Embodiments of the invention are in the field of particle detection and more particularly relate to detection of high vapor pressure particulates present in a high volume gas stream.
Trace chemical detection of explosives, i.e., the art of detecting explosive materials from minute quantities of vapor and/or microscopic particles (hereinafter referred to as “particles”), can be an important aspect of many physical security and contraband detection systems. In many applications, especially applications involving the general public such as airport passenger screening, swipe collection of particles via direct physical contact with the person or object to be screened for explosives is either too physically invasive or time consuming, so it is advantageous to base the collection process on air flows. But the particle material that is collected in such air flows is usually far more dilute than the detector is capable of measuring, and the air flow is often too large to be directly accommodated by the detector. These disparities give rise to preconcentrators, devices which take a trace sample of a material from a large incoming air flow and concentrate the material into a smaller volume before it is introduced into a trace detector.
U.S. Pat. Nos. 5,854,431 and 6,345,545 disclose single stage and multi-staged preconcentrators, respectively, for use in collecting particles from an air stream that passes over a person or object under observation. While these preconcentrators concentrate particles in a high volume gas flow for detection in a low volume gas flow, they are best suited to low vapor pressure (LVP) explosive detection. Recently however, high vapor pressure (HVP) explosives have come into more common use such that both LVP and HVP explosive detection is needed. A means to collect and preconcentrate HVP explosives is therefore desirable.
Apparatus and methods for collecting particles of both HVP and LVP target materials entrained in a large volume sample gas stream are described herein. A cold air supply is provided through large volume active cooling. The cold air supply is mixed with the sample gas stream to reduce the vapor pressure of the particles.
In one embodiment, an apparatus for collecting particles entrained in a sample gas stream includes a first duct to conduct a coolant gas stream at a first volumetric flow rate and a second duct to conduct the sample gas stream at a second volumetric flow rate. A chiller is coupled to the first duct to cool the coolant gas stream to a temperature below that of the sample gas stream. In embodiments, the chiller cools air from ambient conditions to 0-15° C. with the volumetric flow rate of the cold air supply being at least equal to the volumetric flow rate of the sample gas stream.
An adsorption media in fluid communication with each of the sample gas stream and the coolant gas stream concurrently is to collect the particles entrained in the sample gas stream at a temperature below that of the sample gas stream, the adsorption media is further to be in alternate fluid communication with a third duct to transfer the particles from the adsorption media to a carrier gas stream having a third volumetric flow rate toward a downstream particle detector, the third volumetric flow rate being lower than the second volumetric flow rate. In further embodiments an adsorption media is heated in at least two stages, a first of which is below a threshold temperature at which decomposition products of the HVP particle are generated.
Embodiments of the present invention are illustrated by way of example, and not limitation, in the figures of the accompanying drawings in which:
In the following description, numerous details are set forth. It will be apparent, however, to one skilled in the art, that the present invention may be practiced without these specific details. In some instances, well-known methods and devices are shown in block diagram form, rather than in detail, to avoid obscuring the present invention. Reference throughout this specification to “an embodiment” means that a particular feature, structure, function, or characteristic described in connection with the embodiment is included in at least one embodiment of the invention. Thus, the appearances of the phrase “in an embodiment” in various places throughout this specification are not necessarily referring to the same embodiment of the invention. Furthermore, the particular features, structures, functions, or characteristics may be combined in any suitable manner in one or more embodiments. For example, a first embodiment may be combined with a second embodiment anywhere the two embodiments are not mutually exclusive.
Generally, HVP materials targeted for detection have vapor pressures of at least parts per billion (ppb) to parts to thousand. At these vapor pressures the material exits only as a vapor.
While the coolant gas stream may generally comprise any gas, in an embodiment, the coolant gas stream 215 is made up of air taken in at a cold air supply intake 226. The cold air supply intake 226 is preferably disposed a sufficient distance away from the source 207 so that the coolant gas stream is free of particulates targeted for detection by the apparatus 200. Collection of targeted particles at the cold air supply intake 226 is to be avoided to prevent adsorption of such particles onto the chiller's heat transfer surfaces 235 which would then risk cross-contamination of the adsorption media 220 between successive sources 207. At the cold air supply intake 226, air may be at ambient conditions such that for embodiments where the apparatus 200 is in climate controlled environments, the air is at a first temperature, T1, which is approximately 25° C. while relative humidity of the air is between about 20% and about 80%. In certain embodiments, the air may be filtered at the intake 226 and may also be dehumidified. In particular embodiments, clean dry air (CDA) is sourced at the intake 226. In alternative embodiments, the apparatus 200 includes a closed loop cold air supply such that intake 226 is coupled to a point in the cold air supply ducting downstream of the adsorption media 220 for a cold air supply that is at least partially recirculated (not depicted).
As further illustrated in
In embodiments, the sample gas stream 205 has a large volumetric flow rate Q2, ranging from at least 1 liter/second to 1000 liters/sec, or more. The large Q2 is to accommodate sample collection from a large surface area source 207, such as a parcel, luggage, a person, an automobile, a shipping container, etc. In the exemplary embodiment where the source 207 is a person, Q2 is at least 50 liters/sec and often 100 to 200 liters/sec. The sample gas stream 205 is typically at ambient conditions (standard pressure and temperature) with a relative humidity ranging from about 10% to about 90%, or more, where the apparatus 200 is operated out of doors and from about 20% to about 80% where the apparatus is operated in climate controlled environments.
In embodiments, the coolant gas stream is conducted through the first duct 225 at a volumetric flow rate, Q1 which is on the same order as the volumetric flow rate of the sample gas stream 205(Q2). Q1 is to be comparable to Q2 particularly for embodiments where the air is at ambient conditions and subject to fluctuations in moisture content. In an embodiment, Q1 is at least equal to Q2 and in further embodiments may be between 1 and 3 times Q2 as a function of ambient conditions, particularly moisture content at the air intake 226. Hence, Q1 may range from 1 to 3000 liters/second, is preferably at least 50 liters/second, and is in the 100-300 liters/second range for an exemplary embodiment where the system 200 is disposed in a climate controlled environment (i.e., conditioned ambient air) and configured for collecting a sample from a human.
The chiller 210 is coupled to the first duct 225 and configured for cooling the large coolant gas stream volumetric flows described herein to a temperature, T3, which is below the sample gas stream temperature T2. In an embodiment the chiller 210 comprises any refrigeration means known in the art to be suitable for the volumetric flows, Q1. Vortex tubes, and other means known in the art similarly adaptable only to relatively lower volumetric flows, are not well suited for the cooling the large volumetric flows of Q1 describe herein. As such, an active refrigeration means is preferred. In the exemplary embodiment, the chiller 210 cycles a refrigerant through compressed and expanded states, with the heat transfer surfaces 235 cooled by the refrigerant. In a particular embodiment, the heat transfer surfaces 235 comprise a heat exchanger, such as an air coil with the refrigerant on a liquid side and the coolant gas on an air side. In the exemplary embodiment, the chiller 210 is has a thermal rating sufficient to cool the coolant gas stream by at least 5° C. relative to in intake temperature T1 to approximately halve vapor pressures of the exemplary particles targeted for detection. In advantageous embodiments, the chiller 210 is has a thermal rating sufficient to cool the coolant gas stream by at least 10° C. relative to in intake temperature T1. In exemplary in-door embodiments, where a cold air supply intakes ambient air from a conditioned environment at an intake temperature T1 of about 25° C., the chiller 210 is has a thermal rating sufficient to provide a cold air supply temperature T3 of between about 0° C. and about 20° C., with T3 in the exemplary embodiment being between about 5° C. and about 15° C. for a T1 of about 25° C.
At the union 250 the first and second ducts 225 and 230 join. The union 250 may be upstream or coincident with the adsorption media 220. The union 250 may, for example comprises a T-fitting or Y-fitting. Any flow modifier may be adapted to the union 250 or in ducting between the union 250 and adsorption media 220 to improve Mixing of the sample gas stream 205 with the coolant gas stream 215. For example, laminar flow achieved in the second duct 230 for the sake of limiting deposition of particles on duct surfaces may be disrupted downstream of the union 250 for the sake of mixing the sample gas stream 205 with the coolant gas stream 215 to achieve the most significant vapor pressure reduction. In certain embodiments, the union 250 is disposed a distance upstream of the adsorption media 220 to provide a residence time, τ, between the union 250 and the adsorption media 220 sufficient to reduce the sample gas stream 205 temperature T2 by at least 5° C. and thereby reduce target material vapor pressures by approximately half.
As illustrated, the adsorption media 220 is to be in fluid communication with each of the sample gas stream 205 and the coolant gas stream 215. The adsorption media 220 is to collect particles entrained in the sample gas stream 205 at a temperature, T4, which is below that of the sample gas stream (T2). The temperature T4 is a function of the mass and energy balance between the sample gas stream 205 and the coolant gas stream concurrently introduced to the adsorption media 220 and is therefore subject to a variety of design choices. In the simplest case, where Q1 is approximately equal to Q2, and the heat capacity of the respective streams is also approximately equal, T4 will approximately average T2 and T3. Thus, were Q1 is approximately equal to Q2 with Q1 comprising cold air at 15° C. and Q2 comprising ambient air at 25° C., T4 will be approximately 20° C. with a volumetric flow rate, Q4. of Q1+Q2 (e.g., 2 liters/sec-4000 liters/sec with the exemplary flow rate of approximately 400 liters/sec).
The adsorption media 220 may be any known in the art capable of conducting the volumetric flow, Q4 with a pressure drop sustainable by the blowers 241 and 242 and further capable of collecting targeted particles entrained in the sample gas stream 205. In an embodiment, the adsorption media 220 is “porous mesh” defined herein to include other forms of porous structures, in addition to a mesh structure, including a metallic filter, a felt or felt-like mat of finely-drawn wires, a woven screen of metal wires, a porous foamed metal structure, a microporous metallic filter with microholes, and a felt-like mat of sintered metal wires. In particular embodiments, any of the materials described in U.S. Pat. No. 5,854,431 may be utilized as the adsorption media 220. In further embodiments, the adsorption media 220 further includes organic and/or polymeric materials coated on a mesh substrate.
As further depicted in
In the exemplary embodiment illustrated in
In a first embodiment where the union 250 is downstream of the flow diverter 260 coupled to the second duct 230 (e.g., as depicted in
Generally, the total duration of both the operations 305 and 310 is between 4 and 8 seconds for the exemplary system employing a Q1 and Q2 that are each at least 50 liters/second and often to be in the range of 100-200 liters/second, depending on the application. In embodiments, the duration of operation 305 may be about 1-2 seconds with the remaining majority of particle collection time spent at operation 310 in cases where both LVP and HVP particles may be adsorbed at the reduced sample stream temperature (T4). Alternatively, the sequence of operations 305 and 310 may be such that the blower 241 is energized before the blower 242 to pre-cool the adsorption media 220.
At operation 315, the collection phase is terminated by denergizing the blower 242 and at operation 320, the coolant gas stream 215 is also diverted from the adsorption media 220, for example by actuating the bypass 265. Alternatively, the blower 241 may be denergized. With the collection phase completed, a desorption cycle is commenced at operation 325 by exposing the adsorption media 220 to the carrier gas stream 255. For example, in one embodiment, the carrier gas stream 255 is conducted across the adsorption media 220 in a direction parallel to a longest dimension of the adsorption media 220. In particular embodiments, operation 325 is commenced after diverting the coolant gas stream 215 at operation 320. The desorbed particles now entrained in the carrier gas stream 255 are then transported to the chemical detector 290 and the LVP and HVP particles transferred from the adsorption media 220 are analyzed at operation 330.
The apparatus 400 further includes an adsorption media heater 470 to heat the adsorption media 220 to temperatures greater than a temperature of the carrier gas stream and thermally desorb the particles to the carrier gas stream while the adsorption media is in fluid communication with the third duct. Thermal desorption of the LVP and HVP particles from the adsorption media 220 is controlled in a manner which avoids generating appreciable levels of decomposition products, particularly of the HVP particles. In accordance with one embodiment, adsorption media heater 470 comprises a means to resistively heat the adsorption media 220. One advantageous implementation of such resistive heating is described in detail in U.S. Pat. No. 7,299,711. Other known heating means, such as lamp (radiative) heating, convective heating, inductive heating, etc. may also be implemented in a conventional manner to achieve a similar controlled thermal desorption of the LVP and HVP particles from the adsorption media 220.
In the exemplary embodiment, the adsorption media heater 470 is controlled, for example by way of the heating power supply 475, by an algorithm implemented in hardware (ASIC, FPGA, etc.) or software to incrementally heat the adsorption media 220 in stages with each heating stage having a predetermined dwell time at a predetermined temperature.
In an embodiment, the adsorption media heater 470 is to heat the adsorption media 220 at operation 636 to a first elevated temperature to desorb a HVP particle during a first dwell time. During operation 636, the adsorption media is held a temperature which is below a threshold temperature at which decomposition products of the HVP particle are generated. Subsequently, at operation 637, the adsorption media heater 470 is to heat the adsorption media 220 to a second elevated temperature to desorb a LVP particle during a second dwell time.
Referring to
While the heating curve 584 can be expected to generate a significant amount of decomposition products associated the HVP particles. Both staged heating curves 584 and 585 are suitable for reducing the decomposition products associated various HVP particles. The staged heating curve 584 is advantageous where a time divided release of particles into the second carrier gas stream is further useful for improving resolution of the detector 290, for example as described in U.S. Pat. No. 7,299,711. However, such time division of species can reduce overall apparatus throughput and where the adsorption media 220 forms a component of a first preconcentration stage that is followed by a second preconcentration stage (e.g., as depicted in
In the illustrative embodiment, the apparatus 700 includes a second preconcentration stage employing a second adsorption media 721, downstream of a first preconcentration stage employing the adsorption media 220. Generally the second adsorption media 721 may be any of the embodiments described for adsorption media 220. The two stage preconcentration of the sample gas stream 205 may be implemented in part based on the multi-staged system described in U.S. Pat. No. 6,345,545. As illustrated in
The second preconcentrator stage further includes a vortex tube 794 through which a second coolant gas flow 793 (e.g., originating from a compressed gas source) is introduced while the rotatable valve 792 is in the first state. The vortex tube 794 thereby serves to reduce the temperature of the carrier gas stream 255 to promote particle adsorption at the second adsorption media 721. As the carrier gas stream 255 has the third volumetric flow rate, Q3, which is substantially smaller than Q2, the cooling capacity of a conventional vortex cooler is sufficient in the second preconcentration stage to reduce the temperature of the carrier gas stream 255 from a temperature elevated by heating of the adsorption media 220 (e.g., 100° C.) during the first desorption phase (e.g., operation 636). For example, in certain embodiments where Q1 is at least 200 liters/second, Q3 is approximately 2 liters/second.
With the rotatable valve 792 in the second state, the second carrier gas stream 788 is conducted at a fourth volumetric flow rate, Q4, to the chemical detector 290, permitting desorption of the LVP and HVP particles collected by the second adsorption media 721. As an example, Q4 may be about 200 mL/minute for an embodiment where Q3 is 2 liters/second. As further illustrated, while the rotatable valve 792 is in the second state, the second adsorption media 721 is heated to an elevated temperature to thermally desorb the LVP and HVP particles collected in the second preconcentrator stage. In one such embodiment, the second adsorption media 721 is controllably heated for time divisioned desorption, for example by controlling the second resistive heater 795 via the second power supply 796 to heating the second adsorption media 721 in the manner illustrated by the heating curve 584 (
It is to be understood that the above description is intended to be illustrative, and not restrictive. Many other embodiments will be apparent to those of skill in the art upon reading and understanding the above description. Although the present invention has been described with reference to specific exemplary embodiments, it will be recognized that the invention is not limited to the embodiments described, but can be practiced with modification and alteration. Accordingly, the specification and drawings are to be regarded in an illustrative sense rather than a restrictive sense.
Embodiments of the invention were developed under Contract No. DE-AC04-94AL85000 between Sandia Corporation and the U.S. Department of Energy. The United States Government has certain rights in this invention.
Number | Name | Date | Kind |
---|---|---|---|
5457720 | Snyder et al. | Oct 1995 | A |
5854431 | Linker et al. | Dec 1998 | A |
5939831 | Fong et al. | Aug 1999 | A |
6345545 | Linker et al. | Feb 2002 | B1 |
7299711 | Linker et al. | Nov 2007 | B1 |
20100298738 | Felts et al. | Nov 2010 | A1 |
Entry |
---|
Large-Volume Sampling and Preconcentration, 3rd Explosives Detection Technology Symposium and Aviation Security Technology Conference, Atlantic City, NJ, Nov. 26-27, 2001 by Kevin L. Linker, 10 pages. |