The disclosure is directed to fiber optic cable assemblies that are preconnectorized with a hardened connector on at least one end. More specifically, the disclosure is directed to fiber optic cable assemblies that are preconnectorized with a hardened connector using a fiber optic cable that includes a subunit surrounded by an upjacketed portion.
Optical fiber is increasingly being used for a variety of applications, including but not limited to broadband voice, video, and data transmission. Optical networks typically include patch panels (i.e., arrays of connectors) at distribution locations such as when routing optical fiber toward subscribers. The patch panels provide a common location where moves, adds, or changes to connectivity of the channels of the optical network can be made and verified. Typically, the patch panels have the optical fibers connections arranged in an enclosure or housing that has limited space for slack storage, fiber management, the patch panel and the like.
For example, an outdoor enclosure having a patch panel or connection location may be connected to an enclosure or housing located within a premises, multi-dwelling unit (MDU), a business or the like using a cable assembly. Consequently, there exists a need for cable assemblies that can span rugged installation environments spanning outdoor environments while protecting the optical fiber and still be routed into enclosures or patch panels that require highly bendable cables for routing, slack storage and efficient cable management. Moreover, the solution should allow the craft to perform the installation in a quick and reliable manner.
The disclosure is directed to cable assemblies including a cable having a subunit surrounded by an upjacketed portion, where the subunit includes at least one optical fiber and a plurality of tensile yarns disposed within a subunit jacket and, the upjacketed portion includes strength components such as glass-reinforced plastic (GRP) rods disposed about the subunit and within a jacket. In one embodiment, a hardened fiber optic connector is attached to the at least one optical fiber at a first end of the cable so it is strain-relieving at least some of the plurality of tensile yarns of the subunit and the strength components of the upjacketed portion of the cable. The hardened fiber optic connector includes a crimp body, wherein some of the plurality of tensile yarns of the subunit are attached to the crimp body and the strength components of the upjacketed portion are also attached to the crimp body.
By strain-relieving both the tensile yarns of the subunit and the strength components of the upjacketed portion as disclosed herein independent coupling is advantageously provided to the tensile yarns and the strength components. Consequently, an adaptable cable assembly is provided that may or may not use the upjacket portion of the cable at the second end for termination and/or strain relief. By way of example, the second end of the cable assembly may be terminated using a similar hardened connector or a non-hardened connector as desired. For instance, an upjacketed portion of the cable may be stripped from the second end of the cable leaving the subunit for termination using a non-hardened connector that is strain-relieved using the tensile yarns of the subunit. Thus, the cable assembly provides continuous strain-relief from the hardened connector to other connector whether the upjacketed portion is removed or not by strain-relieving the tensile yarns at both connectors. Further, removing the upjacket portion also advantageously allows a relatively small footprint for the assembly at the second end since the subunit is highly flexible compared with the fiber optic cable with the upjacketed portion.
Additional features and advantages will be set forth in the detailed description which follows, and in part will be readily apparent to those skilled in the art from that description or recognized by practicing the same as described herein, including the detailed description that follows, the claims, as well as the appended drawings.
It is to be understood that both the foregoing general description and the following detailed description present embodiments that are intended to provide an overview or framework for understanding the nature and character of the claims. The accompanying drawings are included to provide a further understanding of the disclosure, and are incorporated into and constitute a part of this specification. The drawings illustrate various embodiments and together with the description serve to explain the principles and operation.
Reference will now be made in detail to the preferred embodiments of the disclosure, examples of which are illustrated in the accompanying drawings. Whenever possible, like reference numbers will be used to refer to like components or parts.
The cable assemblies described herein are preconnectorized at the factory on at least one end and are suitable for making optical and/or electrical connections for a variety of devices. The concepts of the disclosure advantageously allow the simple, quick, and economical cable assemblies for deployment by the craft in the field Reference will now be made in detail to the preferred embodiments, examples of which are illustrated in the accompanying drawings. Whenever possible, like reference numbers will be used to refer to like components or parts.
Cable assemblies having several different types of cable termination to the hardened fiber optic connector using cables with a subunit are disclosed herein for providing a robust yet flexible solution for routing optical fiber toward the subscriber. In one embodiment, the hardened fiber optic connector is attached to at least one optical fiber of the fiber optic cable at a first end having a subunit and an upjacketed portion while strain-relieving both the subunit and the upjacketed portion. In certain respects the different hardened fiber optic connectors disclosed herein are similar to the fiber optic connectors disclosed in U.S. Pat. Nos. 7,111,990; 7,090,406; 7,090,407 and 7,113,679, the disclosures of which are incorporated by reference herein.
Discussed and disclosed are embodiments of the cable assemblies using fiber optic cables having subunits with a plurality of tensile yarns disposed within the subunit jacket and strength components disposed radially outward of the subunit in an upjacketed portion, where the hardened connector is attached to the optical fiber and strain-relieves at least some of the plurality of tensile yarns and strength components as discussed and disclosed herein. The cable assemblies disclosed herein may also optionally include a second connector attached to the optical fiber of the cable at a second end such as an non-hardened connector or a hardened connector as desired. Further, the cable assemblies disclosed herein may also optionally include a pulling grip assembly about the connector on the second end of the cable such as the non-hardened connector.
The cable assemblies disclosed herein include a fiber optic cable 80 (hereinafter “cable”) having a subunit 50 surrounded by an upjacketed portion 60 such as shown in the upper right corner of
Using cables with a subunit has advantages. For instance, the subunit 50 of cable 80 may be broken out from the cable 80 for attaching a second connector to a second end of the subunit 50 (See
This embodiment also shows that the some of the plurality of tensile yarns 30 of subunit 50 are attached to the crimp body 155. By way of example, some of the plurality of tensile yarns 30 are attached between crimp body 155 and crimp band 154 as shown. In other words, the ends of the tensile yarns 30 are sandwiched between the outer barrel of the crimp body 155 and crimp band 154 and then the crimp band is secured (i.e., crimped) to strain-relieve the tensile yarns 30. Also depicted in this embodiment, the optical fiber 20 of subunit 50 enters a protective tube 170 at least partially disposed within the crimp body. More specifically, this embodiment shows a buffer layer 20a on optical fiber 20 and the buffer layer is threaded through (i.e., enters) a protective tube 170 at least partially disposed within crimp body 155 in this embodiment. Protective tube 170 can have any suitable size, shape and/or length as desired that allows for suitable performance with optical fiber 20. Also in this embodiment, the buffer layer enters the connector assembly 152. Moreover, the subunit jacket 40 does not enter the crimp body 155. Moreover, the geometry of shells 155a of crimp body 155 can be modified for the particular embodiments shown to provide adequate sizing of passageways and the like for the various embodiments.
Connector 100 may also include other components as desired. By way of explanation, connector 100 can have the assembly shown in the upper right corner at least partially disposed within a shroud 160 and a coupling nut 164 disposed rotatably thereon as shown in the cross-sectional views. It should be noted that the assembly shown in the upper right hand corner is a functional connector and may be used without further components. Shroud 160 may include a keying feature for orientating the assembly in the upper right corner relative to the shroud 160. Shroud 160 may also include one or more fingers for protecting and keying the connector 100 along with one or more shoulders along its length. Coupling nut 164 has a threaded portion for mating with a complimentary receptacle and/or for securing a cap to the connector when not in a mated configuration. Connector 100 also includes one or more O-rings 159 for sealing the connector 100 from environmental effects when mated.
This embodiment has subunit jacket 40 entering the crimp body 155. Moreover, a buffer layer 20a on optical fiber 20 is at least partially disposed within crimp body 155. Also in this embodiment, the buffer layer enters the connector assembly 152. As shown, tensile yarns 30 of subunit 50 enter the crimp body 155 and flare out inside the shells 155a of crimp body 155. In other variations, the tensile yarns 30 may be secured to the connector assembly 152 or other structure as desired.
This third embodiment also shows that the some of the plurality of tensile yarns 30 of subunit 50 are attached to the crimp body 155. By way of example, some of the plurality of tensile yarns 30 are attached between crimp body 155 and crimp band 154. Also depicted in this embodiment, the optical fiber 20 of subunit 50 enters a protective tube 170 at least partially disposed within the crimp body and at least partially disposed in the connector assembly 152. More specifically, this embodiment shows a buffer layer 20a on optical fiber 20 and the buffer layer is threaded through (i.e., enters) a protective tube 170. Moreover, the subunit jacket 40 does not enter the crimp body 155. This embodiment uses a smaller protective tube 170 than cable assembly 105 and a portion of the protective tube 170 can be disposed within subunit 50 as desired.
This fourth embodiment has subunit jacket 40 entering the crimp body 155. Moreover, a buffer layer 20a on optical fiber 20 is at least partially disposed within crimp body 155. Also in this embodiment, the buffer layer enters the connector assembly 152. As shown, tensile yarns 30 of subunit 50 are cut approximately even with the end of subunit jacket 40 and does not exit the crimp body 155 and, thus they are not strain-relieved to connector 100.
This fifth embodiment also shows that the some of the plurality of tensile yarns 30 of subunit 50 are attached to the crimp body 155. By way of example, some of the plurality of tensile yarns 30 are attached between crimp body 155 and crimp band 154 (i.e, positioned between the outer barrel of the crimp body 155 and the crimp band 154 and then secured by deforming the crimp band 154). Moreover, the subunit jacket 40 and the buffer layer on the fiber (if included) enter the crimp body 155 as shown while also having the tensile yarns 30 secured. To accommodate this construction the subunit jacket has at least one or more splits 40a, 40b within the crimp body 155 as shown. As depicted in the view to the right, subunit jacket 40 has two splits 40a,40b that are disposed on opposite sides. Moreover, the splits 40a, 40b extend rearward of the crimp body 155 so that the tensile yarns 30 may be secured between the crimp body 155 and crimp band 154. Also, the optical fiber 20 of subunit 50 enters the crimp body. More specifically, this embodiment shows a buffer layer 20a on optical fiber 20 at least partially disposed within crimp body 155 and entering the connector assembly 152.
The cable assemblies disclosed herein may also optionally include a pulling grip assembly 700 disposed about one or more ends of the cable assembly 1 such as shown in
Also disclosed are methods of making a cable assemblies including the steps of providing a cable having a subunit surrounded by an upjacketed portion, the subunit including at least one optical fiber and a plurality of tensile yarns disposed within a subunit jacket, and the upjacketed portion including strength components disposed about the subunit and within a jacket, providing a hardened connector having a crimp body and a crimp band, and attaching the hardened connector to at least one optical fiber at a first end of the cable and strain-relieving at least some of the plurality of tensile yarns and the strength components of the cable to the crimp body of the hardened fiber optic connector.
Although the disclosure has been illustrated and described herein with reference to preferred embodiments and specific examples thereof, it will be readily apparent to those of ordinary skill in the art that other embodiments and examples can perform similar functions and/or achieve like results. All such equivalent embodiments and examples are within the spirit and scope of the disclosure and are intended to be covered by the appended claims. It will also be apparent to those skilled in the art that various modifications and variations can be made to the present invention without departing from the spirit and scope of the same. Thus, it is intended that the present invention cover the modifications and variations of this invention provided they come within the scope of the appended claims and their equivalents.
This application is a continuation of International Application No. PCT/US12/51041, filed Aug. 16, 2012, which claims the benefit of priority to U.S. Application No. 61/524,151, filed Aug. 16, 2011, both applications being incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
5807026 | Valette | Sep 1998 | A |
6546175 | Wagman et al. | Apr 2003 | B1 |
6648520 | McDonald et al. | Nov 2003 | B2 |
6785450 | Wagman et al. | Aug 2004 | B2 |
6899467 | McDonald et al. | May 2005 | B2 |
7090406 | Melton et al. | Aug 2006 | B2 |
7090407 | Melton et al. | Aug 2006 | B2 |
7111990 | Melton et al. | Sep 2006 | B2 |
7113679 | Melton et al. | Sep 2006 | B2 |
7137742 | Theuerkorn et al. | Nov 2006 | B2 |
7244066 | Theuerkorn | Jul 2007 | B2 |
7264402 | Theuerkorn et al. | Sep 2007 | B2 |
7303418 | O'Connor | Dec 2007 | B2 |
7325980 | Pepe | Feb 2008 | B2 |
7338214 | Gurreri et al. | Mar 2008 | B1 |
7467896 | Melton et al. | Dec 2008 | B2 |
7556437 | Droege | Jul 2009 | B2 |
7568844 | Luther et al. | Aug 2009 | B2 |
7572065 | Lu et al. | Aug 2009 | B2 |
7591595 | Lu et al. | Sep 2009 | B2 |
7609925 | Gronvall et al. | Oct 2009 | B2 |
7614797 | Lu et al. | Nov 2009 | B2 |
7654747 | Theuerkorn et al. | Feb 2010 | B2 |
7677814 | Lu et al. | Mar 2010 | B2 |
7686519 | Lu | Mar 2010 | B2 |
7722258 | Lu et al. | May 2010 | B2 |
7744286 | Lu et al. | Jun 2010 | B2 |
7744288 | Lu et al. | Jun 2010 | B2 |
7762726 | Lu et al. | Jul 2010 | B2 |
7785015 | Melton et al. | Aug 2010 | B2 |
7785019 | Lewallen et al. | Aug 2010 | B2 |
7794155 | Haley et al. | Sep 2010 | B1 |
7837396 | Marcouiller | Nov 2010 | B2 |
7881576 | Melton et al. | Feb 2011 | B2 |
7918609 | Melton et al. | Apr 2011 | B2 |
7942590 | Lu et al. | May 2011 | B2 |
7959361 | Lu et al. | Jun 2011 | B2 |
RE42522 | Zimmel et al. | Jul 2011 | E |
7972067 | Haley et al. | Jul 2011 | B2 |
8038356 | Marcouiller et al. | Oct 2011 | B2 |
8128294 | Lu et al. | Mar 2012 | B2 |
8137002 | Lu et al. | Mar 2012 | B2 |
8170391 | Beck | May 2012 | B2 |
8272792 | Coleman et al. | Sep 2012 | B2 |
8285096 | Coleman et al. | Oct 2012 | B2 |
8303193 | Coleman et al. | Nov 2012 | B2 |
8506173 | Lewallen et al. | Aug 2013 | B2 |
8523455 | Luther et al. | Sep 2013 | B2 |
8556520 | Elenbaas et al. | Oct 2013 | B2 |
20040223720 | Melton | Nov 2004 | A1 |
20060045428 | Theuerkorn et al. | Mar 2006 | A1 |
20080253729 | Gronvall et al. | Oct 2008 | A1 |
20100239216 | Paschal et al. | Sep 2010 | A1 |
20100322584 | Kowalczyk et al. | Dec 2010 | A1 |
20110013871 | Lu et al. | Jan 2011 | A1 |
20110150398 | Zimmel et al. | Jun 2011 | A1 |
20110150403 | Kachmar et al. | Jun 2011 | A1 |
20110189876 | Schneider | Aug 2011 | A1 |
Number | Date | Country |
---|---|---|
101248382 | Aug 2008 | CN |
101533137 | Sep 2009 | CN |
102010039715 | Aug 2012 | DE |
WO2010051334 | May 2010 | WO |
WO2013025855 | Feb 2013 | WO |
2013179376 | May 2013 | WO |
Entry |
---|
US 7,481,586, 01/2009, Lu et al. (withdrawn) |
Chinese Search Report, Application No. 2012800399063, Jan. 29, 2015, 2 pages. |
European Search Report, Application No. 12823528.0, Feb. 19, 2015, 6 pages. |
International Search Report and Written Opinion issued in corresponding PCT Application No. PCT/US2012/051041, dated Oct. 26, 2012. |
Patent Examination Report issued in corresponding AU Application No. 2012296501, dated Nov. 21, 2014. |
Communication issued in corresponding EP Application No. 12823528.0, dated Jun. 10, 2015. |
Number | Date | Country | |
---|---|---|---|
20140161395 A1 | Jun 2014 | US |
Number | Date | Country | |
---|---|---|---|
61524151 | Aug 2011 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/US2012/051041 | Aug 2012 | US |
Child | 14177674 | US |