Precompressed water and/or fire resistant tunnel expansion joint systems, and transitions

Information

  • Patent Grant
  • 9631362
  • Patent Number
    9,631,362
  • Date Filed
    Friday, March 28, 2014
    10 years ago
  • Date Issued
    Tuesday, April 25, 2017
    7 years ago
Abstract
A fire and/or water resistant expansion joint system for installation between substrates of a tunnel. The system includes a coating applied at a predetermined thickness to the substrates and a fire and water resistant expansion joint. The expansion joint includes a core and a fire retardant infused into the core. The core is configured to define a profile to facilitate the compression of the expansion joint system when installed between the substrates. The coating and the fire and water resistant expansion joint are each capable of withstanding exposure to a temperature of at least about 540° C. or greater for about five minutes.
Description
TECHNICAL FIELD

The present invention relates generally to joint systems for use in concrete and other building systems and, more particularly, to expansion joints for accommodating thermal and/or seismic movements in such systems.


BACKGROUND OF THE INVENTION

Concrete structures and other building systems often incorporate joints that accommodate movements due to thermal and/or seismic conditions. These joint systems may be positioned to extend through both interior and exterior surfaces (e.g., walls, floors, and roofs) of a building or other structure.


In the case of a joint in an exterior wall, roof, or floor exposed to external environmental conditions, the expansion joint system should also, to some degree, resist the effects of the external environment conditions. As such, most external expansion joints systems are designed to resist the effects of such conditions (particularly water). In vertical joints, such conditions will likely be in the form of rain, snow, or ice that is driven by wind. In horizontal joints, the conditions will likely be in the form of rain, standing water, snow, ice, and in some circumstances all of these at the same time. Additionally, some horizontal systems may be subjected to pedestrian and/or vehicular traffic.


Many expansion joint products do not fully consider the irregular nature of building expansion joints. It is common for an expansion joint to have several transition areas along the length thereof. These may be walls, parapets, columns, or other obstructions. As such, the expansion joint product, in some fashion or other, follows the joint as it traverses these obstructions. In many products, this is a point of weakness, as the homogeneous nature of the product is interrupted. Methods of handling these transitions include stitching, gluing, and welding. In many situations, it is difficult or impossible to prefabricate these expansion joint transitions, as the exact details of the expansion joint and any transitions and/or dimensions may not be known at the time of manufacturing.


In cases of this type, job site modifications are frequently made to facilitate the function of the product with regard to the actual conditions encountered. Normally, one of two situations occurs. In the first, the product is modified to suit the actual expansion joint conditions. In the second, the manufacturer is made aware of issues pertaining to jobsite modifications, and requests to modify the product are presented to the manufacturer in an effort to better accommodate the expansion joint conditions. In the first situation, there is a chance that a person installing the product does not possess the adequate tools or knowledge of the product to modify it in a way such that the product still performs as designed or such that a transition that is commensurate with the performance expected thereof can be effectively carried out. This can lead to a premature failure at the point of modification, which may result in subsequent damage to the property. In the second case, product is oftentimes returned to the manufacturer for rework, or it is simply scrapped and re-manufactured. Both return to the manufacturer and scrapping and re-manufacture are costly, and both result in delays with regard to the building construction, which can in itself be extremely costly.


SUMMARY OF THE INVENTION

The present invention is directed to a fire and/or water resistant expansion joint system for installation between substrates of a tunnel. The system includes a coating applied at a predetermined thickness to the substrates and a fire and water resistant expansion joint. The expansion joint includes a core and a fire retardant infused into the core. The core is configured to define a profile to facilitate the compression of the expansion joint system when installed between the substrates. The coating and the fire and water resistant expansion joint are each capable of withstanding exposure to a temperature of about 540° C. or greater for about five minutes.


In another aspect of the invention, the coating and the fire and water resistant expansion joint of the fire and water resistant expansion joint system are each capable of withstanding exposure to a temperature of about 930° C. or greater for about one hour, a temperature of about 1010° C. or greater for about two hours, or a temperature of about 1260° C. or greater for about eight hours.


In one embodiment, the core of the fire and water resistant expansion joint system includes a plurality of individual laminations assembled to construct a laminate, one or more of the laminations being infused with at least one of the fire retardant and a water-based acrylic chemistry.


In another aspect of the invention, the coating of the expansion joint system is applied at the predetermined thickness to achieve a substantially uniform layer on the substrates of the tunnel. In one embodiment, the fire and water resistant expansion joint is positioned in a gap between the substrates of the tunnel, an edge of the gap is chamfered as the edge abuts the expansion joint and the coating is applied to fill the chamfer.


In another aspect of the invention, the coating of the expansion joint system is applied at the predetermined thickness to achieve a substantially uniform layer on the substrates of the tunnel to a predetermined distance away from a gap between the substrates, and at a second predetermined thickness from the predetermined distance until an edge of the gap. In one embodiment, the coating is applied in an increasingly tapered manner from the predetermined thickness at the predetermined distance away from the gap until reaching the second predetermined thickness at the edge of the gap.


In another aspect, the present invention resides in a fire and water resistant vertical expansion joint system comprising a first section of core extending in a horizontal plane and a second section of core extending in a vertical plane. An insert piece of core is located between the first and second sections, the insert piece being configured to transition the first section from the horizontal plane to the vertical plane of the second section. The core is infused with a fire retardant. A layer of an elastomer is disposed on the core to impart a substantially waterproof property thereto. The vertical expansion joint system is pre-compressed and is installable between horizontal coplanar substrates and vertical coplanar substrates. Although the vertical expansion joint system is described as having an angle of transition from horizontal to vertical, it should be understood that the transition of the angles is not limited to right angles as the vertical expansion joint system may be used to accommodate any angle.


In another aspect, the present invention resides in a fire and water resistant expansion joint system, comprising a core; and a fire retardant infused into the core. The core infused with the fire retardant is configured to define a profile to facilitate the compression of the expansion joint system when installed between substantially coplanar substrates, and the expansion joint system is angled around a corner.


In any embodiment, the construction or assembly of the systems described herein is generally carried out off-site, but elements of the system may be trimmed to appropriate length on-site. By constructing or assembling the systems of the present invention in a factory setting, on-site operations typically carried out by an installer (who may not have the appropriate tools or training for complex installation procedures) can be minimized. Accordingly, the opportunity for an installer to effect a modification such that the product does not perform as designed or such that a transition does not meet performance expectations is also minimized.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a perspective view of a vertical expansion joint system of the present invention.



FIG. 2 is an end view of the vertical expansion joint system taken along line 2-2 of FIG. 1.



FIG. 2A is a detailed view of a portion of FIG. 2.



FIG. 3 is an end view of the vertical expansion joint system installed between two substrates.



FIG. 4 is a perspective view of an assembly of laminations being prepared to produce the vertical expansion joint system of FIG. 1.



FIG. 5 is a perspective view of the assembly of laminations being further prepared to produce the vertical expansion joint system of FIG. 1.



FIG. 6 is a perspective view of four sections of the vertical expansion joint system used in a building structure.



FIG. 7 is a perspective view of a horizontal expansion joint system of the present invention.



FIG. 8 is an end view of a vertical and/or horizontal expansion joint system installed between two substrates, depicting an elastomer on one surface of the core and an intumescent material on another surface of the core.



FIG. 9 is an end view of a vertical and/or horizontal expansion joint system installed between two substrates, depicting alternative layering on the core.



FIG. 10 is an end view of a vertical and/or horizontal expansion joint system installed between two substrates, depicting further layering on the core.



FIG. 11 is an end view of a vertical and/or horizontal expansion joint system installed between two substrates, depicting a fire retardant layer in the core and no coatings located on two outer surfaces of the core.



FIG. 12 is an end view of a vertical and/or horizontal expansion joint system installed between two substrates, depicting a fire retardant material in the core and layering on two outer surfaces of the core.



FIG. 13 illustrates a schematic view of a tunnel expansion joint system, according to the embodiments.



FIG. 14A illustrates a schematic view of a tunnel 200 with a fire therein.



FIG. 14B illustrates a schematic view of a tunnel 200 showing loss of portions of concrete therein.



FIG. 15 illustrates a schematic view of a tunnel expansion joint system, according to the embodiments.



FIG. 16 illustrates a schematic view of a tunnel expansion joint system showing chamfered edges 204, according to the embodiments.





DETAILED DESCRIPTION

Embodiments of the present invention provide a resilient water resistant and/or fire resistant expansion joint system able to accommodate thermal, seismic, and other building movements while maintaining water resistance and/or fire resistance characteristics. Embodiments of present invention are especially suited for use in concrete buildings and other concrete structures including, but not limited to, parking garages, stadiums, tunnels including tunnel walls, floors and tunnel roofs, bridges, waste water treatment systems and plants, potable water treatment systems and plants, and the like.


Referring now to FIGS. 1-3, embodiments of the present invention include an expansion joint system oriented in a vertical plane and configured to transition corners at right angles. This system is designated generally by the reference number 10 and is hereinafter referred to as “vertical expansion joint system 10.” It should be noted, however, that the vertical expansion joint system 10 is not limited to being configured at right angles, as the products and systems of the present invention can be configured to accommodate any desired angle. Moreover, as further explained below, embodiments herein are not limited to transition corners at right angles or other angles. For example, embodiments of the expansion joint systems and materials described herein for such systems can be configured in any suitable shape and configuration including, e.g., the use of straight sections, curved sections, coiled sections provided as, e.g., fixed length members or coiled on a roll, and so forth.


The vertical expansion joint system 10 comprises sections of a core 12′, e.g., open or closed celled polyurethane foam 12 (hereinafter “foam 12” for ease of reference which is not meant to limit the core 12′ to a foam material, but merely illustrate on exemplary material therefore) that may be infused with a material, such as a water-based acrylic chemistry, and/or other suitable material for imparting a hydrophobic characteristic. As shown in Detail FIG. 2A, for example, the core 12′ can be infused with a fire retardant material 60 such that the resultant composite fire and/or water resistant vertical expansion joint system 10 is capable of passing UL 2079 test program, as described in detail below. Moreover, it should be understood, however, that the present invention is not limited to the use of polyurethane foam, as other foams are within the scope of the present invention, and other non-foam materials also can be used for the core 12′, as explained below.


As is shown in FIG. 2, the core 12′ and/or foam 12 can comprise individual laminations 14 of material, e.g., foam, one or more of which are infused with a suitable amount of material, e.g., such as the acrylic chemistry and/or fire retardant material 60. The individual laminations 14 can extend substantially perpendicular to the direction in which the joint extends and be constructed by infusing at least one, e.g., an inner lamination with an amount of fire retardant 60. It should be noted that the present invention is not so limited as other manners of constructing the core 12′ and/or foam 12 are also possible. For example, the core 12′ and/or foam 12 of the present invention is not limited to individual laminations 14 assembled to construct the laminate, as the core 12′ and/or foam 12 may comprise a solid block of non-laminated foam or other material of fixed size depending upon the desired joint size, laminates comprising laminations oriented horizontally to adjacent laminations, e.g., parallel to the direction which the joint extends, or combinations of the foregoing.


Thus, foam 12 merely illustrates one suitable material for the core 12′. Accordingly, examples of materials for the core 12′ include, but are not limited to, foam, e.g., polyurethane foam and/or polyether foam, and can be of an open cell or dense, closed cell construction. Further examples of materials for the core 12′ include paper based products, cardboard, metal, plastics, thermoplastics, dense closed cell foam including polyurethane and polyether open or closed cell foam, cross-linked foam, neoprene foam rubber, urethane, ethyl vinyl acetate (EVA), silicone, a core chemistry (e.g., foam chemistry) which inherently imparts hydrophobic and/or fire resistant characteristics to the core; and/or composites. Combinations of any of the foregoing materials or other suitable material also can be employed. It is further noted that while foam 12 is primarily referred to herein as a material for the core 12′, the descriptions for foam 12 also can apply to other materials for the core 12′, as explained above.


The core 12′ can be infused with a suitable material including, but not limited to, an acrylic, such as a water-based acrylic chemistry, a wax, a fire retardant material, ultraviolet (UV) stabilizers, and/or polymeric materials, combinations thereof, and so forth. A particularly suitable embodiment is a core 12′ comprising open celled foam infused with a water-based acrylic chemistry and/or a fire retardant material 60.


The amount of fire retardant material 60 that is infused into the core 12′ is such that the resultant composite can pass Underwriters Laboratories' UL 2079 test program, which provides for fire exposure testing of building components. For example, in accordance with various embodiments, the amount of fire retardant material 60 that is infused into the core 12′ is such that the resultant composite of the fire and water resistant expansion joint system 10 is capable of withstanding exposure to a temperature of at least about 540° C. for about five minutes, a temperature of about 930° C. for about one hour, a temperature of about 1010° C. for about two hours, or a temperature of about 1260° C. for about eight hours, without significant deformation in the integrity of the expansion joint system 10. According to embodiments, including the open celled foam embodiment, the amount of fire retardant material that is infused into the core 12′ is between 3.5:1 and 4:1 by weight in ratio with the un-infused foam/core itself. The resultant uncompressed foam/core, whether comprising a solid block or laminates, has a density of about 130 kg/m3 to about 150 kg/m3 and preferably about 140 kg/m3. Other suitable densities for the resultant core 12′ include between about 50 kg/m3 and about 250 kg/m3, e.g., between about 100 kg/m3 and about 180 kg/m3, and which are capable of providing desired water resistance and/or waterproofing and/or fire resistant characteristics to the structure. One type of fire retardant material 60 that may be used is water-based aluminum tri-hydrate (also known as aluminum tri-hydroxide (ATH)). The present invention is not limited in this regard, however, as other fire retardant materials may be used. Such materials include, but are not limited to, metal oxides and other metal hydroxides, aluminum oxides, antimony oxides and hydroxides, iron compounds such as ferrocene, molybdenum trioxide, nitrogen-based compounds, phosphorus based compounds, halogen based compounds, halogens, e.g., fluorine, chlorine, bromine, iodine, astatine, combinations of any of the foregoing materials, and other compounds capable of suppressing combustion and smoke formation. Also as is shown in FIG. 3, the vertical expansion joint system 10 is positionable between opposing substrates 18 (which may comprise concrete, glass, wood, stone, metal, or the like) to accommodate the movement thereof. In particular, opposing vertical surfaces of the core 12′ and/or foam 12 can be retained between the edges of the substrates 18. The compression of the core 12′ and/or foam 12 during the installation thereof between the substrates 18 and expansion thereafter enables the vertical expansion system 10 to be held in place between the substrates 18.


In any embodiment, when individual laminations 14 are used, several laminations, the number depending on the expansion joint size (e.g., the width, which depends on the distance between opposing substrates 18 into which the vertical expansion system 10 is to be installed), can be compiled and then compressed and held at such compression in a fixture. The fixture, referred to as a coating fixture, is at a width slightly greater than that which the expansion joint will experience at the greatest possible movement thereof. Similarly, a core 12′ comprising laminations of non-foam material or comprising a solid block of desired material may be compiled and then compressed and held at such compression in a suitable fixture.


In one embodiment in the fixture, the assembled infused laminations 14 or core 12′ are coated with a coating, such as a waterproof elastomer 20 at one surface. The elastomer 20 may comprise, for example, at least one polysulfide, silicone, acrylic, polyurethane, poly-epoxide, silyl-terminated polyether, combinations and formulations thereof, and the like, with or without other elastomeric components or similar suitable elastomeric coating or liquid sealant materials, or a mixture, blend, or other formulation of one or more the foregoing. One preferred elastomer 20 for coating core 12′, e.g., for coating laminations 14 for a horizontal deck or floor application where vehicular traffic is expected is PECORA 301 (available from Pecora Corporation, Harleysville, Pa.) or DOW 888 (available from Dow Corning Corporation, Midland, Mich.), both of which are traffic grade rated silicone pavement sealants. For vertical wall applications, a preferred elastomer 20 for coating, e.g., the laminations 14 is DOW 790 (available from Dow Corning Corporation, Midland, Mich.), DOW 795 (also available from Dow Corning Corporation), or PECORA 890 (available from Pecora Corporation, Harleysville, Pa.). A primer may be used depending on the nature of the adhesive characteristics of the elastomer 20. For example, a primer may be applied to the outer surfaces of the laminations 14 of foam 12 and/or core 12′ prior to coating with the elastomer 20. Applying such a primer may facilitate the adhesion of the elastomer 20 to the foam 12 and/or core 12′.


During or after application of the elastomer 20 to the laminations 14 and/or core 12′, the elastomer is tooled or otherwise configured to create a “bellows,” “bullet,” or other suitable profile such that the vertical expansion joint system 10 can be compressed in a uniform and aesthetic fashion while being maintained in a virtually tensionless environment. The elastomer 20 is then allowed to cure while being maintained in this position, securely bonding it to the infused foam lamination 14 and/or core 12′.


Referring now to FIGS. 4 and 5, in one embodiment when the elastomer 20 has cured in place, the infused foam lamination 14 and/or core 12′ is cut in a location at which a bend in the vertical expansion system 10 is desired to accommodate a corner or other change in orientation of the expansion system 10, e.g., a change in orientation from a horizontal plane to a vertical plane, as described below. The cut, which is designated by the reference number 24 and as shown in FIG. 4, is made from one side of the expansion system 10, referred to for clarity and not limitation, as an outside of the system 10, at the desired location of the bend toward an opposite side of the expansion system 10, referred to for clarity and not limitation, as an inside of the system 10, at the desired location of the bend using a saw or any other suitable device. The cut 24 is stopped such that a distance d is defined from the termination of the cut to the previously applied coating of the elastomer 20 on the inside of the desired location of the bend (e.g., approximately one half inch from the previously applied coating of elastomer 20 on the inside of the bend). Referring now to FIG. 5, the core 12′ is then bent to an appropriate angle A, thereby forming a gap G at the outside of the bend. Although a gap of ninety degrees (90°) is shown in FIG. 5, the present invention is not limited in this regard as other angles are possible.


Still referring to FIG. 5, a piece of core 12′ and/or infused foam lamination 14 constructed in a manner similar to that described above is inserted into the gap G as an insert piece 30 and held in place by the application of a similar coating of elastomer 20 as described above. In the alternative, the insert piece 30 may be held in place using a suitable adhesive. Accordingly, the angle A around the corner is made continuous via the insertion of the insert piece 30 located between a section of the open celled foam extending in the horizontal plane and a section of the open celled foam extending in the vertical plane. Once the gap has been filled and the insert piece 30 is securely in position, the entire vertical expansion system 10 including the insert piece 30 is inserted into a similar coating fixture with the previously applied elastomer 20 coated side facing down and the uncoated side facing upwards. The uncoated side is now coated with the same (or different) elastomer 20 as was used on the opposite face. Again, the elastomer 20 is then allowed to cure in position. Furthermore, the insert piece 30 inserted into the gap is not limited to being a lamination 14, as solid blocks or the like may be used.


After both sides have cured, the vertical expansion system 10 as the final uninstalled product is removed from the coating fixture and packaged for shipment. In the packaging operation the vertical expansion system 10 is compressed using a hydraulic or mechanical press (or the like) to a size below the nominal size of the expansion joint at the job site. The vertical expansion system 10 is held at this size using a heat shrinkable poly film. The present invention is not limited in this regard, however, as other devices (ties or the like) may be used to hold the vertical expansion system 10 to the desired size.


Referring now to FIG. 6, portions of the vertical expansion system 10 positioned to articulate right angle bends are shown as they would be positioned in a concrete expansion joint 18c between substrates 18a and 18b located in a tunnel, archway, or similar structure. Each portion defines a foam laminate that is positioned in a corner of the joint 18c. As is shown, the vertical expansion joint system 10 is installed in the joint 18c between horizontal coplanar substrate 18a and vertical coplanar substrate 18b.


Referring now to FIG. 7, an alternate embodiment of the invention is shown. In this embodiment, the infused core 12′ and/or foam 12, the elastomer coating 20 on the top surface, and the elastomer coating 20 on the bottom surface are similar to the above described embodiments. However, in FIG. 7, the expansion joint system designated generally by the reference number 110 is oriented in the horizontal plane rather than vertical plane and is hereinafter referred to as “horizontal expansion system 110.” As with the vertical expansion system 10 described above, the horizontal expansion system 110 may be configured to transition right angles. The horizontal expansion system 110 is not limited to being configured to transition right angles, however, as it can be configured to accommodate any desired angle.


In the horizontal expansion system 110, the infused core 12′ and/or foam lamination 14 is constructed in a similar fashion to that of the vertical expansion system 10, namely, by constructing a core 12′ and/or foam 112 assembled from individual laminations 114 of suitable material, such as a foam material, one or more of which is infused with, e.g., an acrylic chemistry and/or a fire retardant material 60. Although the horizontal expansion system 110 is described as being fabricated from individual laminations 114, the present invention is not so limited, and other manners of constructing the core 12′ and/or foam 112 are possible (e.g., solid blocks of material, e.g., foam material, as described above).


In fabricating the horizontal expansion system 110, two pieces of the core 12′ and/or foam 112 are mitered at appropriate angles B (45 degrees is shown in FIG. 7, although other angles are possible). An elastomer, or other suitable adhesive, is applied to the mitered faces of the infused foam laminations 114. The individual laminations 114 are then pushed together and held in place in a coating fixture at a width slightly greater than the largest joint movement anticipated. At this width the top is coated with an elastomer 20 and cured, according to embodiments. Following this, the core 12′ and/or foam 112 is inverted and then the opposite side is likewise coated.


After both coatings of elastomer 20 have cured, the horizontal expansion system 110 is removed from the coating fixture and packaged for shipment. In the packaging operation, the horizontal expansion system 110 is compressed using a hydraulic or mechanical press (or the like) to a size below the nominal size of the expansion joint at the job site. The product is held at this size using a heat shrinkable poly film (or any other suitable device).


In a horizontal expansion system, e.g., system 110, the installation thereof can be accomplished by adhering the core 12′ and/or foam 112 to a substrate (e.g., concrete, glass, wood, stone, metal, or the like) using an adhesive such as epoxy. The epoxy or other adhesive is applied to the faces of the horizontal expansion system 110 prior to removing the horizontal expansion system from the packaging restraints thereof. Once the packaging has been removed, the horizontal expansion system 110 will begin to expand, and the horizontal expansion system is inserted into the joint in the desired orientation. Once the horizontal expansion system 110 has expanded to suit the expansion joint, it will become locked in by the combination of the core 12′ and/or foam back pressure and the adhesive.


In any system of the present invention, but particularly with regard to the vertical expansion system 10, an adhesive may be pre-applied to the core 12′ and/or foam lamination. In this case, for installation, the core 12′ and/or foam lamination is removed from the packaging and simply inserted into the expansion joint where it is allowed to expand to meet the concrete (or other) substrate. Once this is done, the adhesive in combination with the back pressure of the core 12′ and/or foam will hold the foam in position.


The vertical expansion system 10 is generally used where there are vertical plane transitions in the expansion joint. For example, vertical plane transitions can occur where an expansion joint traverses a parking deck and then meets a sidewalk followed by a parapet wall. The expansion joint cuts through both the sidewalk and the parapet wall. In situations of this type, the vertical expansion system 10 also transitions from the parking deck (horizontally) to the curb (vertical), to the sidewalk (horizontal), and then from the sidewalk to the parapet (vertical) and in most cases across the parapet wall (horizontal) and down the other side of the parapet wall (vertical). Prior to the present invention, this would result in an installer having to fabricate most or all of these transitions on site using straight pieces. This process was difficult, time consuming, and error prone, and often resulted in waste and sometimes in sub-standard transitions.


In one example of installing the vertical expansion system 10 in a structure having a sidewalk and a parapet, the installer uses several individual sections, each section being configured to transition an angle. The installer uses the straight run of expansion joint product, stopping within about 12 inches of the transition, then installs one section of the vertical expansion system 10 with legs measuring about 12 inches by about 6 inches. If desired, the installer trims the legs of the vertical expansion system 10 to accommodate the straight run and the height of the sidewalk. Standard product is then installed across the sidewalk, stopping short of the transition to the parapet wall. Here another section of the vertical expansion system 10 is installed, which will take the product up the wall. Two further sections of the vertical expansion system 10 are used at the top inside and top outside corners of the parapet wall. The sections of the vertical expansion system 10 are adhered to each other and to the straight run expansion joint product in a similar fashion as the straight run product is adhered to itself. In this manner, the vertical expansion system 10 can be easily installed if the installer has been trained to install the standard straight run product. It should be noted, however, that the present invention is not limited to the installation of product in any particular sequence as the pieces can be installed in any suitable and/or desired order.


In one example of installing the horizontal expansion system 110, the system is installed where there are horizontal plane transitions in the expansion joint. This can happen when the expansion joint encounters obstructions such as supporting columns or walls. The horizontal expansion system 110 is configured to accommodate such obstructions. Prior to the present invention, the installer would have had to create field transitions to follow the expansion joint.


To extend a horizontal expansion system, e.g., system 110, around a typical support column, the installer uses four sections of the horizontal expansion system. A straight run of expansion joint product is installed and stopped approximately 12 inches short of the horizontal transition. The first section of the horizontal expansion system 110 is then installed to change directions, trimming as desired for the specific situation. Three additional sections of horizontal expansion system 110 are then joined, inserting straight run pieces as desired, such that the horizontal expansion system 110 extends around the column continues the straight run expansion joint on the opposite side. As with the vertical expansion system 10, the sections may be installed in any sequence that is desired.


The present invention is not limited to products configured at right angles, as any desired angle can be used for either a horizontal or vertical configuration. Also, the present invention is not limited to foam or laminates, as solid blocks of foam or other desired material and the like may alternatively or additionally be used.


Moreover, while a core 12′ coated with an elastomer 20 on one or both of its outer surfaces has been primarily described above, according to embodiments, the present invention is not limited in this regard. Thus, the vertical and horizontal expansion joint systems described herein are not limited in this regard. For example, as shown in FIG. 8, the surface of the infused foam laminate and/or core 12′ opposite the surface coated with elastomer 20 is coated with an intumescent material 16, according to further embodiments. One type of intumescent material 16 may be a caulk having fire barrier properties. A caulk is generally a silicone, polyurethane, polysulfide, sylil-terminated-polyether, or polyurethane and acrylic sealing agent in latex or elastomeric base. Fire barrier properties are generally imparted to a caulk via the incorporation of one or more fire retardant agents. One preferred intumescent material 16 is 3M CP25WB+, which is a fire barrier caulk available from 3M of St. Paul, Minn. Like the elastomer 20, the intumescent material 16 is tooled or otherwise configured to create a “bellows” or other suitable profile to facilitate the compression of the foam lamination and/or core 12′. After tooling or otherwise configuring to have, e.g., the bellows-type of profile, both the coating of the elastomer 20 and the intumescent material 16 are cured in place on the foam 12 and/or core 12′ while the infused foam lamination and/or core 12′ is held at the prescribed compressed width. After the elastomer 20 and the intumescent material 16 have been cured, the entire composite is removed from the fixture, optionally compressed to less than the nominal size of the material and packaged for shipment to the job site. This embodiment is particularly suited to horizontal parking deck applications where waterproofing is desired on the top side and fire resistance is desired from beneath, as in the event of a vehicle fire on the parking deck below.


A sealant band and/or corner bead 19 of the elastomer 20 can be applied on the side(s) of the interface between the foam laminate (and/or core 12′) and the substrate 18 to create a water tight seal.


Referring now to FIG. 9, an alternate expansion joint system of the present invention illustrates the core 12′ having a first elastomer 14 coated on one surface and the intumescent material 16 coated on an opposing surface. A second elastomer 15 is coated on the intumescent material 16 and serves the function of waterproofing. In this manner, the system is water resistant in both directions and fire resistant in one direction. The system of FIG. 9 is used in applications that are similar to the applications in which the other afore-referenced systems are used, but may also be used where water is present on the underside of the expansion joint. Additionally, it would be suitable for vertical expansion joints where waterproofing or water resistance is desirable in both directions while fire resistance is desired in only one direction. The second elastomer 15 may also serve to aesthetically integrate the system with surrounding substrate material.


Sealant bands and/or corner beads 19 of the first elastomer 20 can be applied to the sides as with the embodiments described above. Sealant bands and/or corner beads 24 can be applied on top of the second elastomer 15, thereby creating a water tight seal between the substrate and the intumescent material 16.


Referring now to FIG. 10, in this embodiment, the foam 12 and/or core 12′ is similar to or the same as the above-described foam and/or core 12′, but both exposed surfaces are coated first with the intumescent material 16 to define a first coating of the intumescent material and a second coating of the intumescent material 16. The first coating of the intumescent material 16 is coated with a first elastomer material 32, and the second coating of the intumescent material 16 is coated with a second elastomer material 34. This system can be used in the same environments as the above-described systems with the added benefit that it is both waterproof or at least water resistant and fire resistant in both directions through the joint. This makes it especially suitable for vertical joints in either interior or exterior applications.


Sealant bands and/or corner beads 38 of the elastomer can be applied in a similar fashion as described above and on both sides of the foam 12 and/or core 12′. This creates a water tight elastomer layer on both sides of the foam 12 and/or core 12′.


Referring now to FIG. 11, shown therein is another system, according to embodiments. In FIG. 11, the core 12′ is infused with a fire retardant material, as described above. As an example, the fire retardant material can form a “sandwich type” construction wherein the fire retardant material forms a layer 15′, as shown in FIG. 11, between the material of core 12′. Thus, the layer 15′ comprising a fire retardant can be located within the body of the core 12′ as, e.g., an inner layer, or lamination infused with a higher ratio or density of fire retardant than the core 12′. It is noted that the term “infused with” as used throughout the descriptions herein is meant to be broadly interpreted to refer to “includes” or “including.” Thus, for example, “a core infused with a fire retardant” covers a “core including a fire retardant” in any form and amount, such as a layer, and so forth. Accordingly, as used herein, the term “infused with” would also include, but not be limited to, more particular embodiments such as “permeated” or “filled with” and so forth.


Moreover, it is noted that layer 15′ is not limited to the exact location within the core 12′ shown in FIG. 11 as the layer 15′ may be included at various depths in the core 12′ as desired. Moreover, it is further noted that the layer 15′ may extend in any direction. For example, layer 15′ may be oriented parallel to the direction in which the joint extends, perpendicular to the direction in which the joint extends or combinations of the foregoing. Layer 15′ can function as a fire resistant barrier layer within the body of the core 12′. Accordingly, layer 15′ can comprise any suitable material providing, e.g., fire barrier properties. No coatings are shown on the outer surfaces of core 12′ of FIG. 11.


Accordingly, by tailoring the density as described above to achieve the desired water resistance and/or water proofing properties of the structure, combined with the infused fire retardant in layer 15′, or infused within the core 12′ in any other desired form including a non-layered form, additional layers, e.g. an additional water and/or fire resistant layer on either or both outer surfaces of the core 12′, are not be necessary to achieve a dual functioning water and fire resistant system, according to embodiments.


It is noted, however, that additional layers could be employed if desired in the embodiment of FIG. 11, as well as in the other embodiments disclosed herein, and in any suitable combination and order. For example, the layering described above with respect to FIGS. 1-10 could be employed in the embodiment of FIG. 11 and/or FIG. 12 described below.


As a further example, FIG. 12 illustrates therein an expansion joint system comprising the layer 15′ comprising a fire retardant within the body of the core 12′ as described above with respect to FIG. 11, and also comprising an additional coating 17 on a surface of the core 12′. Coating 17 can comprise any suitable coating, such as the elastomer 20 described above, a fire barrier material including an intumescent material 16 described above or other suitable fire barrier material, e.g., a sealant, a fabric, a blanket, a foil, a tape, e.g., an intumescent tape, a mesh, a glass, e.g., fiberglass; and combinations thereof. Moreover, embodiments include various combinations of layering and fire retardant infusion (in layer and non-layer form) to achieve, e.g., the dual functioning water and fire resistant expansion joint systems described herein, according to embodiments. For example, FIG. 12 illustrates coating 17 on one surface of the core 12′ and a dual coating 17′ on an opposite surface of the core 12′. The dual coating 17′ can comprise, e.g., an inner layer 17a of elastomer 20, as described above, with an outer layer 17b of a fire barrier material including, e.g., an intumescent material. Similarly, the layers 17a and 17b of the dual coating 17′ can be reversed to comprise an inner layer of fire barrier material and an outer layer of elastomer 20.


Alternatively, only one layer may be present on either surface of core 12′, such as one layer of a fire barrier material, e.g., sealant, on a surface of the core 12′, which is infused with a fire retardant material in layer 15′ or infused in a non-layer form. Still further, other combinations of suitable layering include, e.g., dual coating 17′ on both surfaces of the core 12′ and in any combination of inner and outer layers, as described above.


It is additionally noted that the embodiments shown in, e.g., FIGS. 8-12 can be similarly constructed and installed, as described above with respect to, e.g., the embodiments of FIGS. 1-7, modified as appropriate for inclusion/deletion of various layering, and so forth. Thus, for example, as described above, while a “bellows” construction is illustrated by the figures, the embodiments described herein are not limited to such a profile as other suitable profiles may be employed, such as straight, curved, and so forth.


Accordingly, as further evident from the foregoing, embodiments of the dual functioning fire and water resistant expansion joint systems can comprise various ordering and layering of materials on the outer surfaces of the core 12′. Similarly, a fire retardant material can be infused into the core 12′ in various forms, to create, e.g., the above described layered “sandwich type” construction with use of, e.g., layer 15′.


In the embodiments described herein, the infused foam laminate and/or core 12′ may be constructed in a manner which insures that the amount of fire retardant material 60 that is infused into the core 12′ is such that the resultant composite can pass Underwriters Laboratories' UL 2079 test program regardless of the final size of the product. For example, in accordance with various embodiments, the amount of fire retardant material 60 that is infused into the core 12′ is such that the resultant composite of the fire and water resistant expansion joint system 10 is capable of withstanding exposure to a temperature of at least about 540° C. for about five minutes, a temperature of about 930° C. for about one hour, a temperature of about 1010° C. for about two hours, or a temperature of about 1260° C. for about eight hours, without significant deformation in the integrity of the expansion joint system 10. According to embodiments, including the open celled foam embodiment, the amount of fire retardant material that is infused into the core 12′ is between 3.5:1 and 4:1 by weight in ratio with the un-infused foam/core itself. For example, considering the amount of infusion as it relates to density, the starting density of the infused foam/core is approximately 140 kg/m3, according to embodiments. Other suitable densities include between about 80 kg/m3 and about 180 kg/m3. After compression, the infused foam/core density is in the range of about 160-800 kg/m3, according to embodiments. After installation the laminate and/or core 12′ will typically cycle between densities of approximately 750 kg/m3 at the smallest size of the expansion joint to approximately 360-450 kg/m3, e.g., approximately 400-450 kg/m3 (or less) at the maximum size of the joint. A density of 400-450 kg/m3 was determined through experimentation, as a reasonable value which still affords adequate fire retardant capacity, such that the resultant composite can pass the UL 2079 test program. The present invention is not limited to cycling in the foregoing ranges, however, and the foam/core may attain densities outside of the herein-described ranges.


It is further noted that various embodiments, including constructions, layering and so forth described herein can be combined in any order to result in, e.g., a dual functioning water and fire resistant expansion joint system. Thus, embodiments described herein are not limited to the specific construction of the figures, as the various materials, layering and so forth described herein can be combined in any desired combination and order.


Moreover, as explained above, embodiments of the invention are not limited to transition corners at angles. For example, embodiments of the joint systems and materials described therefore can be configured in any suitable shape and configuration including straight sections, curved sections, coiled sections provided as, e.g., fixed length members or coiled on a roll, and so forth.


Thus, the descriptions set forth above with respect to, e.g., the core 12′ and any coatings/materials thereon and/or therein, also apply to non-corner transition configurations. Such a configuration is shown, e.g., in FIG. 13, which illustrates a tunnel expansion joint system 210, according to embodiments, positioned along structural joint 202 in one or more of a roof, a floor and a wall of a tunnel 200 and thereby extending from a straight section configuration along the roof or floor to a curved section configuration as the construction transitions to extend up down or up to the wall of the tunnel 200. As with the above described embodiments, the tunnel expansion joint system 210 may be used to securely fill, with non-invasive, non-mechanical fastening, the structural joints 202 to accommodate seismic, thermal, concrete shrinkage and other movement in the roof, floor and wall of the tunnel 200, while maintaining fire rating of surfaces of the tunnel.


As is known in the art, Rijkswaterstaat (RWS) is a tunnel fire standard created as a result of testing done in 1979 by the Rijkswaterstaat, the Ministry of Infrastructure and the Environment, in the Netherlands. As illustrated in FIGS. 14A and 14B, the RWS standard is based, in part, on a worst case scenario of a typical fuel tanker having a full payload of about 1765 ft3 (50 m3) of fuel igniting within the relatively small confines of a tunnel. The resultant heat load was determined to be approximately 300 MW, with temperatures reaching 2012° F. (1100° C.) after about five (5) minutes, peaking at about 2462° F. (1350° C.) with a fire burn duration of about two (2) hours. Products that meet the RWS standard are able to keep an interface between the fire protection and the concrete surface below the interface at about 716° F. (380° C.) for the entire two (2) hour duration of the RWS fire curve. As illustrated in FIG. 14B, concrete that is not coated with a fire proofing can spall due to exposure to the above noted temperatures resulting in a loss of portions of the concrete, as shown generally at 220, and thus compromise the structural integrity of the tunnel 200. Significant spalling may require costly remediation post-fire to restore structural integrity and if left unchecked, may result in complete tunnel collapse.


Linings or coatings such as, for example, a high density cement based fireproofing material sold under the brand name Monokote® Z146T by W. R. Grace & Co., Columbia Md., or Isolatek® Type M-II by Isolatek International, Stanhope, N.J., may be used to treat the surface of the concrete of the roof, the floor and the walls of the tunnel 200 and to provide the interface, described above, between the fire protection and the concrete surface. However, the structural joints 202 in the roof, floor and wall of the tunnel 200 have been found to create a gap in this layer of fire protection. Accordingly, the embodiments of the expansion joint systems 10, 110 and 210 depicted herein in FIGS. 1-16, especially the tunnel expansion joint system 210 of FIGS. 13-16, are particularly suitable for tunnel applications and in conjuction with the coatings such as, e.g., the aforementioned Monokote® Z146T coating, seal the gap in the layer of fire protection of the tunnel 200.



FIGS. 15 and 16 depict embodiments of the tunnel expansion joint system 210 used in conjunction with a coating 230, such as the Monokote® Z146T coating, to provide the layer of fire protection to the tunnel 200. In one embodiment, illustrated in FIG. 15, the tunnel expansion joint system 210 is positioned within the structural joint 202 in one or more of the roof, the floor and the wall of the tunnel 200. Through experimentation and finite element analysis a preferred thickness of the coating 230 is determined relative to use with the tunnel expansion joint system 210 to provide a fire protection barrier that meets the RWS standard. As shown in FIG. 15, a first thickness of the coating 230 labeled CT1 is applied (e.g., spray applied and/or troweled) over the concrete surfaces of the tunnel 200 until the coating 230 reaches a predetermined distance CD1 from one of the structural joints 202. In one embodiment, the first thickness CT1 of the coating 230 is about one (1) inch (25 mm) until reaching the predetermined distance CD1 of about six (6) inches (150 mm) from an edge of the structural joint 202, and thus an edge of the tunnel expansion joint system 210 positioned within the joint 202. As shown in FIG. 15, over the predetermined distance CD1 to the tunnel expansion joint system 210, the thickness of the coating 230 is gradually increased to a second thickness of the coating 230 labeled CT2 at the edge of the structural joint 202, e.g., the edge of the tunnel expansion joint system 210 disposed in the joint 202. In one embodiment, the second thickness CT2 of the coating 230 is about one and one half (1.5) inches (40 mm). As shown in a partially enlarged portion of FIG. 15, a sealant band and/or corner bead 19 of the elastomer 20 or equivalent fire rated sealant, can be applied on the sides of the interface between the tunnel expansion joint system 210, the coating 230 and the edge of the joint 202 to create a water tight and/or fire rated seal and thus ensure a continuity in the layer of fire protection for the tunnel 200.



FIG. 16 illustrates another embodiment where the roof, the floor and/or the wall of the tunnel 200 include chamfered edges 204 at the transition to the structural joint 202. As shown in FIG. 16, providing the chamfered edges 204 permits application of a uniform thickness of the coating 230 labeled CT3 over the concrete surfaces of the tunnel 200 until the coating 230 reaches the structural joints 202. At the structural joints 202, the chamfered edges 204 are filled with the coating 230.


As illustrated in FIGS. 13-16, embodiments of the present invention provide an expansion joint that, among other characteristics, fills a gap in the tunnel floor, wall or roof, provides movement and supports RWS fire rating, e.g., performs within RWS time/temperature curve and other tunnel fire standards. However, other fire resistant, fireproof coatings could also be employed with the expansion joint systems described herein to provide, e.g., a build up of thickness of the coating 230 and protect the tunnel or other desired structure.


Although this invention has been shown and described with respect to the detailed embodiments thereof, it will be understood by those of skill in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope of the invention, and further that the features of the embodiments described herein can be employed in any combination with each other. In addition, modifications may be made to adapt a particular situation or material to the teachings of the invention without departing from the essential scope thereof. Therefore, it is intended that the invention not be limited to the particular embodiments disclosed in the above detailed description, but that the invention will include all embodiments falling within the scope of the appended claims.

Claims
  • 1. A fire and water resistant expansion joint system, comprising: a coating applied at a predetermined thickness to substrates of a tunnel; anda fire and water resistant expansion joint including: a core; anda fire retardant infused into the core, the core configured to facilitate the compression of the expansion joint system when installed between the substrates;wherein the fire retardant infused core compressed has a density of about 160 kg/m3 to about 800 kg/m3;wherein the coating and the fire and water resistant expansion joint are capable of withstanding exposure to a temperature of about 540° C. at about five minutes, and the fire retardant infused core is configured to pass testing mandated by UL 2079.
  • 2. The fire and water resistant expansion joint system of claim 1, wherein the coating and the fire and water resistant expansion joint are capable of withstanding exposure to a temperature of about 930° C. at about one hour.
  • 3. The fire and water resistant expansion joint system of claim 1, wherein the coating and the fire and water resistant expansion joint are capable of withstanding exposure to a temperature of about 1010° C. at about two hours.
  • 4. The fire and water resistant expansion joint system of claim 1, wherein the coating and the fire and water resistant expansion joint are capable of withstanding exposure to a temperature of about 1260° C. at about eight hours.
  • 5. The expansion joint system of claim 1, wherein the core comprises a plurality of individual laminations assembled to construct a laminate, one or more of the laminations being infused with at least one of the fire retardant and a water-based acrylic chemistry.
  • 6. The expansion joint system of claim 1, wherein the core comprises foam.
  • 7. The expansion joint system of claim 1, wherein the core comprises open celled polyurethane foam.
  • 8. The expansion joint system of claim 1, wherein a first layer of a water resistant material is disposed on the core, the water resistant material comprising a silicone.
  • 9. The expansion joint system of claim 8, wherein the water resistant material disposed on the core is selected from the group consisting of polysulfides, acrylics, polyurethanes, poly-epoxides, silyl-terminated polyethers, and combinations of one or more of the foregoing.
  • 10. The expansion joint system of claim 8, further comprising a second layer disposed on the first layer of the water resistant material, wherein the second layer is selected from the group consisting of another water resistant material, a fire barrier layer and combinations thereof.
  • 11. The expansion joint system of claim 1, wherein the core is tooled to define at least one of a bellows profile and a bullet profile.
  • 12. The expansion joint system of claim 1, wherein the ratio of the fire retardant infused into the core is in a range of about 3.5:1 to about 4:1 by weight.
  • 13. The expansion joint system of claim 1, wherein a layer comprising the fire retardant is sandwiched between the material of the core.
  • 14. The expansion joint system of claim 1, wherein the fire retardant infused into the core is selected from the group consisting of water-based alumina tri-hydrate, metal oxides, metal hydroxides, aluminum oxides, antimony oxides and hydroxides, iron compounds, ferrocene, molybdenum trioxide, nitrogen-based compounds, phosphorus based compounds, halogen based compounds, halogens, and combinations of the foregoing materials.
  • 15. The expansion joint system of claim 1, wherein the core uncompressed has a density of about 100 kg/m3 to about 180 kg/m3.
  • 16. The expansion joint system of claim 1, wherein the coating is applied at the predetermined thickness to achieve a substantially uniform layer on the substrates of the tunnel.
  • 17. The expansion joint system of claim 16, wherein the fire and water resistant expansion joint is positioned in a gap between the substrates of the tunnel, an edge of the gap is chamfered as the edge abuts the expansion joint and the coating is applied to fill the chamfer.
  • 18. The expansion joint system of claim 1, wherein the coating is applied at the predetermined thickness to achieve a substantially uniform layer on the substrates of the tunnel to a predetermined distance away from a gap between the substrates, and at a second predetermined thickness from the predetermined distance until an edge of the gap.
  • 19. The expansion joint system of claim 18, wherein the coating is applied in an increasingly tapered manner from the predetermined thickness at the predetermined distance away from the gap until reaching the second predetermined thickness at the edge of the gap.
  • 20. A fire and water resistant expansion joint system, comprising: a coating applied at a predetermined thickness to substrates of a tunnel; anda fire and water resistant expansion joint including: a core; anda fire retardant infused into the core, the core configured to facilitate the compression of the expansion joint system when installed between the substrates;wherein the fire retardant infused core compressed has a density of about 160 kg/m3 to about 800 kg/m3; andwherein the fire retardant infused core is configured to pass testing mandated by UL 2079.
CROSS REFERENCE TO RELATED APPLICATION

This patent application claims priority benefit under 35 U.S.C. §119(e) of copending, U.S. Provisional Patent Application Ser. No. 61/806,194, filed Mar. 28, 2013, the disclosure of which is incorporated by reference herein in its entirety. This application also claims priority benefit under 35 U.S.C. §120 of copending, U.S. Non-provisional patent application Ser. No. 13/731,327, filed on Dec. 31, 2012, which is a Continuation-in-Part Application of U.S. patent application Ser. No. 12/635,062, filed on Dec. 10, 2009, now U.S. Pat. No. 9,200,437,which claims the benefit of U.S. Provisional Patent Application No. 61/121,590, filed on Dec. 11, 2008, the contents of each of which are incorporated herein by reference in their entireties and the benefits of each are fully claimed. This application also claims priority benefit under 35 U.S.C. §120 of copending, U.S. Non-provisional patent application Ser. No. 13/729,500, filed on Dec. 28, 2012, which is a Continuation-in-Part Application of U.S. patent application Ser. No. 12/622,574, filed on Nov. 20, 2009, now U.S. Pat. No. 8,365,495, which claims the benefit of U.S. Provisional Patent Application No. 61/116,453, filed on Nov. 20, 2008, the contents of each of which are incorporated herein by reference in their entireties and the benefits of each are fully claimed.

US Referenced Citations (402)
Number Name Date Kind
517701 Knower Apr 1894 A
945914 Colwell Apr 1909 A
1357713 Lane Nov 1920 A
1371727 Blickle Mar 1921 A
1428881 Dyar Sep 1922 A
1691402 Oden Nov 1928 A
1716994 Wehrle Jun 1929 A
1809613 Walker Jun 1931 A
2010569 Sitzler Aug 1935 A
2016858 Hall Oct 1935 A
2035476 Herwood Mar 1936 A
2152189 Henderson Apr 1936 A
2069899 Older Feb 1937 A
2190532 Lukomski Feb 1940 A
2240787 Kinzer May 1941 A
2271180 Brugger Jan 1942 A
2277286 Bechtner Mar 1943 A
2544532 Hill Mar 1951 A
2701155 Estel, Jr. Feb 1955 A
2776865 Anderson Jan 1957 A
2828235 Holland et al. Mar 1958 A
2954592 Parsons Oct 1960 A
2995056 Knox Oct 1960 A
3024504 Miller Mar 1962 A
3080540 McFarland Mar 1963 A
3111069 Farbish Nov 1963 A
3124047 Graham Mar 1964 A
3172237 Bradley Mar 1965 A
3194846 Blaga Jul 1965 A
3232786 Kellman Feb 1966 A
3244130 Hipple, Jr. Apr 1966 A
3245328 Fassbinder Apr 1966 A
3255680 Cooper et al. Jun 1966 A
3262894 Green Jul 1966 A
3289374 Metz Dec 1966 A
3298653 Omholt Jan 1967 A
3300913 Patry et al. Jan 1967 A
3302690 Hurd Feb 1967 A
3335647 Thorp, Jr. Aug 1967 A
3344011 Goozner Sep 1967 A
3352217 Peters et al. Nov 1967 A
3355846 Tillson Dec 1967 A
3363383 Barge Jan 1968 A
3371456 Balzer et al. Mar 1968 A
3372521 Thom Mar 1968 A
3378958 Parks et al. Apr 1968 A
3394639 Viehmann Jul 1968 A
3410037 Empson et al. Nov 1968 A
3435574 Hallock Apr 1969 A
3447430 Gausepohl Jun 1969 A
3470662 Kellman Oct 1969 A
3482492 Bowman Dec 1969 A
3543459 Mills Dec 1970 A
3551009 Bruce et al. Dec 1970 A
3575372 Emberson Apr 1971 A
3582095 Bogaert Jun 1971 A
3603048 Hadfield Sep 1971 A
3604322 Koster Sep 1971 A
3606826 Bowman Sep 1971 A
3629986 Klittich Dec 1971 A
3643388 Parr et al. Feb 1972 A
3659390 Balzer et al. May 1972 A
3670470 Thom Jun 1972 A
3672707 Russo et al. Jun 1972 A
3677145 Wattiez Jul 1972 A
3694976 Warshaw Oct 1972 A
3712188 Worson Jan 1973 A
3720142 Pare Mar 1973 A
3736713 Flachbarth et al. Jun 1973 A
3742669 Mansfeld Jul 1973 A
3745726 Thom Jul 1973 A
3750359 Balzer et al. Aug 1973 A
3760544 Hawes Sep 1973 A
3797188 Mansfeld Mar 1974 A
3849958 Balzer et al. Nov 1974 A
3856839 Smith et al. Dec 1974 A
3871787 Stegmeier Mar 1975 A
3880539 Brown Apr 1975 A
3883475 Racky et al. May 1975 A
3896511 Cuschera Jul 1975 A
3907443 McLean Sep 1975 A
3911635 Traupe Oct 1975 A
3934905 Lockard Jan 1976 A
3944704 Dirks Mar 1976 A
3951562 Fyfe Apr 1976 A
3956557 Hurst May 1976 A
3974609 Attaway Aug 1976 A
4007994 Brown Feb 1977 A
4018017 Schoop Apr 1977 A
4018539 Puccio Apr 1977 A
4022538 Watson et al. May 1977 A
4030156 Raymond Jun 1977 A
4055925 Wasserman et al. Nov 1977 A
4058947 Earle et al. Nov 1977 A
4066578 Murch et al. Jan 1978 A
4129967 Barlow Dec 1978 A
4132491 Scheffel Jan 1979 A
4134875 Tapia Jan 1979 A
4140419 Puccio Feb 1979 A
4143088 Favre et al. Mar 1979 A
4146939 Izzi Apr 1979 A
4174420 Anolick et al. Nov 1979 A
4181711 Ohashi et al. Jan 1980 A
4204856 Yigdall et al. May 1980 A
4221502 Tanikawa Sep 1980 A
4224374 Priest Sep 1980 A
4237182 Fulmer et al. Dec 1980 A
4245925 Pyle Jan 1981 A
4246313 Stengle, Jr. Jan 1981 A
4258606 Wilson Mar 1981 A
4270318 Carroll et al. Jun 1981 A
4271650 Lynn-Jones Jun 1981 A
4288559 Illger et al. Sep 1981 A
4290249 Mass Sep 1981 A
4290713 Brown et al. Sep 1981 A
4295311 Dahlberg Oct 1981 A
4305680 Rauchfuss, Jr. Dec 1981 A
4320611 Freeman Mar 1982 A
4359847 Schukolinski Nov 1982 A
4362428 Kerschner Dec 1982 A
4367976 Bowman Jan 1983 A
4374207 Stone et al. Feb 1983 A
4374442 Hein et al. Feb 1983 A
4401716 Tschudin-Mahrer Aug 1983 A
4424956 Grant et al. Jan 1984 A
4431691 Greenlee Feb 1984 A
4432465 Wuertz Feb 1984 A
4433732 Licht et al. Feb 1984 A
4447172 Galbreath May 1984 A
4453360 Barenberg Jun 1984 A
4455396 Al-Tabaqchall et al. Jun 1984 A
4473015 Hounsel Sep 1984 A
4486994 Fisher et al. Dec 1984 A
4494762 Geipel Jan 1985 A
4533278 Corsover et al. Aug 1985 A
4558875 Yamaji et al. Dec 1985 A
4564550 Tschudin-Mahrer Jan 1986 A
4566242 Dunsworth Jan 1986 A
4576841 Lingemann Mar 1986 A
4589242 Moulinie et al. May 1986 A
4615411 Breitscheidel et al. Oct 1986 A
4620330 Izzi, Sr. Nov 1986 A
4620407 Schmid Nov 1986 A
4622251 Gibb Nov 1986 A
4637085 Hartkorn Jan 1987 A
4687829 Chaffee et al. Aug 1987 A
4693652 Sweeney Sep 1987 A
4711928 Lee et al. Dec 1987 A
4717050 Wright Jan 1988 A
4745711 Box May 1988 A
4751024 Shu et al. Jun 1988 A
4756945 Gibb Jul 1988 A
4767655 Tschudin-Mahrer Aug 1988 A
4773791 Hartkorn Sep 1988 A
4780571 Huang Oct 1988 A
4781003 Rizza Nov 1988 A
4784516 Cox Nov 1988 A
4791773 Taylor Dec 1988 A
4807843 Courtois et al. Feb 1989 A
4815247 Nicholas Mar 1989 A
4824283 Belangie Apr 1989 A
4835130 Box May 1989 A
4839223 Tschudin-Mahrer Jun 1989 A
4848044 LaRoche et al. Jul 1989 A
4849223 Pratt et al. Jul 1989 A
4866898 LaRoche et al. Sep 1989 A
4879771 Piskula Nov 1989 A
4882890 Rizza Nov 1989 A
4885885 Gottschling Dec 1989 A
4893448 McCormick Jan 1990 A
4901488 Murota et al. Feb 1990 A
4911585 Vidal et al. Mar 1990 A
4916878 Nicholas Apr 1990 A
4920725 Gore May 1990 A
4927291 Belangie May 1990 A
4932183 Coulston Jun 1990 A
4942710 Rumsey Jul 1990 A
4952615 Welna Aug 1990 A
4957798 Bogdany Sep 1990 A
4965976 Riddle et al. Oct 1990 A
4977018 Irrgeher et al. Dec 1990 A
4992481 von Bonin et al. Feb 1991 A
5007765 Dietlein et al. Apr 1991 A
5013377 Lafond May 1991 A
5024554 Benneyworth et al. Jun 1991 A
5026609 Jacob et al. Jun 1991 A
5035097 Cornwall Jul 1991 A
5053442 Chu et al. Oct 1991 A
5060439 Clements et al. Oct 1991 A
5071282 Brown Dec 1991 A
5072557 Naka et al. Dec 1991 A
5082394 George Jan 1992 A
5094057 Morris Mar 1992 A
5115603 Blair May 1992 A
5120584 Ohlenforst et al. Jun 1992 A
5121579 Hamar et al. Jun 1992 A
5129754 Brower Jul 1992 A
5130176 Baerveldt Jul 1992 A
5137937 Huggard et al. Aug 1992 A
5140797 Gohlke et al. Aug 1992 A
5168683 Sansom et al. Dec 1992 A
5173515 von Bonin et al. Dec 1992 A
5190395 Cathey et al. Mar 1993 A
5209034 Box et al. May 1993 A
5213441 Baerveldt May 1993 A
5222339 Hendrickson et al. Jun 1993 A
5249404 Leek et al. Oct 1993 A
5270091 Krysiak et al. Dec 1993 A
5297372 Nicholas Mar 1994 A
5327693 Schmid Jul 1994 A
5335466 Langohr Aug 1994 A
5338130 Baerveldt Aug 1994 A
5354072 Nicholson Oct 1994 A
5365713 Nicholas et al. Nov 1994 A
5367850 Nicholas Nov 1994 A
5380116 Colonias Jan 1995 A
5436040 Lafond Jul 1995 A
5441779 Lafond Aug 1995 A
5443871 Lafond Aug 1995 A
5450806 Jean Sep 1995 A
5456050 Ward Oct 1995 A
5472558 Lafond Dec 1995 A
5479745 Kawai et al. Jan 1996 A
5485710 Lafond Jan 1996 A
5489164 Tusch et al. Feb 1996 A
5491953 Lafond Feb 1996 A
5498451 Lafond Mar 1996 A
5501045 Wexler Mar 1996 A
5508321 Brebner Apr 1996 A
5528867 Thompson Jun 1996 A
RE35291 Lafond Jul 1996 E
5572920 Kennedy et al. Nov 1996 A
5607253 Almstrom Mar 1997 A
5611181 Shreiner et al. Mar 1997 A
5616415 Lafond Apr 1997 A
5628857 Baerveldt May 1997 A
5635019 Lafond Jun 1997 A
5649784 Ricaud et al. Jul 1997 A
5650029 Lafond Jul 1997 A
5656358 Lafond Aug 1997 A
5658645 Lafond Aug 1997 A
5664906 Baker et al. Sep 1997 A
5680738 Allen et al. Oct 1997 A
5686174 Irrgeher Nov 1997 A
5691045 Lafond Nov 1997 A
5744199 Joffre et al. Apr 1998 A
5759665 Lafond Jun 1998 A
5762738 Lafond Jun 1998 A
5765332 Landin et al. Jun 1998 A
5773135 Lafond Jun 1998 A
5791111 Beenders Aug 1998 A
5806272 Lafond Sep 1998 A
5813191 Gallagher Sep 1998 A
5830319 Landin Nov 1998 A
5851609 Baratuci et al. Dec 1998 A
5875598 Batten et al. Mar 1999 A
5876554 Lafond Mar 1999 A
5878448 Molter Mar 1999 A
5887400 Bratek et al. Mar 1999 A
5888341 Lafond Mar 1999 A
5935695 Baerveldt Aug 1999 A
5957619 Kinoshita et al. Sep 1999 A
5974750 Landin Nov 1999 A
5975181 Lafond Nov 1999 A
6001453 Lafond Dec 1999 A
6014848 Hilburn, Jr. Jan 2000 A
6035536 Dewberry Mar 2000 A
6035587 Dressler Mar 2000 A
6035602 Lafond Mar 2000 A
6039503 Cathey Mar 2000 A
D422884 Lafond Apr 2000 S
6088972 Johanneck Jul 2000 A
6102407 Moriya et al. Aug 2000 A
6115980 Knak et al. Sep 2000 A
6115989 Boone et al. Sep 2000 A
6128874 Olson et al. Oct 2000 A
6131352 Barnes et al. Oct 2000 A
6131364 Peterson Oct 2000 A
6131368 Tramposch et al. Oct 2000 A
6138427 Houghton Oct 2000 A
6148890 Lafond Nov 2000 A
6158915 Kise Dec 2000 A
6189573 Ziehm Feb 2001 B1
6192652 Goer et al. Feb 2001 B1
6207085 Ackerman Mar 2001 B1
6207089 Chuang Mar 2001 B1
6219982 Eyring Apr 2001 B1
6237303 Allen et al. May 2001 B1
6250358 Lafond Jun 2001 B1
6253514 Jobe et al. Jul 2001 B1
6329030 Lafond Dec 2001 B1
6350373 Sondrup Feb 2002 B1
6351923 Peterson Mar 2002 B1
6355328 Baratuci et al. Mar 2002 B1
6368670 Frost et al. Apr 2002 B1
6419237 More Jul 2002 B1
6439817 Reed Aug 2002 B1
6443495 Harmeling Sep 2002 B1
6460214 Chang Oct 2002 B1
6491468 Hagen Dec 2002 B1
6499265 Shreiner Dec 2002 B2
6532708 Baerveldt Mar 2003 B1
6544445 Graf et al. Apr 2003 B1
6552098 Bosch et al. Apr 2003 B1
6574930 Kiser Jun 2003 B2
6581341 Baratuci et al. Jun 2003 B1
6598364 Pelles Jul 2003 B1
6665995 Deane Dec 2003 B2
6666618 Anaya et al. Dec 2003 B1
6685196 Baerveldt Feb 2004 B1
6820382 Chambers et al. Nov 2004 B1
6860074 Stanchfield Mar 2005 B2
6862863 McCorkle et al. Mar 2005 B2
6877292 Baratuci et al. Apr 2005 B2
6897169 Matsui et al. May 2005 B2
6905650 McIntosh et al. Jun 2005 B2
6948287 Korn Sep 2005 B2
6989188 Brunnhofer et al. Jan 2006 B2
6996944 Shaw Feb 2006 B2
7043880 Morgan et al. May 2006 B2
7070653 Frost et al. Jul 2006 B2
7090224 Iguchi et al. Aug 2006 B2
7101614 Anton et al. Sep 2006 B2
7114899 Gass et al. Oct 2006 B2
7210557 Phillips et al. May 2007 B2
7222460 Francies, III et al. May 2007 B2
7225824 West et al. Jun 2007 B2
7240905 Stahl, Sr. Jul 2007 B1
7278450 Condon Oct 2007 B1
7287738 Pitlor Oct 2007 B2
7441375 Lang Oct 2008 B2
7621731 Armantrout et al. Nov 2009 B2
7665272 Reen Feb 2010 B2
7678453 Ohnstad et al. Mar 2010 B2
7748310 Kennedy Jul 2010 B2
7757450 Reyes et al. Jul 2010 B2
7836659 Barnes Nov 2010 B1
7856781 Hilburn, Jr. Dec 2010 B2
7877958 Baratuci et al. Feb 2011 B2
7941981 Shaw May 2011 B2
8033073 Binder Oct 2011 B1
8079190 Hilburn, Jr. Dec 2011 B2
8171590 Kim May 2012 B2
8172938 Alright et al. May 2012 B2
8317444 Hensley Nov 2012 B1
8333532 Derrigan et al. Dec 2012 B2
8341908 Hensley et al. Jan 2013 B1
8365495 Witherspoon Feb 2013 B1
8397453 Shaw Mar 2013 B2
8601760 Hilburn, Jr. Dec 2013 B2
8720138 Hilburn, Jr. May 2014 B2
8739495 Witherspoon Jun 2014 B1
8813449 Hensley et al. Aug 2014 B1
8813450 Hensley et al. Aug 2014 B1
9068297 Hensley et al. Jun 2015 B2
9200437 Hensley et al. Dec 2015 B1
20020052425 Kaku et al. May 2002 A1
20020088192 Calixto Jul 2002 A1
20020095908 Kiser Jul 2002 A1
20020113143 Frost et al. Aug 2002 A1
20020193552 Kiuchi et al. Dec 2002 A1
20030005657 Visser et al. Jan 2003 A1
20030110723 Baerveldt Jun 2003 A1
20030213211 Morgan et al. Nov 2003 A1
20040020162 Baratuci et al. Feb 2004 A1
20040045234 Morgan et al. Mar 2004 A1
20040101672 Anton et al. May 2004 A1
20040113390 Broussard, III Jun 2004 A1
20050066600 Moulton et al. Mar 2005 A1
20050120660 Kim et al. Jun 2005 A1
20050155305 Cosenza et al. Jul 2005 A1
20050193660 Mead Sep 2005 A1
20050222285 Massengill et al. Oct 2005 A1
20060010817 Shull Jan 2006 A1
20060030227 Hairston et al. Feb 2006 A1
20060117692 Trout Jun 2006 A1
20060178064 Balthes et al. Aug 2006 A1
20070059516 Vincent et al. Mar 2007 A1
20070137135 Shymkowich Jun 2007 A1
20070199267 Moor Aug 2007 A1
20070261342 Cummings Nov 2007 A1
20080172967 Hilburn Jul 2008 A1
20080193738 Hensley et al. Aug 2008 A1
20080268231 Deib Oct 2008 A1
20090036561 Nygren Feb 2009 A1
20090223150 Baratuci et al. Sep 2009 A1
20090223159 Colon Sep 2009 A1
20090246498 Deiss Oct 2009 A1
20090315269 Deiss Dec 2009 A1
20100058696 Mills Mar 2010 A1
20100275539 Shaw Nov 2010 A1
20100281807 Bradford Nov 2010 A1
20100319287 Shaw Dec 2010 A1
20110016808 Hulburn, Jr. Jan 2011 A1
20110083383 Hilburn, Jr. Apr 2011 A1
20110088342 Stahl, Sr. et al. Apr 2011 A1
20110135387 Derrigan et al. Jun 2011 A1
20110247281 Pilz et al. Oct 2011 A1
20120117900 Shaw May 2012 A1
20140151968 Hensley et al. Jun 2014 A1
20140219719 Hensley et al. Aug 2014 A1
20140360118 Hensley et al. Dec 2014 A1
Foreign Referenced Citations (31)
Number Date Country
1280007 Apr 1989 CA
1334268 Aug 1989 CA
1259351 Sep 1989 CA
1280007 Feb 1991 CA
2256660 Feb 2000 CA
2296779 Nov 2006 CA
2640007 Mar 2009 CA
4436280 Apr 1996 DE
19809973 Jul 1999 DE
102005054375 May 2007 DE
102005054375 May 2007 DE
0976882 Feb 1999 EP
0942107 Sep 1999 EP
1118715 Jul 2001 EP
1118726 Jul 2001 EP
1540220 Feb 2004 EP
1540220 Aug 2006 EP
1983119 Apr 2007 EP
1983119 Oct 2008 EP
977929 Dec 1964 GB
1359734 Jul 1974 GB
1495721 Dec 1977 GB
1519795 Aug 1978 GB
2181093 Apr 1987 GB
2251623 Jul 1992 GB
2359265 Aug 2001 GB
2377379 Jan 2003 GB
200645950 Feb 2006 JP
03006109 Jan 2003 WO
2007023118 Mar 2007 WO
2007024246 Mar 2007 WO
Non-Patent Literature Citations (379)
Entry
Adolf Wurth GmbH & Co., KG, Elastic Joint Sealing Tape, labeled Copyright 2000-2003, pp. 1-7.
Expanding PU Foam, Technical Data Sheet, Feb. 1997, pp. 1-2.
ASTM International, Designation: E 84-04, Standard Test Method for Surface Burning Characteristics of Building Materials, Feb. 2004, pp. 1-19.
ASTM International, Designation: E 176-07, Standard Terminology of Fire Standards, Oct. 2007, pp. 1-20.
Auburn Manufacturing Company, Auburn Product News, Flame Retardant Silicone Sponge, 2007, p. 1.
British Board of Agrement, Agrement Certificate No. 97/3331, Second Issue, Compriband Super, 2005, pp. 1-4.
British Board of Agrement, Agrement Certificate No. 96/3309, Third Issue, Illmod 600 Sealing Tapes, 2003, pp. 1-8.
Nederland Normalistie-Instituut, Experimental Determination of the Fire Resistance of Elements of Building Construction, NEN 6069, Oct. 1991, English Translation, pp. 1-30.
British Standards Institution, Fire Tests on Building Materials and Structures, BS 476: Part 20: 1987, pp. 1-44.
DIN Deutsches Institut for Normung e.V., DIN 18542, Impregnated Cellular Plastics Strips for Sealing External Joints, Requirements and Testing, Jan. 1999, pp. 1-10.
www.BuildingTalk.com, Emseal Joint Systems, Choosing a Sealant for Building Applications, Hensley. May 21, 2007, pp. 1-6.
Netherlands Organization for Applied Scientific Research (TNO), Determination of the Fire Resistance According to NEN 6069 of Joints in a Wall Sealed with Cocoband 6069 Impregnated Foam Strip, Nov. 1996, pp. 1-19.
DIN Deutsches Institut fur Normung e.V., Fire Behaviour of Building Materials and Elements, Part 1: Classification of Building Materials, Requirements and Testing, DIN 4102-1, May 1998, pp. 1-33.
DIN Deutsches Institut fur Normung e.V., Fire Behaviour of Building Materials and Elements, Overview and Design of Classified Building Materials, Elements and Components, DIN 4102-4, Mar. 1994, pp. 1-144.
Dow Corning Corporation, Dow Corning 790, Silicone Building Sealant, labeled Copyright 2000, pp. 1-6.
Dow Corning Corporation, Dow Corning 790, Silicone Building Sealant, Product Information, labeled Copyright 2000-2004, pp. 1-4.
Dow Corning Corporation, Dow Corning Firestop 400 Acrylic Sealant, 2001, pp. 1-4.
Dow Corning Corporation, Dow Corning Firestop 700 Silicone Sealant, 2001, pp. 1-6.
Emseal Joint Systems, Horizontal Colorseal, Aug. 2000, pp. 1-2.
Emseal Joint Systems, Ltd., Colorseal PC/SA Stick STD/001-0-00-00, 1995, p. 1.
Emseal Joint Systems, Ltd., 20H System, Tech Data, Jun. 1997, pp. 1-2.
Emseal Joint Systems, Ltd., Colorseal, Aug. 2000, pp. 1-2.
Emseal Joint Systems, Ltd., DSH System, Watertight Joint System for Decks, Tech Data, Nov. 2005, pp. 1-2.
Emseal Joint Systems, Ltd., Fire-Rating of Emseal 20H System, Feb. 17, 1993, p. 1-2.
Emseal Joint Systems, Ltd., Preformed Sealants and Expansion Joint Systems, May 2002, pp. 1-4.
Emseal Joint Systems, Ltd., Pre-Formed Sealants and Expansion Joints, Jan. 2002, pp. 1-4.
Emseal Joint Systems, Ltd., Seismic Colorseal, Aug. 2000, pp. 1-2.
Emseal Joint Systems, Ltd., Seismic Colorseal-DS (Double-Sided) Apr. 12, 2007, pp. 1-4.
Environmental Seals, Ltd., Envirograf, Fire Kills: Stop it today with fire stopping products for building gaps and openings, 2004, pp. 1-8.
Fire Retardants, Inc., Fire Barrier CP 25WB+Caulk, labeled Copyright 2002, pp. 1-4.
Illbruck Bau-Produkte GmbH u. CO. KG., willseal firestop, Product Information Joint Sealing Tape for the Fire Protection Joint, Sep. 30, 1995, pp. 1-9.
Illbruck, willseal, The Joint Sealing Tape, 1991, pp. 1-19.
Illbruck, willseal 600, Product Data Sheet, 2001, pp. 1-2.
Material Safety Data Sheet, Wilseal 150/250 and/or E.P.S., Jul. 21, 1986, pp. 1-2.
ISO 066, Technical Datasheet, blocostop F-120, 2002 p. 1.
MM Systems, ejp Expansion Joints, Expanding Impregnated Foam System, internet archive, wayback machine, Nov. 16, 2007, pp. 1-2.
MM Systems, ejp Expansion Joints, Colorjoint/SIF-Silicone Impregnated Foam System, internet archive, wayback machine, Nov. 16, 2007, pp. 1-2.
MM Systems, ColorJoint/SIF Series, Silicone Seal & Impregnated Expanding Foam, Spec Data, 2007, pp. 1-3.
Norton Performance Plastics Corporation, Norseal V740FR, Flame Retardant, UL Recognized Multi-Purpose Foam Sealant, labeled Copyright 1996, pp. 1-2.
Promat International,Ltd., Promaseal FyreStrip, Seals for Movement Joints in Floors/Walls, labeled Copyright 2006, pp. 1-4.
Promat International, Ltd., Promaseal Guide for Linear Gap Seals and Fire Stopping Systems, Jun. 2008, pp. 1-20.
Promat International, Ltd., Promaseal IBS Foam Strip, Penetration Seals on Floors/Walls, labeled Copyright 2004, pp. 1-6.
Promat International, Ltd., Safety Data Sheet, Promaseal IBS, May 25, 2007, pp. 1-3.
Schul International, Co., LLC., Color Econoseal, Technical Data, Premium Quailty Joint Sealant for Waterproof Vertical and Horizontal Applications, 2005, pp. 1-2.
Schul International, Co., LLC., Sealtite Airstop FR, Air and Sound Infiltration Barrier, labeled Copyright 1997-04, p. 1.
Schul International, Co., LLC., Sealtite Standard, Pre-compressed Joint Sealant, High Density, Polyurethane Foam, Waterproofs Vertical Applications, 2007.
Iso-Chemie, Iso Bloco 600 solukumitiiviste, Finnish language, pp. 1-2.
Iso-Chemie, Iso Bloco 600, Produktbeskrivelse, Norwegian language, pp. 1-2.
Ashida, Polyurethane and Related Foams, Chapter three: Fundamentals, p. 43, pp. 1-3.
Merritt, Protection against Hazards, Section 3.30-3.31, 1994, pp. 1-4.
Schultz, Fire and Flammability Handbook, p. 363, 1985, pp. 1-3.
Netherlands Standards Institute, Fire resistance tests for non-loadbearing elements—Part 1: Walls, Aug. 1999, NEN-EN 1364-1, pp. 1-32.
Troitzsch, Jurgen, International plastics flammability handbook, 1983, pp. 1-2.
Polytite Manufacturing Company, Polytite “R” Colorized Joint Sealant, Jan. 7, 1998, pp. 1-2.
Quelfire, Passive Fire Protection Products, catalog, pp. 1-68.
Quelfire, Intufoam, pp. 1-4.
Saint-Gobain Performance Plastics, Norseal V740, labeled Copyright 2001, pp. 1-2.
Sandell Manufacturing Company, Inc., Polytite Sealant and Construction Gasket, p. 1.
Schul International Corporation, Hydrostop, Expansion Joint System, Jan. 17, 2001, pp. 1-2.
Illbruck, Sealtite-willseal, Plant Bodenwohr, pp. 1-17.
Schul International Co., LLC., Sealtite “B” Type II, Part of the S3 Sealant System, Jan. 5, 2006, pp. 1-2.
Sealtite-willseal Joint Sealants, Equivalency Chart for Joint Sealants, p. 1.
Schul International Co., LLC., Material Safety Data Sheet, Seismic Sealtite, Revised date Oct. 23, 2002, pp. 1-3.
Sealtite-Willseal, Installation Procedures for Seismic Sealtite/250C Joint Sealant, Mar. 4, 2001, p. 1.
Tremco Illbruck Ltd., Technical Data Sheet, ALFASIL FR, Issue 2, pp. 1-2.
Product Data Sheet, Art. No. 4.22.01 Compriband MPA, pp. 1-2.
UL Online Certifications Directory, XHBN.GuideInfo, Joint Systems, last updated Sep. 21, 2013, pp. 1-4.
UL 1715 Fire Test of Interior Finish Material, p. 1.
Williams Products, Inc., Williams Everlastic 1715 Fire Classified Closures Tech Data, Oct. 2005, p. 1.
Williams Products, Inc., Everlastic Fire Classifed Closures 1715, pp. 1-3.
Williams Products, Inc., Installation for partion closures, p. 1.
Will-Seal Construction Foams, Will-seal is Tested to Perform, p. 1.
Will-Seal Precompressed Foam Sealant, How Will-Seal Works, p. 1.
Illbruck, Will-Seal, Basis of Acceptance, 3.0 Construction Requirements, Precompressed Foam Sealants, Section 07915, pp. 1-8.
Emseal Joint Systems, Ltd., Emseal Colorseal Tech Data, Jul. 2009, p. 1-2.
Emseal Joint Systems, Ltd., Emseal Colorseal Tech Data, Mar. 2011, p. 1-2.
Emseal Joint Systems, Ltd., Emseal Horizontal Colorseal Tech Data, Aug. 2014, p. 1-2.
Emseal Joint Systems, Ltd., Emseal Seismic Colorseal Tech Data, Oct. 2009, pp. 1-2.
Emseal Joint Systems, Ltd., Emseal Seismic Colorseal Tech Data, Jun. 2010, pp. 1-2.
Emseal Joint Systems, Ltd., Emseal MST, Multi-Use Sealant Tape, Sep. 2008, pp. 1-2.
Emseal Joint Systems, Ltd., Emseal MST, Multi-Use Sealant Tape, Oct. 2013, pp. 1-2.
Emseal Joint Systems, Ltd., Emshield DFR2 System, Tech Data, Sep. 2014, pp. 1-4.
Emseal Joint Systems, Ltd., Emshield DFR2, last modified Sep. 19, 2014, pp. 1-4.
Emseal Joint Systems, Ltd., Emshield DFR3, last modified Sep. 4, 2014, pp. 1-5.
Emseal Joint Systems, Ltd., Emshield WFR2 and WFR3, last modified Sep. 3, 2014, pp. 1-5.
Emseal Joint Systems, Ltd., Colorseal-on-a-reel, last modified Nov. 10, 2014, pp. 1-3.
Emseal Joint Systems, Ltd., Colorseal, last modified Oct. 9, 2014, pp. 1-3.
Emseal GreyFlex Expanding Foam Sealant for Facades, p. 1.
Emseal Joint Systems, Ltd., QuietJoint, Tech Data, Nov. 2012, pp. 1-2.
Emseal Corporation Ltd., Material Safety Data Sheet, QuietJoint, MSDS Date May 13, 2014, pp. 1-2.
Emseal Joint Systems, Ltd., QuietJoint CAD Details, last modified Oct. 31, 2014, pp. 1-3.
http://www.emseal.com/products/architectural/QuietJoint/QuietJoint.htm, QuietJoint Mass-Loaded Acoustic Partition Closure, last modified Oct. 9, 2014, pp. 1-4.
http://www.emseal.com/products/architectural/QuietJoint/QuietJoint.htm, QuietJoint Mass-Loaded Acoustic Partition Closure, last modified Jul. 29, 2014, pp. 1-4.
http://www.emseal.com/products/architectural/QuietJoint/QuietJoint.htm, QuietJoint Mass-Loaded Acoustic Partition Closure, No intumescent coating, last modified Sep. 19, 2014, pp. 1-4.
http://williamsproducts.net/wide.html, Everlastic Wide Joint Seal, pp. 1-3.
Baerveldt, Konrad, The Applicator—Dear Tom: Emseal has two EIFS Expansion Joint Answers for you, Jun. 1991, pp. 1-4.
Schul International Co., LLC., Firejoint 2FR-H, Fire Rated Expansion Joint 2 Hour Fire Rated, labeled Copyright 2012, pp. 1-2.
Willseal LLC, Product Data Sheet, Willseal FR-H, Horizontal 2 and 3 hour fire rated seal, labeled Copyright 2013, pp. 1-2.
Schul International Co., LLC., Firejoint 2FR-V, Fire Rated Expansion Joint—2 Hour Fire Rated, labeled Copyright 2012, pp. 1-2.
Willseal LLC, Product Data Sheet, Willseal FR-V, Vertical 2 and 3 hour fire rated seal, labeled Copyright 2013, pp. 1-2.
UL Online Certifications Directory, System No. FF-D-0082, XHBN.FF-D-0082 Joint Systems, Jul. 29, 2013, pp. 1-2.
UL Online Certifications Directory, System No. FF-D-1100, XHBN.FF-D-1100 Joint Systems, Sep. 24, 2012, pp. 1-2.
UL Online Certifications Directory, System No. WW-D-2013, XHBN.WW-D-2013 Joint Systems, May 27, 2004, pp. 1-2.
UL Online Certifications Directory, System No. FF-D-2008, XHBN.FF-D-2008 Joint Systems, Mar. 31, 2003, pp. 1-2.
UL Online Certifications Directory, System No. FF-D-1053, XHBN.FF-D-1053 Joint Systems, Nov. 28, 2007, pp. 1-2.
UL Online Certifications Directory, System No. WW-D-3005, XHBN.WW-D-3005 Joint Systems, Nov. 15, 1999, pp. 1-2.
UL Online Certifications Directory, XHHW.R8196 Fill, Void or Cavity Materials, labeled Copyright 2014, pp. 1.
UL Online Certifications Directory, XHBNFF-D-0075 Joint Systems, Apr. 30, 2010, pp. 1-2.
UL Online Certifications Directory, System No. FF-D-0075, XHBN.FF-D-0075 Joint Systems, Aug. 21, 2014, pp. 1-2.
UL Online Certifications Directory, XHBN.FF-D-0094 Joint Systems, Sep. 11, 2013, pp. 1-2.
UL Online Certifications Directory, XHBN.FF-D-1121 Joint Systems, Apr. 25, 2013, pp. 1-2.
UL Online Certifications Directory, System No. FF-D-2006, XHBN.FF-D-2006 Joint Systems, Jun. 28, 2002, pp. 1-3.
Underwriters Laboratories (UK) Ltd., Assessment Report, Project No. 12CA37234, Aug. 24, 2012, pp. 1-20.
Emseal Joint Systems, Ltd., 2 inch Quietjoint—concrete to concrete, Part No. SHH—2—WW—CONC, Mar. 25, 2014, p. 1.
Emseal Joint Systems, Ltd., 2 inch Quietjoint—gypsum to gypsum, Part No. SHH—2—WW—GYP, Mar. 25, 2014, p. 1.
Emseal Joint Systems, Ltd., 2 inch Quietjoint at concrete wall to window, Part No. SHG—2—WW—CONC—TO—GLASS—INSIDE—CORNER, Mar. 25, 2014, p. 1.
Emseal Joint Systems, Ltd., 2 inch Quietjoint at Gypsum Wall to Window, Part No. SHG—2—WW—GL—INSIDE—CORNER—GYP, Mar. 25, 2014, p. 1.
Emseal Joint Systems, Ltd., 2 inch Quietjoint—Concrete to Concrete at Head of Wall, Part No. SHH—2—HW—CONC—INSIDE—CORNER, Mar. 25, 2014, p. 1.
Emseal Joint Systems, Ltd., 2 inch Quietjoint—Gypsum to Concrete at Head of Wall, Part No. SHH—HW—GYP—CONC—INSIDE—CORNER, Mar. 25, 2014, p. 1.
Emseal Joint Systems, Ltd., 2 inch Quietjoint at Wall Partition to Window, Part No. SHG—2—WW—GL—INSIDE—CORNER—WALL—PARTITION—WINDOW, Mar. 25, 2014, p. 1.
Emseal Joint Systems, Ltd., Emshield DFR3 MSDS, last modified Sep. 3, 2014, p. 1.
https://www.google.com/search, seismic colorseal 5130176 “5,130,176”, printed on Oct. 12, 2014, p. 1.
http://www.amazon.com, search for emseal 8,739,495, 1-16 of 624 results for emseal 8,739,495, printed on Oct. 13, 2014, pp. 1-5.
http://www.amazon.com/QuietJoint-Acoustic-Partition-Closure-2-sided, QuietJoint Acoustic Partition Closure for 3 inch (75mm) Joint, 10 foot (3m), printed on Sep. 29, 2014, pp. 1-3.
http://www.amazon.com/QuietJoint-Acoustic-Partition-Closure-3-sided, QuietJoint Acoustic Partition Closure for 5/8 inch (15 mm) Joint, 10 foot (3m), printed on Oct. 13, 2014, pp. 1-3.
Illbruck, Illmod 2d, Product Information, 2002, pp. 1-2.
Emseal Joint Systems, Ltd., Laminations as a Build Choice—The Anatomy of Quality in Pre-Compressed Foam Sealants, last modified Jul. 30, 2013, pp. 1-3.
DIN 4102-1, Fire Behaviour of Building Materials and Elements, Part 1, May 1998, pp. 1-33.
DIN 4102-2, Fire Behaviour of Building Materials and Building Components, Part 2, Sep. 1977, pp. 1-11.
DIN 4102-15, Fire Behaviour of Building Materials and Elements, Part 15, May 1990, pp. 1- 15.
DIN 18542, Impregnated Cellular Plastics Strips for Sealing External Joints, Jan. 1999, pp. 1-10.
ASTM International, Standard Test Method for Surface Burning Characteristics of Building Materials, Designation: E-84-04, Feb. 2004, pp. 1-19.
Illbruck Bau-Technik GmbH, Illbruck Illmod 600, Jan. 2002, pp. 1-2.
Illbruck Sealant Systems, Inc., Illbruck Willseal 600, 2001, pp. 1-2.
Iso-Chemie GmbH., Iso-Bloco 600, pp. 1-2.
Iso-Chemie GmbH., Iso-Flame Kombi F 120, pp. 1-2.
Schul International, Co., LLC., Seismic Sealtite II, Colorized, Pre-compressed Joint Sealant for Vertical Applications, Technical Data, 2006, pp. 1-2.
Underwriters Laboratories, Inc., Standard for Safety, Tests for Fire Resistance of Building Joint Systems, UL-2079, Fourth Edition, Dated Oct. 21, 2004, Revisions through and including Jun. 30, 2008, pp. 1-38.
MM Systems Corp., MM DSS Expansion Joint, Dual Seal Self-Expanding Seismic System, Feb. 18, 2008, pp. 1-2.
Order Granting Request for Ex Parte Reexamination for U.S. Pat. No. 8,739,495, Dec. 12, 2014, Control No. 90/013,395, pp. 1-19.
Emseal Joint Systems, Ltd., Fire-Rating of Emseal 20H System, Feb. 17, 1993, p. 1.
C:\WP\SLSMTG\20HDBJ.TBL Apr. 18, 1993, 20-H—Description, Benefits, Justification, p. 1.
Order Granting Request for Ex Parte Reexamination for U.S. Pat. No. 8,813,449, Feb. 11, 2015, Control No. 90/013,428, pp. 1-19.
Emseal Joint Systems, Lt., Preformed Sealants and Expansion Joint Systems, May 2002, pp. 1-4.
Emseal Joint System, Ltd., Tech Data DSH System, Jan. 2000, pp. 1-2.
Emseal Joint Systems, Ltd., Emseal CAD.dwg, Oct. 2000, 7 pages.
Emseal Joint Systems, Ltd., Installation Instructions: AST & IST Sealant Tapes, Dec. 1998, p. 1.
Emseal Joint Systems, Ltd., Emshield WFR2, Fire-Rated Expansion Joint Product Data, Jun. 2009, pp. 1-2.
Emseal Joint System, Ltd., ½ Inch Colorseal, Binary Seal System Components, document dated Nov. 24, 1992, p. 1.
Lester Hensley, “Where's the Beef in Joint Sealants? Hybrids Hold the Key,” Applicator, vol. 23, No. 2, Spring 2001, pp. 1-5.
Emseal Joint Systems, LTD, Seismic Colorseal, Tech Data, Apr. 1998, pp. 1-2.
Schul International Co., LLC, Sealtite VP Premium Quality Pre-compressed Joint Sealant for Weather tight, Vapor Permeable, Vertical Applications, Technical Data, dated Oct. 28, 2005, pp. 1-2.
Iso-Chemie GmbH, Product Data Sheet, Iso-Flame Kombi F 120, pp. 1-2.
Schul International Co., LLC, Seismic Sealtite II, Colorized, Pre-compressed Joint Sealant for Vertical Applications, Technical Data, dated Sep. 20, 2006, pp. 1-2.
Dow Corning Corporation, Dow Corning 790 Silicone Building Sealant, copyright date 1995, 1999, pp. 1-5.
Emseal Joint Systems, LTD, Horizontal Colorseal, Tech Data, Nov. 2008, pp. 1-2.
Emseal Joint Systems, LTD, Seismic Colorseal, Tech Data, Jul. 2009, pp. 1-2.
Emseal Joint Systems, LTD, Horizontal Colorseal, Tech Data, Jul. 2009, pp. 1-2.
Emseal Joint Systems, LTD, Horizontal Colorseal, Tech Data, Jun. 2010, pp. 1-2.
Schul International Co., LLC, Sealtite “B”, Pre-compressed Joint Sealant, Premium Quality for Secondary Sealant Applications, Technical Data, dated Oct. 28, 2005, pp. 1-2.
Iso-Chemie GmbH, Iso-Flame Kombi F 120, 2006, German, pp. 1-2.
Iso-Chemie GmbH, Order Confirmation Sheet, dated Apr. 26, 2007, pp. 1-3.
Iso-Flame Kombi F 120, Net Price List, Schul International Co., dated Jun. 27, 2006, pp. 1.
Tremco Illbruck Limited, Compriband Super FR, Fire Rated Acrylic Impregnated Foam Sealant Strip, Issue 3, dated Apr. 12, 2007, pp. 1-2.
Figure 1: The BS 476; Part 20 & EN 1363-1 time temperature curve, pp. 1.
Schul International Co., LLC, Sealtite, Premium Quality Pre-compressed Joint Sealant for Waterproof Vertical Applications, pp. 1.
Schul International Co., LLC, Sealtite 50N, Premium Quality Pre-compressed Joint Sealant for Horizontal Applications, dated Oct. 28, 2005, pp. 1-2.
Will-Seal, Signed, Sealed & Delivered, pp. 1.
Illbruck/USA, Will-Seal 150 Impregnanted Precompressed Expanding Foam Sealant Tape, Spec-Data Sheet, Joint Sealers, dated Nov. 1987, pp. 1-2.
Illbruck, Inc., Will-Seal 250 Impregnanted Precompressed Expanding Foam Sealant Tape, Spec-Data Sheet, Joint Sealers, dated Aug. 1989, pp. 1-2.
U.S. Department of Labor, Material Safety Data Sheet, Identity: Willseal 150/250 and/or E.P.S., date prepared Jul. 21, 1986, pp. 1-2.
Illbruck, TechSpec Division Facade & Roofing Solutions, ALFAS compriband, Mar. 2005, pp. 1-10.
Salamander Industrial Products, Inc., blocoband HF—interior sealant, pp. 1.
Dow Corning Corporation, Dow Corning 790 Silicone Building Sealant, copyright 2000-2005, pp. 1-2.
Grace Fireproofing Products. Monokote Z-146T. 2007, pp. 1-2.
Polyurethane Foam Field Joint Infill Systems, Sep. 23, 2007 (via Snagit), PIH, pp. 1-5.
International Search Report and Written Opinion for PCT/US2014/032212, Aug. 25, 2014, pp. 1-13.
Grunau Illertissen GmbH, Fir-A-Flex, Fire Protection for Linear Gaps in Walls and Ceilings, dated Aug. 1996, pp. 1-4.
UL Standard for Safety for Rests for Fire Resistance of Building Joint Systems, UL 2079, Underwriters Laboratories Inc. (UL); Fourth Edition; dated Oct. 21. 2004.
Emseal “Pre-cured-Caulk-and-Backerblock” Not New, Not Equal to Emseal's Colorseal, Jul. 19, 2012.
Emseal Drawing Part No. 010-0-00-00 dated Dec. 6, 2005.
Emseal Horizontal Colorseal Tech Data, dated Jun. 1997.
Emseal Joint Systems, Drawing SJS-100-CHT-N, Nov. 20, 2007.
Emseal Technical Bulletin, Benchmarks of Performance for High-Movement Acrylic-Impregnated, Precompressed, Foam Sealants when Considering Substitutions, Jul. 3, 2012.
Emseal, Colorseal & Seismic Colorseal, May 1997, Install Data Colorseal & Seismic Colorseal, p. 1-2.
Emseal, Colorseal, Jan. 2000, Colorseal TechData, p. 1-2.
Emseal, Is there a gap in your air barrier wall design?, Jul. 19, 2012.
Manfredi, L. “Thermal Degradation and Fire Resistance of Unsaturated Polyester, Modified Acrylic Resins and their Composites with Natural Fibres”; Science Direct, 2005.
Stein et al., “Chlorinated Paraffins as Effective Low Cost Flame Retardants for Polyethylene”.
DIN 4102, Part 2, Fire Behaviour of Building Materials and Building Components, Sep. 1977.
Emseal Joint Systems, Ltd., Material Safety Data Sheet for AST-HI-Acrylic, pp. 1-2.
Iso-Chemie, GmbH., Iso-Bloco 600, pp. 1-2.
Iso-Chemie, GmbH., Iso-Flame Kombi F 120, pp. 1-2., 2006.
Underwriters Laboratories Inc., UL Standard for Safety for Fire Tests of Building Construction and Materials, UL 263, Thirteenth Edition, Apr. 4, 2003, pp. 1-40.
Schul International Co., LLC., Sealtite VP (600) Technical Data, Premium Quality Pre-compressed Joint Sealant for Weather tight, Vapor Permeable, Vertical Applications, labeled Copyright 1997-2002, pp. 1-2.
Schul International Co., LLC., Seismic Sealtite, Technical Data, Colorized, Pre-compressed Joint Sealant for Vertical Applications, 2005, pp. 1-2.
Schul International Co., LLC., Sealtite 50N, Technical Data, Premium Quality Pre-compressed Joint Sealant for Horizontal Applications, 1997-2002, pp. 1-2.
Schul International Co., LLC., HydroStop, Expansion Joint System, 2005, pp. 1-2.
Schul International Co., LL., Sealtite, The Most Complete Line of Pre-compressed Sealants, web archive.org, wayback machine, printed 2014, pp. 1-3.
Sealant, Waterproofing & Restoration Institute, Sealants: The Professional Guide, labeled Copyright 1995, Chapter II—Sealants, p. 26, pp. 1-3.
Tremco Illbruck, Cocoband 6069, 2007, p. 1 with English translation.
Tremco Illbruck, Alfacryl FR Intumescent Acrylic, Fire Rated, Emulsion Acrylic, Intumescent Sealant, 2007, pp. 1-2.
Tremco Illbruck, Alfasil FR, Fire Rated, Low Modulus, Neutral Cure Silicone Sealant, 2007, pp. 1-2.
Tremco Illbruck, Compriband 600, Impregnated Joint Sealing Tape, 2007, pp. 1-2.
Tremco Illbruck, Compriband Super FR, Fire Rated Acrylic Impregnated Foam Sealant Strip, 2007, pp. 1-2.
Tremco Illbruck, Ltd., Technical Data Sheet, Compriband Super FR, Issue 2, Oct. 18, 10, 2004, pp. 1-4.
Tremco Illbruck, Ltd., Technical Data Sheet, Compriband Super, Issue 1, Sep. 29, 2004, pp. 1-3.
Illbruck, TechSpec Division Facade & Roofing Solutions, Mar. 2005, pp. 1-10.
Tremco Illbruck, Alfas Bond FR, 2007, pp. 1-2.
Tremco Illbruck, Illmod 600, Jun. 2006, pp. 1-2.
Tremco Illbruck, The Specification Product Range, 2007, pp. 1-36.
Tremco Illbruck, Webbflex B1 PU Foam, Fire Rated Expanding Polyurethane Foam, pp. 1-2.
UL Online Certifications Directory, System No. WW-S-0007, XHBN.WW-S-0007, Joint Systems, Dec. 5, 1997, pp. 1-3.
UL Online Certifications Directory, BXUV.GuideInfo, Fire-Resistance Ratings ANSI/UL 263, last updated Jun. 26, 2014, pp. 1-24.
Frangi et al., German language, Zum Brandverhalten von Holzdecken aus Hohlkasten-elementen, Institut fur Baustatik und Konstrucktion, Jun. 1999, pp. 1-130.
ASTM International, Designation: E 1966-01, Standard Test Method for Fire-Resistive Joint Systems, pp. 1-15.
www.businesswire.com, Celanese Introduces Mowilith Nano Technology Platform for the Next General of Exterior Coatings, May 8, 2007, Nurnberg, Germany, pp. 1-3.
Illbruck, Willseal firestop applied in the joints of the new Pfalz Theater in Kaiserlautern, pp. 1-2.
Dayton Superior Chemical & Cement Products, Marketing Update, Fall 2005, pp. 1-2.
Dow Corning Case Study EU Parliament, Brussels, p. 1.
Dow Corning Silicone Sealants, Dow Corning 790 Silicone Building Sealant, Ultra-low-modulus sealant for new and remedial construction joint sealing applications, labeled Copyright 2000-2005, pp. 1-2.
Dow Corning, John D. Farrell Letter to Emseal USA, Wilford Brewer, reference: Emseal Greyflex, Oct. 4, 1984, p. 1.
Dow Corning letter to Customer, Reference: Sealant Certification for Dow Corning 790 Silicone Building Sealant, p. 1.
Emseal Joint Systems, Ltd., Greyflex & Backerseal Wet Sealant Compatibility Chart, Test Data, Sep. 1991, p. 1.
Emseal Joint Systems, Emseal preformed expanding foam sealant, 079201MAN, pp. 1-2.
Colorseal by Emseal Specification Sections 07 90 00/ 07 95 00, pp. 1-4.
Emseal Joint Systems, Ltd., Emseal Color-seal, Tech Data, pp. 1-2.
Emseal Joint Systems, Ltd., Emseal Color-Seal, p. 1.
www.emseal.com/products, Horizontal Colorseal by Emseal Expansion Joints and Pre-Compressed Sealants, last modified Sep. 19, 2014.
Horizontal Colorseal by Emseal, Specification Sections 07 90 00/ 07 95 00, pp. 1-4.
Emseal Material Safety Data Sheet, Acrylic Loghome Tape, pp. 1-2.
Seismic Colorseal by Emseal Specification Sections 07 90 00/ 07 95 00, pp. 1-4.
Emseal Joint Systems, Ltd., Summary Guide Specification, p. 1.
Emseal Joint Systems, The complete package for all joint requirements, 1988, pp. 1-6.
Envirograf, Cavity Barriers Fire Seal Range, Technical Data, pp. 1-32.
web.archive.org, www.envirograf.com, Product 40: Intumescent-Coated Fireproof Sponge (patented), labeled Copyright 2007, pp. 1-2.
web.archive.org, www.envirograf.com, Product 5: Intumescent-Caoted Non-Fibrous Slabs (patented), labeled Copyright Apr. 10, 2007, p. 1.
afk Yapi Elemaniari, Hannoband-BSB Bg1, Fire prevention tape Flame resistand pursuant to DIN 4102 T1, Technical Data Sheet, pp. 1-4.
Hanno Dicht-und Dammsysteme, Hannoband-BG1, High Performance am Bau, German language, 2000, pp. 1-6.
Illbruck, willseal firestop fur die Brandschutz-Fuge, Information,German language, pp. 1-2.
Illbruck Sealant Systems, Cocoband 6069, Productinfomatie, Dutch language, 2003, pp. 1-2.
Illbruck Sealant Systems, Inc., Sealant Products and Systems, 2002, pp. 1-12.
Illbruck, Will-Seal, 3.0 Construction Requirements, pp. 1-8.
Sealtite Joint Sealants, What is the material used in the U-Channel? pp. 1-4.
Decision Granting Ex Parte Reexamination on Control No. 90/013,473, May 19, 2015, 13 pages.
U.S. Appl. No. 60/953,703, filed Aug. 3, 2007 underlying U.S. Pat. No. 8,397,453, 24 pages.
Comment regarding previously submitted DE 102005054375 A1 and Machine English Translation thereof which may contain a machine translation error, and Verified English Translation submitted herewith as replacement; 2015; 1 page.
List of several Emseal pending patent applications and patents, and Examiners assigned thereto; Apr. 2015; 2 pages.
Notification of Transmittal of International Preliminary Report on Patentability in PCT/US14/32212; Mar. 13, 2015; 4 pages.
Snapshot of Office Actions issued in U.S. Appl. No. 13/729,500; printed in 2015; 35 pages.
Snapshot of Office Actions issued in U.S. Appl. No. 14/278,210; printed in 2015; 27 pages.
Snapshot of Office Actions issued in U.S. Appl. No. 12/635,062; printed in 2015; 88 pages.
Snapshot of Office Actions issued in U.S. Appl. No. 13/731,327; printed in 2015; 42 pages.
Snapshot of Office Action issued in U.S. Appl. No. 14/455,398; printed in 2015; 9 pages.
Snapshot of Office Actions issued in U.S. Appl. No. 13/652,021; printed in 2015; 34 pages.
Snapshot of Office Actions issued in U.S. Appl. No. 14/080,960; printed in 2015; 10 pages.
Snapshot of Office Actions issued in U.S. Appl. No. 14/084,930; printed in 2015; 7 pages.
Snapshot of Office Action issued in U.S. Appl. No. 14/229,463; printed in 2015; 20 pages.
Snapshot of Office Action issued in U.S. Appl. No. 14/455,403; printed in 2015; 12 pages.
Snapshot of Office Action issued in U.S. Appl. No. 14/211,694; printed in 2015; 6 pages.
Snapshot of Office Action issued in U.S. Appl. No. 14/540,514; printed in 2015; 21 pages.
Report on the Filing or Determination of an Action Regarding a Patent or Trademark, Filed Aug. 13, 2014 regarding U.S. Pat. No. 8,739,495, 1 pg.
Report on the Filing or Determination of an Action Regarding a Patent or Trademark, Filed Aug. 13, 2014 regardng U.S. Pat. No. 8,739,495, 1 pg.
Defendants' Answer, Counterclaims, Affirmative Defenses, and Jury Demand, Doc. 11, Filed Oct. 3, 2014, 20 pages.
Defendants' Objection to Plaintiff's Partial Motion to Dismiss, Doc. 24, Filed Nov. 10, 2014, pp. 1-3.
Defendants' Objection to Plaintiff's Motion to Strike Defendants' Tenth Affirmative Defense, Doc. 25, Filed Nov. 12, 2014, pp. 1-3.
Defendants' Answer, Counterclaims, and Affirmative Defenses to Plaintiff's Consolidated Complaint, Doc. 38, Filed Dec. 9, 2014, pp. 1-48.
Defendants' Objection to Plaintiff's Partial Motion to Dismiss Count III of Defendants' Counterclaim, Doc. 50, Filed Jan. 16, 2015, pp. 1-15.
Defendants' Surreply to Plaintiff's Partial Motion to Dismiss Count II of Defendants' Counterclaims., Doc. 55, Filed Feb. 13, 2015, pp. 1-6.
Joint Claim Construction and Prehearing Statement, Doc. 56, Filed Mar. 3, 2015, pp. 1-9.
Lester Hensley, “Where's the Beef in Joint Sealants? Hybrids Hold the Key, AWCI's Construction Dimensions,”, Jan. 2006, 3 pgs.
IsoChemie, Iso-Bloco 600, Correspondence of Jun. 8, 2006, 13 pages.
Shul International Company, Invoice #18925 to P. J. Spillane, Sep. 14, 2007, 5 pages.
Illbruck Inc., Tested Physical Properties, 1994, 1 page.
Andrea Frangi, Zum Brandverhalten von Holzdecken aus Hohlkasten-elementen; Jun. 1999; 125 pages (English Translation).
Defendants' Joint First Amended Preliminary Invalidity Contentions received at MKG Mar. 17, 2015, 25 pgs. total.
Defendants' Joint First Amended Preliminary Invalidity Contentions received at MKG Mar. 17, 2015, Appendix A, 6 pgs.
Defendants' Joint First Amended Preliminary Invalidity Contentions received at MKG Mar. 17, 2015, Appendix B, 270 pgs.
Defendants' Joint First Amended Preliminary Invalidity Contentions received at MKG Mar. 17, 2015, Appendix B, 376 pgs.
Defendants' Joint First Amended Preliminary Invalidity Contentions received at MKG Mar. 17, 2015, Appendix C, 125 pgs.
Defendants' Joint First Amended Preliminary Invalidity Contentions received at MKG Mar. 17, 2015, Appendix D, 4 pgs.
IBMB, Test Report No. 3263/5362, Jul. 18, 2002, English Translation, 14 pgs.
IBMB, Test Report No. 3263/5362, Jul. 18, 2002, German, 13 pgs.
IBMB, Test Certificate No. 3002/2719, Mar. 22, 2000, English Translation, 14 pgs.
IBMB, Test Certificate No. P-3568/2560-MPA BS, Sep. 30, 2000, English Translation, 22 pgs.
IBMB, Test Certificate No. P-3568/2560-MPA BS, Sep. 30, 2000, German, 14 pgs.
IFT Rosenheim, Evidence of Performance Test Report 105 324691/e U, Apr. 19, 2006, 8 pgs.
Watson Bowman Acme, Wabo Seismic Parking Deck Exp. Joints, Sales Drawing, Feb. 6, 1988, 3 pgs.
Emseal Corp., Horizontal Colorseal Data Sheet, Jun. 1997, 3 pgs.
Emseal Corp., Horizontal Colorseal Beneath Coverplate Product Design Drawing, Oct. 2000, 1 pg.
Emseal Corp., 20H System Data Sheet, Sep. 1996, pp. 1-2.
Watson Bowman Acme, Product Catalog, Feb. 1993, pp. 1-8.
Emseal Joint Systems, Watertight by Design, Buyline 0339, Copyrighted 1996 and marked Jan. 1999, 8 pgs.
Dow Corning, Down Corning 790 Silicone Building Sealant Data Sheet, Copyrighted 1995, 1999, 8 pgs.
Emseal Joint Systems, Sealing Joints in the Building Envelope: Principles, Products & Practices, Copyright date of 1999, 39 pgs.
Emseal Joint Systems, Product Catalog, Copyright date of 1987, 16 pgs.
Emseal Joint Systems, 20H-Compression Seal Comparison, Apr. 12, 1994, 1 pg.
Emseal Joint Systems, Ltd., Emseal Joint Systems, Marketing Brochure, Jan. 1997, 8 pgs.
City of San Diego, CWP Guidelines, Feb. 1992, pp. 1-13.
www.stifirestop.com, Specified Technologies, Inc., Product Data Sheet, Series ES Elastomeric Sealant, Copyright 2004, pp. 1-4.
www.stifirestop.com, Specified Technologies, Inc., Product Data Sheet, Pensil PEN300 Silicone Sealant, Copyright 2004, pp. 1-4.
Snapshot of Office Action issued in U.S. Appl. No. 14/540,514; printed in 2015, 22 pages.
Snapshot of Office Action issued in U.S. Appl. No. 90/013,395; printed in 2015, 27 pages.
Snapshot of Office Action issued in U.S. Appl. No. 90/013,428; printed in 2015, 14 pages.
Snapshot of Notice of Allowance issued in U.S. Appl. No. 14/080,960; printed in 2015, 5 pages.
DIN 4102-16, Fire Behaviour of Building Materials and Elements, Part 16, May 1998, pp. 1-12.
Decision Granting Ex Parte Reexamination on Control No. 90/013,565; Sep. 29, 2015, 19 pages.
Snapshot of Notice of Allowance for U.S. Appl. No. 12/635,062; Oct. 9, 2015, 5 pages.
Snapshot of Office Action for 90/013,511; Oct. 23, 2015, 28 pages.
Snapshot of Final Office Action for 90/013,473; Nov. 6, 2015, 38 pages.
ACI 504-R, Guide to Sealing Joint in Concrete Structures, ACI Committee 504, 1997, 44 pages.
Defendants' Joint Second Amended Preliminary Invalidity Contentions received at MKG Jun. 30, 2015, Appendix A, 7 pgs.
Defendants' Joint Second Amended Preliminary Invalidity Contentions received at MKG Jun. 30, 2015, Appendix B-1, 346 pgs.
Defendants' Joint Second Amended Preliminary Invalidity Contentions received at MKG Jun. 30, 2015, Appendix B-2, 314 pgs.
Defendants' Joint Second Amended Preliminary Invalidity Contentions received at MKG Jun. 30, 2015, Appendix C, 159 pgs.
Defendants' Joint Second Amended Preliminary Invalidity Contentions received at MKG Jun. 30, 2015, Appendix D, 5 pgs.
Defendants' Joint Second Amended Preliminary Invalidity Contentions received at MKG Jun. 30, 2015, 1:14-cv-00358-SM, 27 pgs. total.
Snapshot of Office Action issued in U.S. Appl. No. 90/013,395; printed in 2015, 48 pages.
Snapshot of Office Action issued in U.S. Appl. No. 90/013,428; printed in 2015, 23 pages.
Snapshot of Office Action issued in U.S. Appl. No. 90/013,472; printed in 2015, 22 pages.
Snapshot of Office Action issued in U.S. Appl. No. 90/013,473; printed in 2015, 22 pages.
3M; Fire Barrier CP 25WB+Caulk, Product Data Sheet, Copyright 3M 2001, 4 pages.
Tremco Incorporated, “Firestop Submittal” Data Sheet collections, Certificate of Conformance dated Nov. 2004, 47 pages; publication date unknown from document.
Snapshot of Notice of Intent to Issue Ex Patent Reexamination Certificate for 90/013,472; Feb. 19, 2016, 8 pages.
Emseal, Bejs System—Bridge Expansion Joint System, May 26, 2010, 5 pages.
Emseal, Emseal Acrylic Log Home Tape Installation Instructions, Jun. 2011, 1 page.
Snapshot of Notice of Allowance for 13/652,021; Jan. 8, 2016, 7 pages.
Snapshot of Non-Final Office Action for 14/084,930; Jan. 12, 2016, 11 pages.
Snapshot of Office Action in Ex Parte Reexamination for 90/013,395; Jan. 20, 2016, 26 pages.
Snapshot of Examinees Interview Summary for 90/013,511; Aug. 26, 2016, 9 pages.
Snapshot of Advisory Action for 90/013,395; Sep. 14, 2016, 16 pages.
Snapshot of Intent to Issue Ex Parte Reexamination Certificate for 90/013,511; Sep. 21, 2016, 9 pages.
Snapshot of Intent to Issue Ex Parte Reexamination Certificate for 90/013,395; Oct. 6, 2016, 9 pages.
Snapshot of Intent to Issue Ex Parte Reexamination Certificate for 90/013,565; Oct. 7, 2016, 9 pages.
Dow Corning 890 Self-Leveling Silicone Joint Sealant; Dow Corning Corporation; 1996, 1999.
Snapshot of Advisory Action for 90/013,472-90/013,473; Dec. 28, 2015, 13 pages.
Snapshot of Non-Final Office Action for 90/013,428; Jan. 5, 2016, 14 pages.
Snapshot of Non-Final Office Action for 90/013,565; Jan. 8, 2016, 20 pages.
Snapshot of Final Office Action for 14/540,514; Mar. 31, 2016, 18 pages.
Emseal Corporation, Seismic Colorseal by Emseal, “Last Modified”: Aug. 21, 2007, 4 pages.
Emseal Joint Systems, Ltd., Backerseal (Greyflex), Sep. 2001, 2 pages.
Emseal Joint Systems, Ltd., Install Data—Horizontal Colorseal—With Expoxy Adhesive, Jun. 2006, 2 pages.
Snapshot of Office Action for 90/013,395; Apr. 7, 2016, 37 pages.
Snapshot of Office Action for 90/013,565; Apr. 8, 2016, 48 pages.
Emseal Joint Systems, Ltd., BEJS System Tech Data, Mar. 2009, 2 pages.
Emseal's new Universal-90 expansion joints, Buildingtalk, Pro-Talk Ltd., Mar. 27, 2009, 2 pages.
Emseal Joint Systems, Ltd., Emseal Emshield DFR2 System DFR3 System Tech Data, May 2010, 4 pages.
Emseal Seismic Colorseal, Aug. 21, 2007, 4 pages.
Emseal Joint Systems, Ltd., Emseal New Universal 90's Watertight, Factory Fabricated Upturn/Downturn Transition Pieces for Ensuring Continuity of Seal, Aug. 4, 2009, 4 pages.
Snapshot of Office Action for 90/013,428; May 6, 2016, 22 pages.
Snapshot of Office Action for 14/950,923; May 6, 2016, 13 pages.
Snapshot of Office Action for 14/730,896; May 9, 2016, 18 pages.
Snapshot of Advisory Action for 90/013,511; May 9, 2016, 12 pages.
Snapshot of Ex Parte Reexamination Certificate No. U.S. Pat. No. 6,532,708C2 for 90/013,683; Jun. 7, 2016, 2 pages.
Snapshot of Office Action for 14/278,210; May 19, 2016, 12 pages.
Snapshot of Office Action for 14/511,394; May 13, 2016, 6 pages.
Snapshot of Advisory Action for 90/013,395; May 20, 2016, 4 pages.
Snapshot of Advisory Action for 90/013,565; Jul. 19, 2016, 5 pages.
Mercury et al., “On the Decomposition of Synthetic Gibbsite Studied by Neutron Thermodiffractometry”, J. Am. Ceram, Soc. 89, (2006), pp. 3728-3733.
Brydon et al., “The Nature of Aluminum Hydroxide-Montmorillonite Complexes”, The American Minerologist, vol. 51, May-Jun., 1966, pp. 875-889.
Huber, Alumina Trihydrate (ATH), A Versatile Pigment for Coatings, Inks, Adhesives, Caulks and Sealants Applications, Dec. 2005, 5 pgs.
3.3.3.8 Thermal Stability/Loss on Ignition/Endotheric Heat, Figure 3.9, 1 pg.
Snapshot of Advisory Action for 90/013,428; Sep. 8, 2016, 13 pages.
Snapshot of Ex Parte Reexamination Certificate for 90/013,428; Nov. 23, 2016, 3 pages.
Snapshot of Notice of Allowance for 14/540,514; Nov. 25, 2016, 4 pages.
Snapshot of Office Action for 14/278,210; Nov. 30, 2016, 12 pages.
Snapshot of Non-Final Office Action for 13/731,327; Mar. 18, 2016, 27 pages.
Snapshot of Final Office Action for 14/211694; Mar. 21, 2016, 16 pages.
Snapshot of Final Office Action for 14/455,398; Mar. 29, 2016, 12 pages.
Snapshot of Ex Parte Reexamination Certificate No. U.S. Pat. No. 6,532,708C1 for 90/013,472; Mar. 23, 2016, 3 pages.
Snapshot of Intent to Issue Ex Parte Reexamination Certificate for 90/013,428; Oct. 31, 2016, 7 pages.
Snapshot of Ex Parte Reexamination Certificate for 90/013,511; Oct. 31, 2016, 3 pages.
Snapshot of Ex Parte Reexamination Certificate for 90/013,565; Nov. 2, 2016, 3 pages.
Snapshot of Final Office Action for 90/013,511; Feb. 26, 2016, 45 pages.
2000 Fire Resistance Directory, p. 1012; publication date unknown from document.
Firestop Submittal Package, Fire Resistive Joint Systems—Waterproofing, SpecSeal Firestop Products, Specified Technologies, Inc, Somerville NJ; p. 1-37, publication date unknown from document.
Specified Technologies Inc., Product Data Sheet, Series ES, Elastomeric Sealant, Copyright 2000, p. 1-4.
Specified Technologies Inc., Product Data Sheet, PEN200 Silicone Foam, Copyright 2003, p. 1-2.
ISO-Chemie GmbH, Schul International Co., Order Confirmation, Doc. No. 135652, Customer No. 38012, Date, Apr. 26, 2007, p. 1-3.
Related Publications (2)
Number Date Country
20140360118 A1 Dec 2014 US
20150259905 A9 Sep 2015 US
Provisional Applications (3)
Number Date Country
61806194 Mar 2013 US
61121590 Dec 2008 US
61116453 Nov 2008 US
Continuation in Parts (4)
Number Date Country
Parent 13731327 Dec 2012 US
Child 14229463 US
Parent 13729500 Dec 2012 US
Child 13731327 US
Parent 12635062 Dec 2009 US
Child 13731327 US
Parent 12622574 Nov 2009 US
Child 13729500 US