PRECONDITIONER HAVING INDEPENDENTLY DRIVEN HIGH-SPEED MIXER SHAFTS

Abstract
An improved, dual-shaft preconditioner (10, 70, 102) is provided having independent drive mechanism (18, 20, 78, 80) operatively coupled with a corresponding preconditioner shaft (14, 16, 74, 76, 106, 108) and permitting selective rotation of the shafts (14, 16, 74, 76, 106, 108) at rotational speeds and directions independent of each other. Preferably, the speed differential between the shafts (14, 16, 74, 76, 106, 108) is at least about 5:1. The mechanisms (18, 20, 78, 80) are operatively coupled with a digital control device (60) to allow rotational speed and direction control. Preferably, the preconditioner (10, 70, 102) is supported on load cells (62, 100) also coupled with control device (60) to permit on-the-go changes in material retention time within the preconditioner (10, 70, 102). The preconditioner (10, 70, 102) is particularly useful for the preconditioning and partial gelatinization of starch-bearing feed or food materials, to an extent to achieve at least about 50% cook in the preconditioned feed or food materials.
Description

BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a somewhat schematic plan view of a preconditioner in accordance with the invention;



FIG. 2 is a front elevational view of the preconditioner of FIG. 1;



FIG. 3 is a side elevational view of the preconditioner of FIG. 1;



FIG. 4 is a sectional view taken along line 4-4 of FIG. 3;



FIG. 5 is a schematic diagram of the interconnection between the preconditioner of the invention and an extruder;



FIG. 6 is a side view of another type of preconditioner in accordance with the invention;



FIG. 7 is an end view thereof;



FIG. 8 is a plan view thereof;



FIG. 9 is a perspective view of another preconditioner embodiment in accordance with the invention;



FIG. 10 is a side elevational view of the preconditioner illustrated in FIG. 9;



FIG. 11 is a sectional view taken along line 11-11 of FIG. 10; and



FIG. 12 is a sectional view taken along line 12-12 of FIG. 10.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT
Embodiment of FIGS. 1-5

Turning now to the drawings, an improved preconditioner 10 is depicted in FIGS. 1-4. Broadly, the preconditioner 10 includes an elongated mixing vessel 12 with a pair of parallel, elongated, axially-extending mixing shafts 14 and 16 within and extending along the length thereof The shafts 14, 16 are operably coupled with individual variable drive devices 18 and 20, the latter in turn connected with digital control device 22. The preconditioner 10 is adapted for use with a downstream processing device such as an extruder or pellet mill. As depicted in FIG. 5, the preconditioner 10 is coupled with an extruder 24 (which may be of the single or twin screw variety) having an inlet 26 and a restricted orifice die outlet 28, as well as an internal, axially rotatable screw.


In more detail, the vessel 12 has an elongated, transversely arcuate sidewall 30 presenting a pair of elongated, juxtaposed, intercommunicated chambers 32 and 34, as well as a material inlet 36 and a material outlet 38. The chamber 34 has a larger cross-sectional area than the adjacent chamber 32, as will be readily apparent from a consideration of FIG. 4. The sidewall 30 has access doors 40 and is also equipped with injection assemblies 42 for injection of water and/or steam into the confines of vessel 12 during use of the preconditioner, and a vapor outlet 44. The opposed ends of vessel 12 have end plates 46 and 48, as shown.


Each of the shafts 14, 16 has a plurality of radially outwardly-extending mixing elements 50 and 52 which are designed to agitate and mix material fed to the preconditioner, and to convey the material from inlet 36 towards and out outlet 38. It will be observed that the elements 50 are axially offset relative to the elements 52, and that the elements 50, 52 are intercalated (i.e., the elements 52 extend into the cylindrical operational envelope presented by shaft 14 and elements 50, and vice versa). Although the elements 50, 52 are illustrated as being substantially perpendicular to the shafts 14, 16, the invention is not so limited; rather, the elements 50, 52 are adjustable in both length and pitch, at the discretion of the user. Again referring to FIG. 4, it will be seen that the shaft 14 is located substantially along the center line of chamber 32, and that shaft 16 is likewise located substantially along the center line of the chamber 34.


The drives 18 and 20 are in the illustrated embodiment identical in terms of hardware, and each includes a drive motor 54, a gear reducer 56, and coupling assembly 58 serving to interconnect the corresponding gear reducer 56 and motor 54 with a shaft 14 or 16. The drives 18 and 20 also preferably have variable frequency drives 59 which are designed to permit selective, individual rotation of the shafts 14, 16 in terms of speed and/or rotational direction independently of each other. In order to provide appropriate control for the drives 18 and 20, the drives 57 are each coupled with a corresponding motor 54 and a control device 60. The control device 60 may be a controller, processor, application specific integrated circuit (ASIC), or any other type of digital or analog device capable of executing logical instructions. The device may even be a personal or server computer such as those manufactured and sold by Dell, Compaq, Gateway, or any other computer manufacturer, network computers running Windows NT, Novel Netware, Unix, or any other network operating system. The drives 57 may be programmed as desired to achieve the ends of the invention, e.g., they may be configured for different rotational speed ranges, rotational directions and power ratings.


In preferred forms, the preconditioner 10 is supported on a weighing device in the form of a plurality of load cells 62, which are also operatively coupled with control device 60. The use of load cells 62 permits rapid, on-the-go variation in the retention time of material passing through vessel 12, as described in detail in U.S. Pat. No. 6,465,029, incorporated by reference herein.


The use of the preferred variable frequency drive mechanisms 18, 20 and control device 60 allow high-speed adjustments of the rotational speeds of the shafts 14, 16 to achieve desired preconditioning while avoiding any collisions between intermeshing mixing elements 50, 52. In general, the control device 60 and the coupled drives 57 communicate with each drive motor 54 to control the shaft speeds. Additionally, the shafts 14, 16 can be rotated in different or the same rotational directions at the discretion of the operator.


Retention times for material passing through preconditioner 10 can be controlled manually by adjusting shaft speed and/or direction, or, more preferably, automatically through control device 60. Weight information from the load cells 62 is directed to control device 60, which in turn makes shaft speed and/or directional changes based upon a desired retention time.


The preconditioner 10 is commonly used for the processing of animal feed or human food materials, such as grains (e.g., wheat, corn, oats, soy), meat and meat by-products, and various additives (e.g., surfactants, vitamins, minerals, colorants). Where starch-bearing grains are processed, they are typically at least partially gelatinized during passage through the preconditioner. The preconditioner 10 is usually operated at temperatures of from about 100-212 degrees F., residence times of from about 30 seconds-5 minutes, and at atmospheric or slightly above pressures.


The drive arrangement for the preconditioner 10 has the capability of rotating the shafts 14, 16 at variable speeds of up to about 1,000 rpm, more preferably from about 200-900 rpm. Moreover, the operational flexibility of operation inherent in the preconditioner design allows for greater levels of cook (i.e., starch gelatinization) as compared with similarly sized conventional preconditioners.


Embodiment of FIGS. 6-8

This embodiment is in many respects similar to that described above, and provides a preconditioner 70 having an elongated mixing vessel 72 with a pair of parallel, elongated, axially-extending shafts 74, 76 within and extending along the length thereof. The shaft 74, 76 are operably coupled with individual variable drive devices 78, 80, the latter in turn connected with digital control device (not shown) similar to control device 22 described previously. The preconditioner 70 may be used with downstream processing equipment such as extruders or pellet mills.


The vessel 72 has an elongated, transversely arcuate sidewall 82 presenting a pair of elongated, juxtaposed, intercommunicated chambers of equal cross sectional area, as well as a material inlet 84 and a material outlet 86. The sidewall 82 has an access door 88 and is also equipped with injection assemblies 90 for injection of water and/or steam into the vessel 82 during use of the preconditioner.


As in the first embodiment, each of the shafts 74, 76 has a plurality of outwardly extending mixing elements 92, 94 mounted thereon and normally extending the fill length of the respective shafts. The elements 92, 94 are axially offset and intercalated as illustrated in FIG. 8, and are designed to agitate and mix material fed to the preconditioner and to convey the material from inlet 84 toward an out outlet 86.


The drives 78,80 are identical, each having a drive motor 96, gear reducer 97 and coupler 98. The drives are preferably variable frequency drives designed to present selective, individual rotation of the shafts 74, 76 independently of each other.


The preconditioner 70 is supported on a weighing device comprising a plurality of load cells 100 which are operatively coupled with the preconditioner control device. The load cell permits variation in retention time all as described in U.S. Pat. No. 6,465,029.


The preconditioner 72 may be used in the same fashion and under the same general operative parameters as described in connection with the embodiment of FIGS. 1-5.


Embodiment of FIGS. 9-12

The preconditioner 102 includes an elongated, dual-stage mixing vessel 104 with a pair of parallel, elongated, axially extending and rotatable mixing shafts 106 and 108 along the length thereof. The shafts 106, 108 are coupled with individual variable drive devices (not shown), as in the case of the earlier-described embodiments. These variable drive devices are in turn connected to a digital control device, also not shown. The preconditioner 102 is likewise adapted for connection with a downstream extruder or pellet mill.


The vessel 104 has an elongated, transversely arcuate sidewall 110 presenting a pair of elongated, juxtaposed, interconnected chambers 112 and 114, as well as a material inlet 116 and a material outlet 118. The chamber 114 has a larger cross sectional area than the adjacent chamber 112, which is important for reasons to be described. Each of the chambers 112, 114 is equipped with a series of spaced apart inlet ports 120, 122 along the lengths of the corresponding chambers, and an intermediate set of ports 123 is located at the juncture of tie chambers 112, 114. These ports 120, 122 are adapted for connection of water and/or steam injectors leading to the interiors of the chambers. The overall vessel 104 further has fore and aft end plates 124 and 126, as well as, a central plate 128.


As illustrated, the shafts 106, 108 are essentially centrally located within the corresponding chambers 112, 114. To this end, forward bearings 130 mounted on plate 124 support the forward ends of the shafts 106, 108, and similarly rear bearings 132 secured to plate 126 support the rear ends of the shafts. The shafts 106, 108 have rearwardly extending extensions 106a, 108a projecting from the bearings 132 to provide a connection to the variable frequency drives previously described.


The shaft 106 is equipped with a plurality of radially outwardly extending mixing elements 134 located in staggered relationship along the length of the shaft. Each of the elements 134 (FIG. 12) includes a threaded inboard segment 136 received within a correspondingly threaded bore 138 of the shaft 106, with an outwardly projecting segment 140 having a substantially flat, paddle-like member 142. As best seen in FIG. 11, the paddle members 142 of the mixing elements 134 are oriented in a reverse direction relative to the direction of travel of material from inlet 116 to outlet 118. That is, these members serve to retard the flow of material through the preconditioner 102.


The shaft 108 situated within smaller chamber 112 likewise has a series of mixing elements 144 along the length thereof in alternating, staggered relationship. The elements 144 are identical with the elements 134, save that the elements 144 are somewhat smaller in size. Each element 144 presents an outboard paddle-like member 146. In this case, the members 146 are oriented opposite that of the members 142, i.e., they are oriented in a forward direction so as to more positively advance the flow of material from inlet 116 toward and out the outlet 118.


As in the case of the earlier described embodiments, adjacent pairs of mixing elements 134 and 144 are axially offset from each other and are intercalated; thus the elements are not of self-wiping design. This allows the shafts to be rotated at greatly different rotational speeds, while avoiding any potential lock-up owing to mechanical interference between the elements 134 and 144.


The preconditioner designs of the present invention permit processing of materials to a greater degree than heretofore possible. For example, prior preconditioners of the type described in U.S. Pat. No. 4,752,139 could not be field-adjusted to achieve different relative rotational speeds between the shafts thereof. That is, in such prior preconditioners, once a rotational speed differential was established during manufacture of the device, it could not thereafter be altered without a complete reconstruction of the device. Normal preconditioners of this type had a speed differential of 2:1 between the shafts within the small and large chambers, respectively. In the present invention, however, far greater and infinitely adjustable speed differentials can be readily accomplished. Thus, in preferred forms the speed differential between the shafts 106, 108 is at least 5:1, and typically ranges from 3:1 to 18:1. This latter differential corresponds to a rotational speed of 900 rpm for the shaft 108, and 50 rpm for the shaft 106.


This enhanced design affords a number of processing advantages. To give one example, in the prior preconditioner design of the '139 patent, the maximum degree of cook achievable was normally about 30%, with a maximum of about 43% (measured by gelatinization of starch components according to the method described in Mason et al., A New Method for Determining Degree of Cook, 67th Annual Meeting, American Association of Cereal Chemists (Oct. 26, 1982), incorporated by reference herein). With the present invention however, significantly greater cook percentages can be achieved, of at least 50% and more preferably at least 55%, and most preferably at least about 75%. At the same time, these enhanced cook values are obtained with the same or even shorter residence times as compared with the prior preconditioners; specifically, such prior designs would require a retention time of from about 160-185 seconds to obtain maximum cook values, whereas in the present preconditioners the retention times are much less, on the order of 120-150 seconds, to achieve this same cook. Further, if the longer typical preconditioner residence times are used, the extent of cook values are normally significantly increased.


In one form of the invention, human food or animal feed mixtures containing respective quantities of protein and starch (and normally other ingredients such as fats and sugars) are processed in the preconditioners of the invention to achieve at least about 50%, and more preferably at least about 75% cook values based upon starch gelatinization. Representative examples of such mixtures are pet and fish feeds. The preconditioner of the invention also give enhanced Specific Mechanical Energy (SME) values. Prior preconditioners typically exhibited relatively low SME values whereas the preconditioner hereof have increased SME values of from about 1.7-5.0, more preferably from about 1.9-4.5 kW-Hr/Ton of processed starting materials.


It is well understood in the art that increasing the degree of cook in a preconditioner is advantageous in that less energy and retention times are required during downstream processing to achieve a desired, fully cooked product such as a pet food. Thus, use of preconditioners in accordance with the invention increases product throughput and thus materially reduces processing costs.


EXAMPLE 1

In this Example, a standard dog food formulation was prepared and preconditioned using a preconditioner in accordance with the invention. The formulation contained 53.0% corn, 22.0% poultry meal, 15% soy bean meal, and 10% corn gluten meal (all percentages by weight). This formulation was fed into the preconditioner inlet and subjected to treatment therein along with injection of steam and water. The small chamber shaft was rotated at a speed of 900 rpm in the reverse direction, whereas the large chamber shaft was rotated at 50 rpm in the forward direction. Three separate tests were conducted at different feed rates to the preconditioner, and the results of these tests are set forth in Table 1 below. As noted in Table 1, the percent cook values obtained using the preconditioner ranged from 47.6-50.9%, and total SME values varied from 1.97-3.49 kW-Hr/Ton.












TABLE 1





Name
Test 1
Test 2
Test 3


















Feed Rate (lbs/hr)
5,000
9,000
10,000


Cylinder Water (lbs/hr)
850
1,600
1,700


Cylinder Steam (lbs/hr)
610
1,221
1,306


Cylinder Oil (lbs/hr)
0
0
0


DDC Small (L) Shaft Direction
R
R
R


(F or R)1


DDC Small (L) Shaft Speed (RPM)
900
900
900


DDC Small (L) Shaft Load (%)
51.0%
56.0%
57.0%


DDC Small (L) HP
15
15
15


DDC Large (R) Shaft Direction
F
F
F


(F or R)


DDC Large (R) Shaft Speed (RPM)
50
50
50


DDC Large (R) Shaft Load (%)
27.0%
33.0%
31.0%


DDC Large (R) HP
15
15
15


Cylinder Weight (lbs)
293
345
350


Cylinder Retention Time (Minutes)
2.72
1.75
1.61


Cylinder Downspout Temp (Deg F.)
200
199
200


DDC Small (L) SME (kW-Hr/Ton)
2.28
1.39
1.28


DDC Large (R) SME (kW-Hr/Ton)
1.21
0.82
0.69


Total DDC Calc'd SME
3.49
2.21
1.97


(kW-Hr/Ton)


Moisture (MCWB %)
13.01
12.74
14.51


Total Starch
35.65
34.61
34.7


Gelatinized Starch
17.28
17.61
16.52


% Cook
48.5
50.9
47.6






1F refers to the forward direction and R refers to the rearward direction. Directionality is achieved by orientation of the shaft mixing paddles and/or use of oppositely rotating shafts. In the present Examples, the shafts were rotated in the same direction, and in the F direction the paddles are oriented to move the mixture forwardly, whereas in the R direction the paddles are oriented to retard the forward movement of the mixture.







EXAMPLE 2

In this Example, a standard cat food formulation was prepared and preconditioned as set forth in Example 1. The cat food formulation contained 32% poultry meal, 28% corn, 14% rice, 13% corn gluten meal, 3% beat pulp, 2% phosphoric acid (54% H3PO4), and 8% poultry fat (all percentages by weight). In the three separate test runs, the small chamber shaft was rotated at 800 rpm in the reverse direction while the large chamber shaft rotated at 50 rpm in the forward direction. The results of these tests are set forth in Table 2 below, where percent cook varied from 45.8 to 48.1% and total SME values ranged from 2.9 to 3.9 kW-Hr/Ton.












TABLE 2





Name
Test 4
Test 5
Test 6


















Feed Rate (lbs/hr)
4,000
4,000
4,000


Cylinder Water (lbs/hr)
760
760
1,140


Cylinder Steam (lbs/hr)
580
580
840


Cylinder Oil (lbs/hr)
200
280
0


DDC Small (L) Shaft Direction
R
R
R


(F or R)


DDC Small (L) Shaft Speed (RPM)
800
800
800


DDC Small (L) Shaft Load (%)
40.0%
40.0%
42.0%


DDC Small (L) HP
15
15
15


DDC Large (R) Shaft Direction
F
F
F


(F or R)


DDC Large (R) Shaft Speed (RPM)
50
50
50


DDC Large (R) Shaft Load (%)
28.0%
29.0%
35.0%


DDC Large (R) HP
15
15
15


Cylinder Weight (lbs)
286
288
310


Cylinder Retention Time (Minutes)
3.21
3.24
2.33


Cylinder Downspout Temp (Deg F.)
200
200
201


DDC Small (L) SME (kW-Hr/Ton)
2.10
2.10
1.60


DDC Large (R) SME (kW-Hr/Ton)
1.70
1.80
1.30


Total DDC Calc'd SME
3.80
3.90
2.90


(kW-Hr/Ton)


Moisture (MCWB %)
9.88
9.75
9.91


Total Starch
34.61
32.77
33.83


Gelatinized Starch
15.84
15.78
16.09


% Cook
45.8
48.1
47.6









EXAMPLE 3

In this Example, a floating aquatic feed formulation used in the manufacture of catfish feeds was prepared and preconditioned as set forth in Example 1. The floating aquatic feed formulation contained 20% whole corn, 20% fish meal, 20% de-fatted rice bran, 15% wheat midlings, 10% soybean meal, 10% beat pulp, and 5% wheat (all percentages by weight). The three separate test runs, the small diameter shaft was rotated at 800 rpm in the reverse direction and the large diameter shaft was rotated at 50 rpm in the forward direction. These results are set forth in Table 3 where it can be seen that the cook varied from 78.7-84.5% and the total SME values were 3.7 kW-Hr/Ton.












TABLE 3





Name
Test 7
Test 8
Test 9


















Feed Rate (lbs/hr)
4,000
4,000
4,000


Cylinder Water (lbs/hr)
1,280
1.360
1.520


Cylinder Steam (lbs/hr)
1,200
1,200
1.200


Cylinder Oil (lbs/hr)
0
0
0


DDC Small (L) Shaft Direction
R
R
R


(F or R)


DDC Small (L) Shaft Speed (RPM)
800
800
800


DDC Small (L) Shaft Load (%)
37.0%
37.0%
37.0%


DDC Small (L) HP
15
15
15


DDC Large (R) Shaft Direction
F
F
F


(F or R)


DDC Large (R) Shaft Speed (RPM)
50
50
50


DDC Large (R) Shaft Load (%)
29.0%
29.0%
29.0%


DDC Large (R) HP
15
15
15


Cylinder Weight (lbs)
284
285
286


Cylinder Retention Time (Minutes)
2.63
2.61
2.55


Cylinder Downspout Temp (Deg F.)
204
204
204


DDC Small (L) SME (kW-Hr/Ton)
2.10
2.10
1.60


DDC Large (R) SME (kW-Hr/Ton)
1.60
1.60
1.60


Total DDC Calc'd SME
3.70
3.70
3.70


(kW-Hr/Ton)


Moisture (MCWB %)
36.22
35.89
35.28


Total Starch
27.49
26.87
28.87


Gelatinized Starch
21.63
22.05
21.86


% Cook
78.70
82.10
84.50









EXAMPLE 4

In this Example, a sinking aquatic feed formulation used in the manufacture of Sea Bass/Sea Breem feeds was prepared and preconditioned as set forth in Example 1. The sinking aquatic feed formulation was made up of 53.5% soybean meal, 15% wheat, 8.5% corn gluten feed, 6.0% corn, 1% sunflower meal, and 16% fish oil. In three separate tests, the small chamber shaft was rotated at 800 rpm in the reverse direction and the large diameter shaft was rotated at 50 rpm in the forward direction. These results are set forth in Table 4, where it will be seen that percent cook ranges from 72.5-75.8% and total SME values were from 2.2-3.2 kW-Hr/Ton.












TABLE 4





Name
Test 10
Test 11
Test 12


















Feed Rate (lbs/hr)
5,000
7,000
9,000


Cylinder Water (lbs/hr)
940
1,330
1,710


Cylinder Steam (lbs/hr)
716
940
1,330


Cylinder Oil (lbs/hr)
350
490
270


DDC Small (L) Shaft Direction
R
R
R


(F or R)


DDC Small (L) Shaft Speed (RPM)
800
800
800


DDC Small (L) Shaft Load (%)
45.0%
49.0%
54.0%


DDC Small (L) HP
15
15
15


DDC Large (R) Shaft Direction
F
F
F


(F or R)


DDC Large (R) Shaft Speed (RPM)
50
50
50


DDC Large (R) Shaft Load (%)
31.0%
36.0%
39.0%


DDC Large (R) HP
15
15
15


Cylinder Weight (lbs)
306
334
357


Cylinder Retention Time (Minutes)
2.62
2.05
1.74


Cylinder Downspout Temp (Deg F.)
201
199
199


DDC Small (L) SME (kW-Hr/Ton)
1.90
1.60
1.30


DDC Large (R) SME (kW-Hr/Ton)
1.30
1.10
0.90


Total DDC Calc'd SME
3.20
2.70
2.20


(kW-Hr/Ton)


Moisture (MCWB %)
11.32
12.72
13.14


Total Starch
11.74
12.05
12.52


Gelatinized Starch
8.63
9.14
9.08


% Cook
73.50
75.80
72.50








Claims
  • 1. A preconditioner, comprising: an elongated mixing vessel having a material inlet and a material outlet;a pair of elongated mixing shafts each having a plurality of mixing elements, said shafts located in laterally spaced apart relationship within said vessel;a pair of variable drive mechanisms respectively coupled with said shafts in order to permit selective rotation of the shafts at individual rotational speeds independent of each other; anda control device operably coupled with said drive mechanisms to independently control the rotational speed of said shafts.
  • 2. The preconditioner of claim 1, said drive mechanisms each comprising a variable frequency drive.
  • 3. The preconditioner of claim 1, including a weighing device operably coupled with said vessel in order to weigh the contents of the vessel during use of the preconditioner.
  • 4. The preconditioner of claim 1, said vessel having elongated, transversely arcuate walls presenting a pair of elongated, juxtaposed, intercommunicated chambers, one of said chambers having a greater cross-sectional area than the other of said chambers.
  • 5. The preconditioner of claim 1, said shafts operable to rotate in opposite directions, respectively.
  • 6. A processing system, comprising: a processing device presenting a processing chamber with an inlet and an outlet;a preconditioner having an inlet and an outlet, the preconditioner outlet operably coupled with the chamber inlet, said preconditioner comprising an elongated mixing vessel having a material inlet and a material outlet;a pair of elongated mixing shafts each having a plurality of mixing elements, said shafts located in laterally spaced apart relationship within said vessel;a pair of variable drive mechanisms respectively coupled with said shafts in order to permit selective rotation of the shafts at individual rotational speeds independent of each other; anda control device operably coupled with said drive mechanisms to independently control the rotational speed of said shafts.
  • 7. The system of claim 6, said drive mechanisms each comprising a variable frequency drive.
  • 8. The system of claim 6, including a weighing device operably coupled with said vessel in order to weigh the contents of the vessel during use of the preconditioner.
  • 9. The system of claim 6, said shafts operable to rotate in opposite directions, respectively.
  • 10. A method of preconditioning a material comprising the steps of: providing a preconditioner including an elongated mixing vessel having a material inlet and a material outlet, a pair of elongated mixing shafts, each having a plurality of mixing elements thereon and located in laterally spaced apart relationship within said vessel;directing a quantity of said material into said vessel through said inlet; andselectively rotating said shafts at respective rotational speeds independent of each other in order to precondition said material and move the material toward and out said vessel outlet.
  • 11. The method of claim 10, including the step of using a digital control device to independently control the rotational speeds of said shafts.
  • 12. The method of claim 10, said material comprising a food or feed material.
  • 13. The method of claim 10, said material being a starch-bearing material, and said material being at least partially gelatinized during passage through said preconditioner.
  • 14. In a method of processing a food or feed mixture including respective quantities of protein and starch and comprising the steps of passing the mixture into and through a vessel equipped with a pair of elongated, axially rotatable shafts each having a plurality of outwardly extending mixing elements with the mixing elements of the shafts being axially offset and intercalated, and rotating said shafts during said passage of said material through the vessel, the improvement which comprises the step of processing the mixture to achieve at least about 50% cook, as measured by the extent of gelatinization of said starch.
  • 15. The method of claim 14, including the step of injecting steam into said vessel during said passage of said mixture therethrough.
  • 16. The method of claim 14, including the step of rotating said shafts at different rotational speeds, respectively.
  • 17. The method of claim 16, including the step of rotating said shafts such that there is a speed differential of at least about 5:1 between said shafts.
  • 18. In a method of processing a food or feed mixture including respective quantities of protein and starch and comprising the steps of passing the mixture into and through a vessel equipped with a pair of elongated, axially rotatable shafts each having a plurality of outwardly extending mixing elements with the mixing elements of the shafts being axially offset and intercalated, and rotating said shafts during said passage of said material through the vessel, the improvement which comprises the step of processing the mixture to achieve a specific mechanical energy (SME) imparted to said food or feed mixture of from about 1.7-5.0 kW-Hr/Ton of said food or feed mixture.
  • 19. The method of claim 18, said imparted SME being from about 1.9-4.5 kW-K/Ton.
  • 20. The method of claim 18, including the step of injecting steam into said vessel during said passage of said mixture therethrough.
  • 21. The method of claim 18, including the step of rotating said shafts at different rotational speeds, respectively.
  • 22. The method of claim 18, including the step of rotating said shafts such that there is a speed differential of at least about 5:1 between said shafts.
CROSS-REFERENCE TO RELATED APPLICATION

This application is a continuation-in-part of application Ser. No. 11/551,997, filed Oct. 23, 2006, and incorporated by reference herein.

Continuation in Parts (1)
Number Date Country
Parent 11551997 Oct 2006 US
Child 11875033 US