powder.
- 2. A precoated steel sheet according to claim 1 wherein said partially reduced chromic acid has a ratio of Cr.sup.3+ /(Cr.sup.3+ +Cr.sup.3+) in the range of from 0.3 to 0.6.
- 3. A precoated steel sheet according to claim 1 wherein said aqueous suspension further contains a silane coupling agent in an amount such that the molar ratio of silane coupling agent to unreduced chromic acid is at least 0.01:1.
- 4. A precoated steel sheet according to claim 1 wherein said aqueous suspension further contains an iron phosphide powder in an amount such that the weight ratio of iron phosphide to total chromic acid is in the range of from 0.1:1 to 20:1.
- 5. A precoated steel sheet according to claim 1 wherein said aqueous suspension further contains a metal chromate in an amount such that the molar ratio of metal chromate to unreduced chromic acid is at most 1:1, or a metal oxide or hydroxide as a precursor of a metal chromate in an amount such that the molar ratio of precursor to unreduced chromic acid is at most 0.5:1.
- 6. A precoated steel sheet according to claim 1 wherein said aqueous suspension further contains at least one additive selected from a silane coupling agent in an amount such that the molar ratio of silane coupling agent to unreduced chromic acid is at least 0.01:1; at least one reducing agent selected from the group consisting of a polyhydric alcohol, a polycarboxylic acid, and a hydroxycarboxylic acid in an amount such that the molar ratio of reducing agent to unreduced chromic acid is in the range of from 0.01:1 to 2.0:1; an iron phosphide powder in an amount such that the weight ratio of iron phosphide to total chromic acid is in the range of from 0.1:1 to 20:1; a metal chromate in an amount such that the molar ratio of metal chromate to unreduced chromic acid is at most 1:1; or a metal oxide or hydroxide as a precursor of a metal chromate in an amount such that the molar ratio of precursor to unreduced chromic acid is at most 0.5:1.
- 7. A precoated steel sheet according to claim 1 wherein said polyhydroxypolyether resin is a high molecular-weight polyhydroxypolyether resin having a number-average molecular weight of at least 5000.
- 8. A precoated steel sheet according to claim 7 wherein said high molecular-weight polyhydroxypolyether resin has been prepared from a dihydric phenol component comprised at least partly of a mononuclear dihydric phenol.
- 9. A precoated steel sheet according to claim 1 wherein said polyhydroxypolyether resin has been prepared by polycondensation of resorcinol, bisphenol A, or a mixture of both, with an epihalohydrin.
- 10. A precoated steel sheet according to claim 1 wherein said polyhydroxypolyether resin-based coating composition further contains at least one selected from an inorganic filler in an amount of at most 40% by volume based on the total resin solids in the coating composition, and a cross-linking agent in such an amount that the ratio of the total number of functional groups in the cross-linking agent to the total number of epoxy and hydroxyl groups in the polyhydroxypolyether resin is at most 2.0:1.
- 11. A precoated steel sheet according to claim 10 wherein said polyhydroxypolyether resin-based coating composition further contains at least one plasticizer selected from an acrylate or methacrylate ester in an amount of at most 20% by weight based on the* total resin solids in the coating composition, and a flexible resin in an amount of at most 50% by weight based on the total resin solids in the coating composition.
- 12. A precoated steel sheet according to claim 1 wherein said polyhydroxypolyether resin-based coating composition further contains at least one plasticizer selected from an acrylate or methacrylate ester in an amount of at most 20% by weight based on the total resin solids in the coating composition, and a flexible resin in an amount of at most 50% by weight based on the total resin solids in the coating composition.
- 13. A precoated steel sheet according to claim 1 wherein said steel sheet is bake hardenable and each of the undercoat and topcoat layers has been baked at a temperature below 200.degree. C.
- 14. A precoated steel sheet having improved corrosion resistance and weldability produced by (i) applying or firing after application an undercoat of a chromate film with a weight of 20-100 mg/m.sup.2 as Cr to the plated surface of a Zn or Zn alloy-plated steel sheet, said undercoat is an aqueous suspension containing partially reduced chromic acid which is produced by (a) introducing an effective amount of a reducing agent under effective temperatures to provide a chromic acid having a ratio of Cr.sup.3+ /(Cr.sup.3+ +Cr.sup.6+) of 0.4-0.6 and (b) introducing an additional amount of a reducing agent so as to provide an amount of reducing agent which is 1-4 times larger than that required to reduce the remaining Cr.sup.6+ to Cr.sup.3+, further wherein the aqueous suspension is substantially free from colloidal materials, and (ii) applying or firing after application a topcoating of 0.3-1.6 .mu.m in thickness and which comprises a resin-containing solution which contains as a base resin an epoxy resin together with colloidal silica in amounts of 10-25% by weight based on the total amount of resin solids and colloidal silica in the resin-containing solution.
- 15. A precoated steel sheet as set forth in claim 14 wherein said aqueous suspension further comprises a silane coupling agent in an amount such that the molar ratio of silane coupling agent to unreduced chromic acid (Cr.sup.6+) is at least 0.01:1.
- 16. A precoated steel sheet as set forth in claim 14 wherein said resin-containing solution further comprises a cross-linking agent in an amount such that the molar ratio of the total number of functional groups in the cross-linking agent to the total number of epoxy and hydroxyl groups in said epoxy resin is 0.1-2.0:1.
- 17. A precoated steel sheet as set forth in claim 14 wherein said resin-containing solution further comprises at least one additional resin which is capable of improving properties of the topcoat and which is present in an amount of 50% by weight or less based on the total amount of the resin solids in the resin-containing solution.
Priority Claims (1)
Number |
Date |
Country |
Kind |
62-239669 |
Sep 1987 |
JPX |
|
CROSS REFERENCE TO RELATED APPLICATIONS
This application is a continuation of application Ser. No. 07/383,550, filed Jul. 24, 1989, which is a continuation-in-part of application Ser. No. 123,567, filed Nov. 20, 1987, both now abandoned.
US Referenced Citations (3)
Number |
Name |
Date |
Kind |
4411964 |
Hara et al. |
Oct 1983 |
|
4659394 |
Hara et al. |
Apr 1987 |
|
4775600 |
Adaniya et al. |
Oct 1988 |
|
Foreign Referenced Citations (2)
Number |
Date |
Country |
23766 |
Feb 1986 |
JPX |
239941 |
Oct 1986 |
JPX |
Continuations (1)
|
Number |
Date |
Country |
Parent |
383550 |
Jul 1989 |
|
Continuation in Parts (1)
|
Number |
Date |
Country |
Parent |
123567 |
Nov 1987 |
|