The present application relates generally to wireless communication systems and, more specifically, to scheduling of data transmissions.
A communication system includes a DownLink (DL) that conveys signals from transmission points such as Base Stations (BSs) or NodeBs to User Equipments (UEs) and an UpLink (UL) that conveys signals from UEs to reception points such as NodeBs. A UE, also commonly referred to as a terminal or a mobile station, may be fixed or mobile and may be a cellular phone, a personal computer device, and the like. A NodeB, which is generally a fixed station, may also be referred to as an access point or other equivalent terminology.
Existing 4-Tx codebook in Release 11 does not perform well for a cross-polarized (XP) antenna setup, which is a commonly used antenna setup in practice. The target of the enhanced 4-Tx codebook design is to improve performance for narrowly-spaced and widely-spaced cross-polarized antenna setups.
A two-dimensional (2-D) active antenna array can be used for advanced communication systems such as full dimension multiple input multiple output (FD-MIMO) systems. In a 2-D active antenna array, antenna elements are placed in the vertical and horizontal directions. Codebooks designed for 2-D active antenna array contain two components corresponding to the horizontal and vertical components of underlying channel models.
This disclosure provides a system and method for performing a precoding matrix codebook design for use in advanced communications systems.
In a first embodiment, a method is provided. The method includes transmitting, by a base station (BS) via antenna array, a plurality of signals to at least one user equipment (UE). The method also includes applying a codebook to the plurality of signals prior to transmitting, wherein the codebook is designed with one-dimensional 4-Tx and two-dimensional M×N antenna elements.
In a second embodiment, a base station is provided. The base station includes a two dimensional (2D) antenna array comprising a number M of antenna elements and N antenna ports configured in a 2D grid NH×NV, the 2D antenna array configured to communicate with at least one subscriber station. The base station also includes a controller configured to apply a codebook to the signal, wherein the codebook is designed with one-dimensional 4-Tx and two-dimensional M×N antenna elements.
Before undertaking the DETAILED DESCRIPTION below, it may be advantageous to set forth definitions of certain words and phrases used throughout this patent document. The term “couple” and its derivatives refer to any direct or indirect communication between two or more elements, whether or not those elements are in physical contact with one another. The terms “transmit,” “receive,” and “communicate,” as well as derivatives thereof, encompass both direct and indirect communication. The terms “include” and “comprise,” as well as derivatives thereof, mean inclusion without limitation. The term “or” is inclusive, meaning and/or. The phrase “associated with,” as well as derivatives thereof, means to include, be included within, interconnect with, contain, be contained within, connect to or with, couple to or with, be communicable with, cooperate with, interleave, juxtapose, be proximate to, be bound to or with, have, have a property of, have a relationship to or with, or the like. The term “controller” means any device, system or part thereof that controls at least one operation. Such a controller may be implemented in hardware or a combination of hardware and software and/or firmware. The functionality associated with any particular controller may be centralized or distributed, whether locally or remotely. The phrase “at least one of,” when used with a list of items, means that different combinations of one or more of the listed items may be used, and only one item in the list may be needed. For example, “at least one of: A, B, and C” includes any of the following combinations: A, B, C, A and B, A and C, B and C, and A and B and C.
For a more complete understanding of the present disclosure and its advantages, reference is now made to the following description taken in conjunction with the accompanying drawings, in which like reference numerals represent like parts:
The following documents and standards descriptions are hereby incorporated into the present disclosure as if fully set forth herein: 3GPP TS 36.211 v11.1.0, “E-UTRA, Physical channels and modulation” (REF 1); 3GPP TS 36.212 v11.1.0, “E-UTRA, Multiplexing and Channel coding” (REF 2); 3GPP TS 36.213 v11.1.0, “E-UTRA, Physical Layer Procedures” (REF 3); R1-130554, “On CSI feedback enhancements”, Ericsson, ST-Ericsson, Malta, January 2013 (REF 4); and R1-130012, “Performance evaluation of 4TX MU-MIMO in scenario A”, Huawei, January 2013 (REF 5).
The wireless network 100 includes NodeB 101, NodeB 102, and NodeB 103. NodeB 101 communicates with NodeB 102 and NodeB 103. NodeB 101 also communicates with Internet protocol (IP) network 130, such as the Internet, a proprietary IP network, or other data network.
Depending on the network type, other well-known terms may be used instead of “NodeB”, such as “eNodeB” or “eNB,” “transmission point” (TP), “base station” (BS), “access point” (AP), or “eNodeB” (eNB). For the sake of convenience, the term NodeB shall be used herein to refer to the network infrastructure components that provide wireless access to remote terminals.
For the sake of convenience, the term “user equipment” or “UE” is used herein to designate any remote wireless equipment that wirelessly accesses a NodeB, whether the UE is a mobile device (e.g., cell phone) or is normally considered a stationary device (e.g., desktop personal computer, vending machine, etc.). Also, depending on the network type, other well-known terms may be used instead of “user equipment” or “UE,” such as “mobile station,” “subscriber station,” “remote terminal,” “wireless terminal,” or “user device.” For the sake of convenience, the terms “user equipment” and “UE” are used in this patent document to refer to remote wireless equipment that wirelessly accesses a NodeB, whether the UE is a mobile device (such as a mobile telephone or smartphone) or is normally considered a stationary device (such as a desktop computer or vending machine).
NodeB 102 provides wireless broadband access to network 130 to a first plurality of user equipments (UEs) within coverage area 120 of NodeB 102. The first plurality of UEs includes UE 111, which may be located in a small business; UE 112, which may be located in an enterprise; UE 113, which may be located in a WiFi hotspot; UE 114, which may be located in a first residence; UE 115, which may be located in a second residence; and UE 116, which may be a mobile device, such as a cell phone, a wireless laptop, a wireless PDA, or the like. UEs 111-116 may be any wireless communication device, such as, but not limited to, a mobile phone, mobile PDA and any mobile station (MS). NodeB 103 provides wireless broadband access to a second plurality of UEs within coverage area 125 of NodeB 103. The second plurality of UEs includes UE 115 and UE 116. In some embodiments, one or more of NodeBs 101-103 can communicate with each other and with UEs 111-116 using 5G, LTE, LTE-A, WiMAX, or other advanced wireless communication techniques as described in embodiments of the present disclosure.
Dotted lines show the approximate extents of coverage areas 120 and 125, which are shown as approximately circular for the purposes of illustration and explanation only. It should be clearly understood that the coverage areas associated with base stations, for example, coverage areas 120 and 125, may have other shapes, including irregular shapes, depending upon the configuration of the base stations and variations in the radio environment associated with natural and man-made obstructions.
As described in more detail below, one or more of NodeB 102 and NodeB 103 includes processing circuitry, such as transmit circuitry, configured to perform precoding matrix codebook design for advanced wireless communications systems.
Although
Transmit path 200 comprises channel coding and modulation block 205, serial-to-parallel (S-to-P) block 210, Size N Inverse Fast Fourier Transform (IFFT) block 215, parallel-to-serial (P-to-S) block 220, add cyclic prefix block 225, and up-converter (UC) 230. Receive path 250 comprises down-converter (DC) 255, remove cyclic prefix block 260, serial-to-parallel (S-to-P) block 265, Size N Fast Fourier Transform (FFT) block 270, parallel-to-serial (P-to-S) block 275, and channel decoding and demodulation block 280.
At least some of the components in
Furthermore, although this disclosure is directed to an embodiment that implements the Fast Fourier Transform and the Inverse Fast Fourier Transform, this is by way of illustration only and should not be construed to limit the scope of the disclosure. It will be appreciated that in an alternate embodiment of the disclosure, the Fast Fourier Transform functions and the Inverse Fast Fourier Transform functions may easily be replaced by Discrete Fourier Transform (DFT) functions and Inverse Discrete Fourier Transform (IDFT) functions, respectively. It will be appreciated that for DFT and IDFT functions, the value of the N variable may be any integer number (i.e., 1, 2, 3, 4, etc.), while for IDFT and IFFT functions, the value of the N variable may be any integer number that is a power of two (i.e., 1, 2, 4, 8, 16, etc.).
In transmit path 200, channel coding and modulation block 205 receives a set of information bits, applies coding (e.g., turbo coding) and modulates (e.g., Quadrature Phase Shift Keying (QPSK) or Quadrature Amplitude Modulation (QAM)) the input bits to produce a sequence of frequency-domain modulation symbols. Serial-to-parallel block 210 converts (i.e., de-multiplexes) the serial modulated symbols to parallel data to produce N parallel symbol streams where N is the IFFT/FFT size used in NodeB 102 and UE 116. Size N IFFT block 215 then performs an IFFT operation on the N parallel symbol streams to produce time-domain output signals. Parallel-to-serial block 220 converts (i.e., multiplexes) the parallel time-domain output symbols from Size N IFFT block 215 to produce a serial time-domain signal. Add cyclic prefix block 225 then inserts a cyclic prefix to the time-domain signal. Finally, up-converter 230 modulates (i.e., up-converts) the output of add cyclic prefix block 225 to RF frequency for transmission via a wireless channel. The signal may also be filtered at baseband before conversion to RF frequency.
The transmitted RF signal arrives at UE 116 after passing through the wireless channel and reverse operations to those at NodeB 102 are performed. Down-converter 255 down-converts the received signal to baseband frequency and remove cyclic prefix block 260 removes the cyclic prefix to produce the serial time-domain baseband signal. Serial-to-parallel block 265 converts the time-domain baseband signal to parallel time domain signals. Size N FFT block 270 then performs an FFT algorithm to produce N parallel frequency-domain signals. Parallel-to-serial block 275 converts the parallel frequency-domain signals to a sequence of modulated data symbols. Channel decoding and demodulation block 280 demodulates and then decodes the modulated symbols to recover the original input data stream.
Each of NodeBs 101-103 may implement a transmit path that is analogous to transmitting in the downlink to UEs 111-116 and may implement a receive path that is analogous to receiving in the uplink from UEs 111-116. Similarly, each one of UEs 111-116 may implement a transmit path corresponding to the architecture for transmitting in the uplink to NodeBs 101-103 and may implement a receive path corresponding to the architecture for receiving in the downlink from NodeBs 101-103.
Each of the components in
Furthermore, although described as using FFT and IFFT, this is by way of illustration only and should not be construed to limit the scope of this disclosure. Other types of transforms, such as Discrete Fourier Transform (DFT) and Inverse Discrete Fourier Transform (IDFT) functions, could be used. It will be appreciated that the value of the variable N may be any integer number (such as 1, 2, 3, 4, or the like) for DFT and IDFT functions, while the value of the variable N may be any integer number that is a power of two (such as 1, 2, 4, 8, 16, or the like) for FFT and IFFT functions.
Although
UE 116 comprises antenna 305, radio frequency (RF) transceiver 310, transmit (TX) processing circuitry 315, microphone 320, and receive (RX) processing circuitry 325. UE 116 also comprises speaker 330, main processor 340, input/output (I/O) interface (IF) 345, keypad 350, display 355, and memory 360. Memory 360 further comprises basic operating system (OS) program 361 and a plurality of applications 362.
Radio frequency (RF) transceiver 310 receives from antenna 305 an incoming RF signal transmitted by a NodeB of wireless network 100. Radio frequency (RF) transceiver 310 down-converts the incoming RF signal to produce an intermediate frequency (IF) or a baseband signal. The IF or baseband signal is sent to receiver (RX) processing circuitry 325 that produces a processed baseband signal by filtering, decoding, and/or digitizing the baseband or IF signal. Receiver (RX) processing circuitry 325 transmits the processed baseband signal to speaker 330 (such as for voice data) or to main processor 340 for further processing (such as for web browsing data).
Transmitter (TX) processing circuitry 315 receives analog or digital voice data from microphone 320 or other outgoing baseband data (e.g., web data, e-mail, interactive video game data) from main processor 340. Transmitter (TX) processing circuitry 315 encodes, multiplexes, and/or digitizes the outgoing baseband data to produce a processed baseband or IF signal. Radio frequency (RF) transceiver 310 receives the outgoing processed baseband or IF signal from transmitter (TX) processing circuitry 315. Radio frequency (RF) transceiver 310 up-converts the baseband or IF signal to a radio frequency (RF) signal that is transmitted via antenna 305.
In certain embodiments, main processor 340 is a microprocessor or microcontroller. Memory 360 is coupled to main processor 340. According to some embodiments of the present disclosure, part of memory 360 comprises a random access memory (RAM) and another part of memory 360 comprises a Flash memory, which acts as a read-only memory (ROM).
Main processor 340 can be comprised of one or more processors and executes basic operating system (OS) program 361 stored in memory 360 in order to control the overall operation of wireless subscriber station 116. In one such operation, main processor 340 controls the reception of forward channel signals and the transmission of reverse channel signals by radio frequency (RF) transceiver 310, receiver (RX) processing circuitry 325, and transmitter (TX) processing circuitry 315, in accordance with well-known principles. Main processor 340 can include processing circuitry configured to allocate one or more resources. For example Main processor 340 can include allocator processing circuitry configured to allocate a unique carrier indicator and detector processing circuitry configured to detect a PDCCH scheduling a PDSCH reception of a PUSCH transmission in one of the C carriers.
Main processor 340 is capable of executing other processes and programs resident in memory 360, such as operations for precoding matrix codebook design for advanced wireless communications systems as described in embodiments of the present disclosure. Main processor 340 can move data into or out of memory 360, as required by an executing process. In some embodiments, the main processor 340 is configured to execute a plurality of applications 362, such as applications for MU-MIMO communications, including obtaining control channel elements of PDCCHs. Main processor 340 can operate the plurality of applications 362 based on OS program 361 or in response to a signal received from BS 102. Main processor 340 is also coupled to I/O interface 345. I/O interface 345 provides subscriber station 116 with the ability to connect to other devices such as laptop computers and handheld computers. I/O interface 345 is the communication path between these accessories and main controller 340.
Main processor 340 is also coupled to keypad 350 and display unit 355. The operator of subscriber station 116 uses keypad 350 to enter data into subscriber station 116. Display 355 may be a liquid crystal display capable of rendering text and/or at least limited graphics from web sites. Alternate embodiments may use other types of displays.
Although
A NodeB transmits a PDCCH in units referred to as Control Channel Elements (CCEs). The NodeB, such as NodeB 102 or NodeB 103, transmits one or more of multiple types of RS including a UE-Common RS (CRS), a Channel State Information RS (CSI-RS), and a DeModulation RS (DMRS). The CRS is transmitted over substantially a DL system BandWidth (BW) and can be used by the UEs, such as UE 116, to demodulate data or control signals or to perform measurements. The UE 116 can determine a number of NodeB antenna ports from which a CRS is transmitted through a broadcast channel transmitted from the NodeB. To reduce the CRS overhead, the NodeB can transmit a CSI-RS with a smaller density in the time and/or frequency domain than the CRS. The UE can determine the CSI-RS transmission parameters through higher layer signaling from the NodeB. The DMRS is transmitted only in the BW of a respective PDSCH and a UE can use the DMRS to demodulate the information in the PDSCH.
Embodiments of the 4-Tx XP antenna setup 900 are commonly used antenna setup in practice. Embodiments of the 4-Tx XP antenna setup 900 include two pairs of transmit antennas, each of which comprises one antenna (910 or 930) with polarization direction +45 degree and the other antenna (920 or 940) with polarization direction −45 degree. That is, a first pair of antenna includes a first antenna 910 with polarization direction +45° and a second antenna 920 with polarization direction −45°. In addition, a second pair of antenna includes a third antenna 930 with polarization direction +45° and a fourth antenna 940 with polarization direction −45°.
In the example, shown in
A communication system consists of a downlink (DL), where signals are transmitted from base station (BS), NodeBs or transmission point (TP) to user equipment (UE), and an uplink (UL), where signals are transmitted from UE to BS or NodeB. For example, in the DL, NodeB 102 can transmit signals to UE 116. In the UL, UE 116 can transmit signals to NodeB 102.
A precoding matrix W Release 10 8-Tx codebook can be written as a product of two precoding matrices, called inner and outer precoders, respectively. The inner precoder has a block-diagonal structure and is used to capture the wide-band and long-term channel properties while the outer precoder is used to capture the frequency-selective and short-term channel properties. Mathematically, the precoding matrix W can be expressed as W=W1W2, where W1 and W2 denote the inner and outer precoders, respectively. Such structure is also called double codebook W1W2 structure. The inner precoder W1 has the following block diagonal structure:
A 4-Tx codebook design based on the 8-Tx double codebook W1W2 design principle is proposed. In particular, the inner precoder W1 follows the same structure as given in equation (2), where X is a 2×1 vector chosen from the following set:
for rank 1 and 2. For rank 1, the outer precoder W2 is chosen from the following set:
and for rank 2, the outer precoder W2 is chosen from the following set:
For rank 1, the overhead for transmitting PMI of W1 and PMI of W2 are 4 bits and 2 bits, respectively. For rank 2, the overhead for transmitting PMI of W1 and PMI of W2 are 4 bits and 1-bit, respectively.
In the present disclosure, fc is defined as the carrier frequency and λc as the corresponding wavelength of the carrier frequency fc. A time domain baseband equivalent model h(τ) observed at a receive antenna at a UE is given by
where L is defined as the number of multiple paths, αl denotes the a complex number associated with the lth path, θl is the azimuth angle of the lth path, a(hl) is a M×1 steering vector defined as a(h1)=[1 e−jh
and τl is defined as propagation delay of the lth path. When the steering vector a(hl) with
is applied to M elements comprising an antenna port, the signal emitted from the antenna array will have a beam steered to a direction of θl in the elevation domain. Accordingly, the frequency domain representation for the model described in (1) is given by:
H(f)=Σl=0L-1αlaH(hl)e−j2π(f-f
The spatial covariance matrix of the channel H(f) at a specific frequency is defined as:
R
H
=E[|α
0|2][a(h0)aH(h0)]. (8)
Correspondingly, the most dominant eigenvector of RH is c=βa(h0) with β being the power normalizing factor.
In the LIE Releases 10 and 12, a 8-Tx codebook and a 4-Tx enhanced codebook are respectively specified in the standards. The 8-Tx codebook in Release 10 and the 4-Tx enhanced codebook in Release 12 were designed for cross-polarized antenna as illustrated in
NodeB 102 transmits cell-specific reference signals (CRS) to facilitate its serving UEs' demodulation of control signals, estimation of channel state information (CSI), and demodulation of data carried on physical downlink shared channels (PDSCH). NodeB 102 also can configure CSI reference signals (CSI-RS) to facilitate UEs CSI estimation. Upon processing reference signals, either CRS or CSI-RS, UE 116 estimates CSI, which comprises at least one of precoding matrix indicator (PMI), rank indicator (RI), and channel quality indicator (CQI). UE 116 then feeds back the estimated CSI over physical uplink control channel (PUCCH) using Format 2/2a/2b with a payload size up to 11 bits or over physical uplink shared channel (PUSCH) without payload size limitation, dependent upon eNB's (or higher-layer configuration). The PUCCH feedback is often configured with fixed period, while the PUSCH feedback is dynamically triggered by NodeB 102 via CSI triggering bit(s) carried in a uplink downlink control information (DCI) transmitted on physical downlink control channels (PDCCH).
A transmitter 1610 applies a precoding matrix W to input signals X1 X2 and transmits a signal to receiver 1620. The receiver 1620 in the closed-loop MIMO system estimates the channels, searches the best precoding matrix, and feedback PMI and other information to the transmitter. It is well-known that the channel state information (CSI) at transmitter 1610 can be used to improve the performance of MIMO systems. In the frequency division duplexing (FDD) systems, acquiring CSI at the transmitter 1610 requires feedback from the receiver 1620. In particular, PMI is an important type of CSI, which is needed to be fed back to the transmitter 1610 with good accuracy. Alternatively, accurate PMI feedback requires large communication overhead, which will degrade the system performance. Therefore, an appropriate precoding codebook designs plays an important role in achieving desirable performance and overhead tradeoff.
In certain embodiments, in the proposed 4-Tx codebook design, the same double codebook W1W2 structure is used to obtain a new 4-Tx codebook, e.g., W=W1W2. In existing enhanced 4-Tx codebook designs (see REF 3 and REF 4), the beam vectors in X are obtained by evenly oversampling 4-Tx DFT vectors, i.e.
Unlike existing designs in (see REF 3 and REF 4), the design of beam vectors are obtained by oversampling 4-Tx DFT vectors unevenly. For 3-bit W1 codebook, the following designs
are provided wherein the 8 possible values of X are chosen from
One example construction of these 8 possible values of X are shown below:
Since there are 8 possible inner precoders, the overhead for the feedback of W1 is 3-bits.
The proposed 3-bit codebook has the approximately same resolution for UE 116 located within angular spread around spread around 90 degree as 4-bit codebook proposed in REF 3. As compared with
with lower density. If UEs are densely located within small angular spread centering at 90 degree, embodiments of the proposed 3-bit codebook yield a similar performance as the evenly oversampled 4-bit 4-Tx DFT codebook.
In certain embodiments, the codebook for X is subset of
where the subset comprises 8 distinct vectors indexed by 8 distinct n values. The subset includes two groups of distinct vectors, where one group has N1 elements and the other group has N2 elements, N1+N2=8. The first group that includes N1 elements has floor(N1/2) (or alternatively ceiling(N1/2)) consecutive integers increasing from 0 for n, and ceiling(N1/2) (or alternatively floor(N1/2)) consecutive integers decreasing from 15 for n. The N2 elements included in the second group are coarsely sampled numbers from the integer numbers from floor(N1/2) to 16-ceiling(Ni/2) (or alternatively ceiling(N1/2) to 16-floor(N1/2)). Embodiments of this method can be easily generalized for arbitrary set of
where N is 2k, and k is a positive integer.
In certain embodiments, for 4-bit 4-Tx codebook, the design of beam vectors that are obtained by oversampling 4-Tx DFT vectors unevenly. For 4-bit 4-Tx W1 codebook, the following designs
with X chosen from the following set, which is illustrated in
Considering the oversampling factor is a power of 2, the n-bit 4-Tx inner precoders are designed based on unevenly oversampled DFT vectors. The inner precoder W1 has the same block diagonal structure as Equation (1). The vector X is obtained as follows, where
The vector X is chosen from the following set:
In this embodiment, beam vectors are restricted to the set that contains the beam vectors are oversampled by a factor of 2 to a power. This construction leads denser beam distribution centering at 90° and sparser beam distribution near 0 and 180°. The outer precoder W2 is selected as the same as ones in REF 3 for rank 1 and rank 2. Note that this design does not assume Embodiment 1 and Embodiment 2 as special cases. For example, for n=4, the vector X is chosen from the following set
Consider more general choices for the beam vector X as compared with Embodiment 3. For the n-bit design, beam vectors X are selected from the following set
Where s(n) denotes a real sequence of N elements. In particular, the sequence s(n) can be a sequence of rational numbers, which can be expressed as
with pn,qn being integers.
Consider the 4-Tx codebook designs for 4 bit W1 and 4 bit W2 for rank-1 and rank-2 subject to the following restrictions:
1) the number of beams Nb in each W1 is restricted to 2 or 4, and
2) the precoding matrices W1 are the same for both rank 1 and rank 2.
The target antenna configurations for this embodiment are both closely-spaced and widely-spaced cross-polarized 4-Tx antennas. Taking into account performances in both closely-spaced and widely-spaced cross-polarized 4-Tx antennas, each group of Nb beams consists of so called almost parallel beams (angle between 2 beams is close to 0 degree) and orthogonal beams (angle between 2 beams is 90 degree). Considering slow time-varying channel effects and edge effects of sub-band frequency-selective precoding, 0, 1 or 2 overlapping beams are allowed between Wk and Wk+1. For Nb=4, express
Design for 4 bit W1 with Nb=4 and Define the vector uk as:
For Q1=16,
Option A1: In this option, the matrix Xk is selected to be:
X
k
={[u
k mod 16
u
(k+1)mod 16
u
(k+2)mod 16
u
(k+9)mod 16
]}, k=0, . . . , 15. (17)
In this design, there are two overleaping beams between Xk and Xk+1. For each Xk, a pair of orthogonal beams, i.e., u(k+1)mod 16 and u(k+9)mod 16; and three beams uk mod 16 u(k+1)mod 16 u(k+2)mod 16 are almost parallel.
Option A2: In this option, the matrix Xk is selected to be:
X
k
={[u
k mod 16
u
(k+1)mod 16
u
(k+8)mod 16
u
(k+9)mod 16
]}; k=0, . . . , 15. (18).
In this design, there is a single overleaping beams between Xk and Xk+1. For each Xk, two pairs of orthogonal beams, i.e., uk mod 16 and u(k+8)mod 16; and u(k+1)mod 16 and u(k+9)mod 16, and two beams uk mod 16 and u(k+1)mod 16 are almost parallel.
For Q1=32
Option B1: In this option, the matrix Xk is selected as
X
k
={[u
2k mod 32
u
(2k+1)mod 32
u
(2k+2)mod 32
u
(2k+17)mod 32
]}; k=0, . . . , 15 (19).
In this design, there is a single overleaping beam between Xk and Xk+1. For each Xk, a pair of orthogonal beams, i.e. u(2k+1)mod 32 and u(2k+17)mod 32, and three beams u2k mod 32, u(2k+1)mod 32, u(2k+2)mod 32 are almost parallel.
Option B2: In this option, the matrix Xk is selected as:
X
k
={[u
2k mod 32
u
(2k+1)mod 32
u
(2k+16)mod 32
u
(2k+17)mod 32
]}, k=0, . . . , 15
In this design, there is no overleaping beam between Xk and Xk+1. For each Xk, two pairs of orthogonal beams, i.e., u2k mod 32 and u(2k+16)mod 32, and u(2k+1)mod 32 and u(2k+17)mod 32, and two beams u2k mod 32, and u(2k+1)mod 32 are almost parallel.
Option B3: In this option, the matrix Xk is selected as:
X
k
={[u
k mod 32
u
(k+8)mod 32
u
(k+16)mod 32
u
(k+24)mod 32]}), k=0, . . . , 7 (20).
X
k
={[v
k mod 32
v
(k+8)mod 32
v
(k+16)mod 32
v
(k+24)mod 32
]}, k=8, . . . , 15 (21).
where
Option B4: In this option, the matrix Xk is as:
Option B5: In this option, the matrix Xk is as:
Option B6: In this option, the matrix Xk is:
which is the same as one given in Solution 2a below. For rank-2, the precoding matrix W2 is given by:
where α(i)=q12(i-1) with q1:=ej2π/32 for (Y1,Y2)=(ei,el).
In RAN1#73 meeting, it was agreed that one of the following codebook solutions, 2a and solution 2b, will be chosen:
Solution 2a:
where n=0, 1, . . . , 15
where ql=ej2π/32
Solution 2b:
where n=0, 1, . . . , 15
where q1=ej2π/32
In these codebook proposals, Solution 2a and Solution 2b, Xn and Xn+8 contain the same set of beams, which results in a certain large number of duplicated rank-2 codewords. To solve this issue, Option B3-B5 are proposed by making all Xn have distinct sets of beams (and hence all W's are distinct) for n=0, 1, . . . , 15. Option B6 is proposed by modifying rank-2 W2. Using B3-B5 options, the new W1 for rank-1 and rank-2 are distinct. Therefore, the overall codewords Ware all distinct. For option B6, the argument is given as follows. For Solution 2a and 2b, Xn+8=XnPπ, where Pπ is a permutation matrix defined as:
For n=0, 1, . . . , 15,
Alternatively, the overall codewords W belong to:
For n=0, 1, . . . , 7
while for n=8, 9, . . . , 15
As a result, (α(i)Yi, α(l)Yl)≠(α(i)PπYi, α(l)PπYl). Therefore, there are no duplicated codewords for rank 2.
Designs for 4 bit W1 with Nb=2
For Q1=16,
Option C1: In this option, the matrix Xk is selected as:
X
k
={[u
k mod 16
u
(k+1)mod 16
]}, k=0, . . . , 15. (34).
In this design, there is a single overleaping beams between Xk and Xk+1. For each Xk, two beams uk mod 16 and u(k+1)mod 16 are almost parallel.
Option C2: In this option, the matrix Xk is selected as:
X
k
={[u
k mod 16
u
(k+8)mod 16
]}, k=0, . . . , 15. (35).
In this design, no overleaping beam between Xk and Xk+1 occurs. For each Xk, there is one pair of orthogonal beams, i.e., uk mod 16 and u(k+8)mod 16.
Designs for 4 bit W2
For rank 1 and rank 2, the precoding matrix W2 is given by:
W
2
=[a
1
. . . a
R] (36).
where ar is defined as:
Option a:
Rank 1: In this option, the precoding matrix W2 is chosen to be 8-Tx W2 (the same as 8-Tx codebook)
where Y belongs to Yε{{tilde over (e)}{tilde over (e1)},{tilde over (e)}{tilde over (e2)},{tilde over (e)}{tilde over (e3)},{tilde over (e)}{tilde over (e4)}} with {tilde over (e)}{tilde over (el)} denoting the ith column of the identity matrix. In this option, the same beam is selected for two different polarizations.
Rank 2: In this option, the precoding matrix is the same as 8-Tx W2
Option b:
Rank 1: In this option, the precoding matrix W2 is chosen to be:
where Y1, and Y2 belong to {{tilde over (e)}{tilde over (e1)},{tilde over (e)}{tilde over (e2)},{tilde over (e)}{tilde over (e3)},{tilde over (e)}{tilde over (e4)}} with {tilde over (e)}{tilde over (el)} denoting the ith column of the identity matrix. In this option, the different beams can be selected for two different polarizations.
Rank 2: In this option, the precoding matrix is the same as 8-Tx W2
For W1 given in options A1 and B1, one choice of the pair (Y1,Y2) is given as follows:
(Y1,Y2)ε{({tilde over (e1)},{tilde over (e)}{tilde over (e1)}),({tilde over (e2)},{tilde over (e)}{tilde over (e2)}),({tilde over (e3)},{tilde over (e)}{tilde over (e3)}),({tilde over (e2)},{tilde over (e)}{tilde over (e4)})} (42).
This choice enables the selection of two orthogonal beams (for options A1 and B1, beam 2 and beam 4 are orthogonal) for two different polarizations.
For W1 given in options A2 and B2, one choice of the pair (Y1,Y2) is given as follows:
(Y1,Y2)ε{({tilde over (e1)},{tilde over (e)}{tilde over (e1)}),({tilde over (e2)},{tilde over (e)}{tilde over (e2)}),({tilde over (e1)},{tilde over (e)}{tilde over (e3)}),({tilde over (e2)},{tilde over (e)}{tilde over (e4)})} (43).
This choice enables the selection of orthogonal beams (for options A2 and B2, beam 1 and beam 3 are orthogonal and beam 2 and beam 4 are orthogonal) for two different polarizations.
Option c:
Rank 1: In Option c, the precoding matrix W2 is chosen to be:
where Y1 and Y2 belong to {{tilde over (e)}{tilde over (e1)}, {tilde over (e)}{tilde over (e2)}, {tilde over (e)}{tilde over (e3)}, {tilde over (e)}{tilde over (e4)}} with {tilde over (e)}{tilde over (el)}(i=1, 2, 3, 4) denoting the ith column of the identity matrix. In this option, the different beams can be selected for two different polarizations.
One choice of Q2 is Q2=4 and m=0, 1, 2, 3. Hence, q2mε(1, j, −1, j). Generally, Q2=2N and mεa subset of {0, 1, . . . , Q2−1}.
Rank 2: In Option c, the precoding matrix is the same as 8-Tx W2
where Y1 and Y2 belong to {{tilde over (e)}{tilde over (el)},{tilde over (e)}{tilde over (ek)}} and k,lε{1, 2, 3, 4}.
For W1 given in options A1 and B1, one choice of the pair (Y1,Y2) is given as follows:
(Y1,Y2)ε{({tilde over (e1)},{tilde over (e)}{tilde over (e1)}),({tilde over (e2)},{tilde over (e)}{tilde over (e2)}),({tilde over (e3)},{tilde over (e)}{tilde over (e3)}),({tilde over (e2)},{tilde over (e)}{tilde over (e4)})} (46).
This choice enables the selection of two orthogonal beams (for options A1 and B1, beam 2 and beam 4 are orthogonal) for two different polarizations.
For W1 given in options A2 and B2, one choice of the pair (Y1,Y2) is given as follows:
(Y1,Y2)ε{({tilde over (e1)},{tilde over (e)}{tilde over (e1)}),({tilde over (e2)},{tilde over (e)}{tilde over (e2)}),({tilde over (e1)},{tilde over (e)}{tilde over (e3)}),({tilde over (e2)},{tilde over (e)}{tilde over (e4)})} (47).
This choice enables the selection of orthogonal beams (for options A2 and B2, beam 1 and beam 3 are orthogonal and beam 2 and beam 4 are orthogonal) for two different polarizations. The Kronecker product based FD-MIMO codebook has a double codebook structure, i.e., W=W1W2, where a codeword w1 in the W1 codebook can be expressed as w1=wVwH, where wV is a W1 codeword in the vertical domain called V-codebook and wH is a W1 codeword in the elevation domain called H-codebook. A codebook W for FD-MIMO with 8H×8V XP (64 antenna elements) antenna configuration is given as follows:
where XV(k) and XH(k) are 4×4 matrices given by
X
V(k)=[bf
X
H(k)=[bf
with
n=0, 1, . . . , 31; and fV,t(k)ε{0, 1, . . . , 31} and fH,t(k)ε{0, 1, . . . , 31}, k=1, 2, 3, 4. The Release 10 8-Tx codebook is used for the horizontal and vertical domains. The overall FD-MIMO W1 codebook is given is constructed as:
with
n=0, 1, . . . , 31; and fV,t(k)ε{0, 1, . . . , 31} and fH,t(k)ε{0, 1, . . . , 31}, k=1, 2, 3, 4. The Release 10 8-Tx codebook is used for the horizontal and vertical domains. The overall FD-MIMO W1 codebook is given is constructed as:
For example: An evenly oversampled DFT codebook for 8V×8H with 4-bit H-codebook and 4-bit V-codebook with dH=dV=0.5λc. λV(k) and XH(k) are 4×4 matrices given by:
XV(k)=XH(k)=[b2kmod 32b(2k+1)mod 32b(2k+2)mod32b(2k+3)mod32] with bn=
For example: A non-evenly oversampled DFT codebook for 8V×8H with 4-bit H-codebook and 4-bit V-codebook with dH=dV=0.5λc.
The idea of using non-evenly oversampled DFT vector can be applied to design the H-codebook and V-codebook. As stated earlier, in the azimuth domain, UEs are located in a sector of 120°. In the elevation domain, most UEs are distributed in an interval of
A matrix XH (k) is defined as:
X
H(k)=[b2kmod 32,Hb(2k+1)mod 32,Hb(2k+2)mod32,Hb(2k+3)mod32,H] (54).
for k=0, . . . , 15, where bn,H is defined as:
for f(n)=0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
respectively for n=0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31.
where 20 closely spaced beams constructed with 20 different values of n correspond to azimuth steering angles around 90 degrees;
for
n=10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21.
where 12 widely spaced beams constructed with 12 different values of n correspond to azimuth steering angles around 0 degrees.
The matrix XV(k) is defined as:
X
V(k)=[b2kmod 32,Vb(2k+1)mod 32,Vb(2k+16)mod32,Vb(2k+17)mod32,V] for k=0, . . . , 15.
This construction of XV(k) helps provide robust performance for widely spaced and narrowly spaced antenna configuration, as it contains two pairs of closely spaced beams and two pairs of orthogonal beams. Widely spaced vertical antenna array can help to separate beams in elevation domain even with small number of antenna elements in the vertical antenna array, as it can provide sufficient aperture.
for nε{0, 1, . . . , 31} (55).
Certain embodiments show that an appropriate choice of a co-phasing factor in the W2 codebook can reduce or eliminate redundant codewords in the overall codebook. The Release 10 8-Tx W1 codebook consists of 16 codewords, each containing 4 adjacent beams. There are two 2 overlapping beams between two adjacent codewords. For rank 1, there are four beam selection vectors and four co-phasing factors (i.e., 1, −1, j, −j), which are constant independent of beam selection vectors. Due to the use of the overlapping beams and beam selection independent co-phasing factors, the final codebook W in Release 10 8-Tx codebook contains a number of the redundant codewords for rank 1. In a FD-MIMO codebook example shown in the present disclosure, each W1 codeword contains four overlapping beams with three other W1 codewords. To be more specific, since each pair of X(i) and X(i+1), and X(j) and X(j+1) contains two overlapping beams, the FD-MIMO codewords X(i,j), X(i+1,j), X(i,j+1), and X(i+1,j+1) have four overlapping beams, which creates a large number of the redundant codewords. This embodiment presents two methods for reducing or eliminating the redundant codewords in the final codebook.
Method 1) reduce the number of the redundant beams in XV(i) and/or XH(j) For rank 1-2, the W1 FD-MIMO codebook for αV×βH for some positive even integers α and β can be constructed as
where X(i,j)=XV(i)*XH(j) with XV(i) and XH(j) denoting the vertical and horizontal codebooks respectively. For example, the matrix XV(i) can be selected as follows:
X
V
={X
V(i)=[v(M
where M1v, M2v and Qv are positive integers, and vn is an oversampled vector given by
Similarly, the matrix XH (j) can be selected as follows:
X
H
={X
H(j)=[h(M
where M1h, M2h and Qh are positive integers, and hn is an oversampled DFT vector given by:
Note that the number of the overlapping beams between XV(i) and XV(i+1) is given by M2v−M1v+1, and the number of the overlapping beams between XH(j) and XH(j+1) is given by M2h−M1h+1. For instance, Release 10 8-Tx codebook has M2h=3 and M1h=2, and thus there are two overlapping beams between XH(j) and XH(j+1). Since the beams are normally designed to cover the entire angular space [0,2π], the parameters M1v, M2v and Qv or M1h, M2h and Qh, and the codebook size should be jointly designed. For Qh=Qv=32, the choice of M2h=M2v=3 and M1h M1v=2 leads to 4-bit XV an XH with two overlapping beams while the choice of M2h=M2v=3 and M1h=M1v=1 leads to 5-bit XV an XH with three overlapping beams.
Method 2) Use co-phasing factor depending on the beam selection indices in W2 In certain embodiments, the W2 codebook is designed as follows:
k=0, . . . , K−1, and Yε{e1, e2, . . . , eM} with ej being defined as a 16×1 beam selection vector with zero entries except for the ith entry. Clearly, the design of the W2 codebook follows the same principle of the Release 10 8-Tx W2 codebook design. Note that in this proposed FD-MIMO design, the choice of a(k) is independent of the beam selection index.
Designing the co-phasing factors in W2 is another approach to reduce or eliminate the redundant code-words. One approach is to construct the W2 codebook as follows:
where α(i) depends on the beam selection index i. In the 4-Tx enhanced codebook, a similar approach was used for designing the rank-1 W2 codebook. Specifically, the choice of a(i) in the 4-Tx enhanced codebook is given by:
α(i)=ej(i-1)π/8. (63).
It means that a beam selection index is determined as a function of a co-phasing factor. In particular, in the 4-Tx enhanced codebook case, the co-phasing factors are listed in the following table:
Referring to Table, the beam index in each code-word of the W1 codebook determines the set of the co-phasing factors. The set of the co-phasing factors {1, −1, j, −j} is the most commonly used co-phasing factors and has been proved to have a better codebook performance than other sets of co-phasing factors in practice. In the 4-Tx enhanced codebook, the choice of the co-phasing factors depends on the beam index. Depending upon the W1 codebook design, this approach cannot guarantee that every beam in the W1 codebook will use the set of the co-phasing factors {1, −1, j, −j} since certain beams may not appear in every column index in the W1 codebook. For example, in Release 10 8-Tx codebook design, the beam
only appears in column 4 of X(0) and appears in column 4 of X(1). The set of the co-phasing factors {1, −1, j, −j} is not used to apply the beam b3 if the construction approach for W2 in the 4-Tx enhanced codebook is used. The following example shows a different method to construct W2:
where β(li,n):=ej2πl
corresponding to l1,n=l2,n=1, and the third and fourth beams b4, b5 have not appeared in W1(0) and thus have the set of the co-phasing factors {1, −1, j, −j} corresponding to l3,n=l4,n=0.
The 2D co-polarized antenna array 2000 includes a plurality of antenna ports 2005. Each antenna port 2005 is mapped to a number of physical antennas. In one implementation of 2D co-polarized antenna array 2000, each antenna port 2005 is mapped to a single antenna as depicted in
In the example shown in
The two 2D co-pol arrays 2200 and 2250 include the 2D cross-polarized array shown in
Definition (a unit norm complex number and DFT vector):
A complex number that can be mapped to a point at
radian phase angle on a unit circle is defined as
An l-th DFT vector, bL,A(l) of length A, sampling [0,2π] with L levels are defined as in the following:
b
L,A(l):=[1qLl, . . . , qLl(A-1)]T: l=0,1, . . . , L−1 (65).
Time and frequency domain baseband channel models:
For a 2D co-polarized uniform rectangular array (as illustrated in
h(Σ)=Σl=0L-1αlaH(vl)aH(hl)δ(τ−τl)ej2πf
where a(vl) is a M×1 elevation channel vector defined as: a(vl)=[1e−jv
and a(hl) is a N×1 azimuth channel
vector defined as a(hl)=[1e−jh
Accordingly, the frequency domain representation of the model described in REF 2 is given by:
H(f)=Σl=0L-1αlaH(vl)aH(hl)e−j2π(f-f
In the Line of Sight (LOS) case, the frequency domain baseband equivalent model reduces to
H(f)=αaH(v)aH(h)e−j2π(f-f
where α:=α0, v:=v and h:=h0. At a particular frequency (or subcarrier), the spatial covariance matrix of H(f) is given by:
R
H
=E[|α|
2
][a(v)aH(v)][a(h)aH(h)](3) (69).
Definition: Rank-1 channel direction vector
Rank-1 channel direction matrix, or the principal eigenvector α of RH is given by:
with θ0 being the elevation angle and φ0 being the azimuth angle, and β is a normalized factor.
Certain embodiments include, based on the structure of the spatial covariance matrix RH, a codebook based on the Kronecker product of two DFT vectors. It is intended that the two DFT vectors respectively quantize conjugates of the elevation and the azimuth channel vectors a(v)=[1e−jv, . . . , e−j(M-1)v]T and a(h)=[1e−jh, . . . , e−j(N-1)h]T that construct the rank-1 channel direction vector α=βa(v)a(h).
NodeB 102 antenna spacing configuration for configuring a codebook
In order to quantize a(v) and a(h), either the elevation and/or azimuth angles θ0 and φ0, or their exponents v and h, can be quantized. An advantage of the exponent quantization is that UE 116 can form horizontal and vertical pre-coding vectors from the codebook (since they are DFT vectors) without knowing the horizontal and vertical antenna spacing (dV and dH) at NodeB 102. Alternatively, for angle quantization, antenna spacing needs to be configured to UE 116 so that UE 116 can construct the horizontal and vertical pre-coding vectors from the codebook. This configuration can be sent to UE 116 via higher layer signaling such as RRC. The horizontal and vertical antenna spacings (dV and dH) can take different values based on the configuration. In one example, NodeB 102 can configure at least one of dH/λc and dVλc values, each chosen from 4 candidate values as shown below.
The antenna spacing information can be either cell-specifically or UE-specifically configured.
Unless otherwise specified, a closely spaced antenna configuration is assumed throughout the remainder of the disclosure, where dH=dV=0.5λc are considered, v:=π cos θ0 and h:=π sin θ0 sin φ0. Having these observations, a product codebook with independently quantizing two channel vectors a(v) and a(h) can be devised, as in the following.
A rank-1 codebook (W) for 2D co-polarized array with uniformly quantizing the exponents h=π sin θ0 sin φ0 and v=π cos θ0. A codeword w is indexed by two non-negative integers, n and m, and represented by a Kronecker product:
w(n,m)=βwv(m)wh(n),wv(m)εWv,wh(n)εWh
In one method, Wv is defined as a set of DFT vectors uniformly sampling [0,2π] with Pv quantization levels, and Wh is defined as a set of DFT vectors uniformly sampling [0,2π] with Pv, and Qh
quantization levels:
W
v
={b
P
,M(m):m=0, . . . , Pv−1}; and Wh={bQ
In this method, e−jv and e−jh of the rank-1 channel direction vectors are respectively quantized by
In one example Pv=4 and Qh=16 and M=N=4; then
An example UE implementation on PMI selection: in certain embodiments, UE 116 selects v-PMI and h-PMI by maximizing the cosine of the hyper angle formed by the two vectors H(f) and w1, as in the following:
CSI feedback: in certain embodiments, NodeB 102 configures UE 116 to report two PMI indices, a vertical PMI (v-PMI), an index of a codeword in v-codebook and a horizontal PMI (h-PMI), an index of a codeword in h-codebook. Upon receiving the two PMI indices, NodeB 102 constructs a rank-1 channel by taking a Kronecker product of the two precoding vectors indicated by the two PMI indices. For a set of antenna ports L, a v-PMI value of mε{0, 1, . . . , Pv−1} and a h-PMI value of nε{0, 1, . . . , Qh−1} corresponds to the codebook indices m and n given in Table.
Dependency of azimuth angle distribution on elevation angle. To understand the dependency of two PMIs, an alternative expression for the parameter hmn is derived as in
Thus, cos α0=sin θ0 sin φ0. The parameter v0 can be rewritten as
Alternative definition: Rank-1 channel direction vector:
In its alternative definition according to the observation here, rank-1 channel direction matrix, or the principal eigenvector α of RH is given by:
with θ0 being the elevation angle and α0 being the angle between the direction of departure and the positive y-axis direction, and β is a normalizing factor.
Referring to
In the example shown in
then UE 116 is in the XY plane, hence α can take any value in [0,π]. Alternatively, for θ=0 or π, α can take only one value
In general, the length of range of possible values of α decreases for θ values away from
Also, this behavior is symmetric about
According to its alternative definition, rank-1 channel direction vectors are obtained with the cosine values of θ and α, i.e. π cos θ and π cos α. In
Codebook 2: A rank-1 codebook (W) for 2D co-polarized array with exploiting the dependency between angles θ and α:
A codeword w is indexed by two non-negative integers, m and n, and represented by a Kronecker product:
w(m,n)=βwv(m)wh(m,n),wv(m)εWv,wh(m,n)εWh(m)
Wv and Wh are defined as two sets of DFT precoding vectors:
W
v
={b
P
,M(m): m=0, . . . , Pv−1}; and Wh={bQ
In this method, e−jv and e−jh of the rank-1 channel direction vectors are respectively quantized by
and qQ
PMI construction example 1: 2-bit uniform sampling of [0,2π] for v.
In one example construction of codebook 2, Pv=4 number of states are used for uniformly quantizing v=π cos θ+πε[0,2π] utilizing
and corresponding DFT vector codebook Wv={b4,M(m): m=0, 1, 2, 3}. Then, a quantization range of h=π cos α+π is determined dependent upon the selected value of v and θ, according to the feasibility region in
Codebook 2: A rank-1 codebook (W) for 2D co-polarized array with exploiting the dependency between angles θ and α: example 2. A codeword w is indexed by two non-negative integers, m and n, and represented by a Kronecker product:
w(m,n)=βwv(m)wh(m,n),wv(m)εWv,wh(m,n)εWh(m)
Wv, and Wh are defined as two sets of DFT precoding vectors:
W
v
={w
v(m)=[1e−jv
Where vm:=π+π cos θm.
In this method, e−jv and e−jh of the rank-1 channel direction vectors are respectively quantized by vm: =π+π cos θm and hmn which is obtained by uniformly quantizing the range of possible values of α into Qh levels based on the v-PMI index m. Furthermore, codeword wv is determined based upon a single index m. However codeword wh is determined based upon index m as well as n, motivated by the dependency of α (or exponent h) on θ (or exponent v).
PMI construction example 2: 4-bit uniform sampling of [0,πt] for θm, fixed number of bits for h-channel quantization.
In one example construction of codebook 2, Pv=16 number of states are used for uniformly quantizing θε[0,π] with
Then the resulting
In addition, for h-channel quantization, Qh=16 is the number of states as shown in Table 12.
PMI construction example 3: 4-bit uniform sampling of [0,π] for θm, the number of bits for h-channel quantization determined as a function of θm: In one example construction of codebook 2 shown in Table 8, Pv=16 number of states are used for uniformly quantizing θε[0,π] with
Then the resulting
Alternatively, the number of states for h-channel quantization, Qh is determined as a function of m. For example, when m=0, only one value is used for h-PMI (Qh=1), and when m=2, 3 values are used for h-PMI (Qh=3). The PMI indices (m,n) are fed back by UE 116 to NodeB 102 by means of a composite PMI i as shown in Table 14.
Codebook subsampling of PMI example 3:
In LTE/LTE-Advanced downlink, UE 116 reports CQI, PMI, or RI to NodeB 102 via a feedback channel. There are two types of feedback channels: PUCCH and PUSCH. Periodic CSI is transmitted via PUCCH in a semi-statically configured manner while aperiodic CSI is transmitted via PUSCH in a dynamic manner. Compared with PUSCH, PUCCH has a more stringent requirement on the payload size. For example, in Release 12, period CSI is transmitted using PUCCH format 2/2a/2b with a payload size up to 11 bits. In Release 12, codebook subsampling is used to meet the PUCCH payload size requirement. Another method to reduce overhead and complexity in LTE is PMI codebook subset restriction (CSR). In CSR, any codeword can be disabled via CSR bitmap in radio resource control (RRC) signaling. UE 116 only needs to search the restricted codebook subset for PMI reporting. However, a large codebook size leads to a large overhead related to the transmission of a long bitmap. Seeing these issues, here we propose to use the PMI codebook 3 shown in Table 13 and Table 14 for PUSCH feedback, and to use a subsampled version of the PMI codebook 3 for PUCCH feedback.
In one example, the pairs of (m,n) of the PMI codebook 3 are uniformly subsampled in two dimension as shown in Table. Out of this subsampling, the total number of states to be fed back is reduced from 70 to 25, in which 25 states can fit in 5 bits. The composite PMI table to map composite PMI index i to (m,n) can be constructed for Table 15, as done for PMI codebook 3.
PMI construction example 4: non-uniform quantization of θ. In PMI construction example 4 in Table 16, θ is non-uniformly quantized with values in a set of {π/4, π/2, 5π/8, 3π/4}. In the urban macro/micro scenarios, the distribution of elevation angle θ is concentrated around π/2, and there are richer distributions for θ>π/2 than θ<π/2. To reflect this distribution, certain embodiments allocate more states for θ>π/2 than θ<π/2. In this example, 2 states {5π/8, 3π/4} are allocated to quantize θ>π/2, and a single state {π/4} is allocated to quantize θ<π/2.
Configurable rank-1 codebook:
Referring to
respectively. The low-rise sub-codebook WLR has coarse codebook resolution on both the vertical and horizontal domains as compared with the high-rise sub-codebook WHR. The low-rise sub-codebook WLR with Pθ=Qα=16 is given by:
while the high-rise sub-codebook WHR with Pθ=Qα=32 is given by
To improve the performance, certain embodiments construct a rank-1 co-pol codebook by quantizing azimuth and elevation angles uniformly.
Codebook Construction
Certain embodiments quantize the elevation angle θ into Pθ equal quantization levels and quantize the azimuth angle φ into Qφ equal quantization levels. The elevation angle can be θε[El,Eu) and the azimuth angle can be φε[Al, Au), where El and Eu are the lower- and upper-limits of the elevation angle, respectively, and satisfy 0≦El<Eu≦π, and Al and Au are the lower- and upper-limits of the azimuth angle, respectively and satisfy 0≦Al<Au≦2π. The feasible range of the elevation and azimuth angles may depend on factors such as UE distributions and antenna configurations.
The elevation precoding vector is given by:
for m=0, 1, . . . , Pθ−1, and the azimuth precoding vector is given by:
for m=0, 1, . . . , Pθ−1 and n=0, 1, . . . , Qφ−1. The overall rank-1 W codebook can be expressed as
W={W
m,n
=βf(vm)f(hm,n):m=0, 1, . . . , Pθ−1, n=0, 1, . . . , Qφ−1} (86).
β is a normalization factor. The number of codewords in this codebook is PθQφ.
Codebook Construction Example 1: Consider a 8V×8H 2D URA (as shown in
with m=0, 1, . . . , 3 and n=0, . . . , 15. A codeword Wm,n is given by:
PMI Feedback
For co-pol 2D antenna array, a v-PMI value of mε{0, 1, . . . , Pθ−1} and a h-PMI value of nε{0, 1, . . . , Qφ−1} corresponds to the codebook indices m and n given in Table 13. When configured with this PMI table, UE 116 needs to feeds back h-PMI n and v-PMI m to the NodeB 102.
Embodiments of the present disclosure provide a method that the codebook for X is subset of
where the subset comprises 8 distinct vectors indexed approximately same resolution for UE 116 located within angular spread around 90 degree as O-bit codebook proposed in REF 3. As compared with Error! Reference source not found. (evenly oversampled DFT vectors), beam vectors in near 0 and 180 degrees (vectors represented by
with lower density. If UEs are densely located within small angular spread centering at 90 degree, our 3-bit codebook yields a similar performance as the evenly oversampled 4-bit 4-Tx DFT codebook.
Although the present disclosure has been described with an exemplary embodiment, various changes and modifications may be suggested to one skilled in the art. It is intended that the present disclosure encompass such changes and modifications as fall within the scope of the appended claims.
The present application claims priority to U.S. Provisional Patent Application Ser. No. 61/775,231 filed Mar. 8, 2013, entitled “Downlink MIMO Codebook Design for Advanced Wireless Communications Systems,” U.S. Provisional Patent Application Ser. No. 61/816,416, filed Apr. 26, 2013, entitled “Downlink MIMO Codebook Design for Advanced Wireless Communications Systems,” U.S. Provisional Patent Application Ser. No. 61/832,632, filed Jun. 7, 2013, entitled “Downlink MIMO Codebook Design for Advanced Wireless Communications Systems,” U.S. Provisional Patent Application 61/834,269, filed Jun. 12, 2013, entitled Downlink MIMO Codebook Design for Advanced Wireless Communications Systems,” and U.S. Provisional Patent Application Ser. No. 61/930,887, filed Jan. 23, 2014, entitled “Precoding Matrix Codebook Design for Advanced Wireless Communications Systems”. The content of the above-identified patent documents are incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
61775231 | Mar 2013 | US | |
61816416 | Apr 2013 | US | |
61832632 | Jun 2013 | US | |
61834269 | Jun 2013 | US | |
61930887 | Jan 2014 | US |